

1

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core
v2.5.0.0

DEVELOPERS GUIDE

March 2024

Copyright © 2018 – 2024 by tmssoftware.com bv

Web: http://www.tmssoftware.com

Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

2

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Index

Introduction ...29
Scope and architecture ...29
Additional resources ...30

Online videos ...30
Online training course ..30
Books ..31

Getting started ..33
Configuring TMS WEB Core settings ..39
Configuring TMS WEB Core project settings ...41
Automatic versioning ...42
Installation for Lazarus ..44
Your first TMS WEB Core application ...47
Your first TMS WEB Core progressive web application ...51
Your first TMS WEB Core Electron Application ...56
Your first TMS WEB Miletus Application..58
Debugging ..62
Pascal to JavaScript Compiler ..65
RTL ...66
Preprocessor ..67
Command-line compiler ..68
Utility functions ..71
Page Design ...74

Absolute positioning ...74
Relative positioning ..75
Theming ...76
BiDiMode ...78
Use of HTML templates ...79

JavaScript and CSS ..85
Using off the shelf HTML templates ...88

Automatic synchronisation with HTML templates .. 104
Live preview .. 106
Working with databases .. 109

Solutions with REST APIs for classic databases ... 110
Solutions with REST APIs for cloud database solutions .. 111
Existing REST APIs ... 112

Application .. 113
Forms ... 119

Creating forms at runtime .. 123
Hosting forms in other controls .. 126

3

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties .. 127
Methods ... 128
Events .. 129

Automatic form routing .. 130
Form inheritance ... 131
Frames .. 133

UI control types ... 135
UI controls encapsulating HTML elements .. 135
Custom drawn controls using the HTML5 CANVAS element ... 135
TMS FNC controls ... 136
jQuery UI controls .. 136

Standard Components .. 138
Common properties of visual controls .. 138
Common events of visual controls ... 140
TWebLabel .. 141

Description ... 141
HTML template tag .. 141
Properties for TWebLabel .. 142
Events for TWebLabel.. 143

TWebButton .. 143
Description ... 143
HTML template tag .. 143
Properties for TWebButton ... 144
Events for TWebButton .. 144

TWebEdit .. 145
Description ... 145
HTML template tag .. 145
Properties for TWebEdit ... 145
Methods for TWebEdit ... 147
Events for TWebEdit .. 147

TWebEditAutocomplete ... 148
Description ... 148
HTML template tag .. 148
Properties for TWebEditAutocomplete ... 148
Events for TWebEditAutocomplete... 150

TWebEditBtn ... 150
Description ... 150
HTML template tag .. 150
Properties for TWebEditBtn ... 151
Methods for TWebEditBtn .. 152
Events for TWebEditBtn ... 153

TWebSearchEdit ... 153

4

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 153
HTML template tag .. 153
Properties for TWebSearchEdit .. 154
Methods for TWebSearchEdit .. 155
Events for TWebSearchEdit ... 155

TWebSpinEdit ... 156
Description ... 156
HTML template tag .. 156
Properties for TWebSpinEdit .. 157
Events for TWebSpinEdit ... 157

TWebMaskEdit .. 158
Description ... 158
Properties for TWebMaskEdit .. 158
Events for TWebMaskEdit .. 159

TWebDateTimePicker ... 159
Description ... 159
HTML template tag .. 160
Properties for TWebDateTimePicker .. 160
Events for TWebDateTimePicker ... 161

TWebListBox ... 161
Description ... 161
HTML template tag .. 162
Properties for TWebListBox ... 162
Events for TWebListBox ... 163

TWebCheckListBox ... 163
Description ... 163
HTML template tag .. 163
Properties for TWebCheckListBox ... 164
Events for TWebCheckListBox ... 164

TWebComboBox ... 165
Description ... 165
HTML template tag .. 165
Properties for TWebComboBox ... 166
Events for TWebComboBox ... 166

TWebLookupComboBox ... 167
Description ... 167
HTML template tag .. 167
Properties for TWebLookupComboBox .. 167
Events for TWebLookupComboBox ... 168

TWebCountryComboBox ... 169
Description ... 169
HTML template tag .. 169

5

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebCountryComboBox ... 170
Events for TWebCountryComboBox .. 170

TWebCountryListBox ... 171
Description ... 171
HTML template tag .. 171
Properties for TWebCountryListBox ... 172
Events for TWebCountryListBox .. 172

TWebCountryDropDown ... 173
Description ... 173
HTML template tag .. 174
Properties for TWebCountryDropDown .. 174
Events for TWebCountryDropDown ... 175

TWebDropDownControl .. 176
Description ... 176
HTML template tag .. 176
Properties for TWebDropDownControl ... 176
Events for TWebDropDownControl .. 177

TWebEditDropDownControl .. 178
Description ... 178

TWebDBEditDropDownControl ... 178
Description ... 178

TWebColorPicker .. 178
Description ... 178
HTML template tag .. 179
Properties for TWebColorPicker ... 179
Events for TWebColorPicker .. 179

TWebCheckBox .. 180
Description ... 180
HTML template tag .. 180
Properties for TWebCheckBox ... 180
Events for TWebCheckBox .. 181

TWebRadioButton ... 181
Description ... 181
HTML template tag .. 182
Properties for TWebRadioButton ... 182
Events for TWebRadioButton ... 183

TWebMainMenu .. 183
Description ... 183
HTML template tag .. 184
Properties for TWebMainMenu .. 184
Events for TWebMainMenu .. 186

TWebPopupMenu ... 186

6

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 186
HTML template tag .. 187
Properties for TWebPopupMenu .. 187
Methods for TWebPopupMenu .. 188
Events for TWebPopupMenu ... 188

TWebMemo ... 189
Description ... 189
HTML template tag .. 189
Properties for TWebMemo ... 189
Methods for TWebMemo .. 190
Events for TWebMemo .. 191

TWebRadioGroup ... 192
Description ... 192
Properties for TWebRadioGroup .. 192
Events for TWebRadioGroup ... 193

TWebCheckGroup ... 193
Description ... 193
Properties for TWebCheckGroup ... 193
Events for TWebCheckGroup .. 194

TWebProgressBar ... 194
Description ... 194
HTML template tag .. 194
Properties for TWebProgressBar ... 195

TWebBadge .. 196
Description ... 196
HTML template tag .. 196
Properties for TWebBadge ... 196

TWebPaintBox .. 197
Description ... 197
Properties for TWebPaintBox ... 197
Events for TWebPaintBox .. 197

TWebTrackBar .. 199
Description ... 199
HTML template tag .. 199
Properties for TWebTrackBar ... 199
Events for TWebTrackBar .. 200

TWebScrollBox .. 200
Description ... 200
HTML template tag .. 201
Properties for TWebScrollBox .. 201
Events for TWebScrollBox ... 201

TWebSplitter.. 202

7

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 202
Properties for TWebSplitter .. 202
Events for TWebSplitter ... 203

TWebSignIn... 203
Description ... 203
HTML template tag .. 203
Properties for TWebSignIn ... 203
Methods for TWebSignIn ... 204
Events for TWebSignIn .. 204

TWebPanel ... 205
Description ... 205
HTML template tag .. 205
Properties for TWebPanel .. 206
Events for TWebPanel ... 206

TWebHTMLContainer .. 207
Description ... 207
HTML template tag .. 207
Properties for TWebHTMLContainer .. 207
Events for TWebHTMLContainer ... 208

TWebHTMLForm ... 208
Description ... 208
HTML template tag .. 209
Properties for TWebHTMLForm ... 209

TWebHTMLDiv .. 210
Description ... 210
HTML template tag .. 210
Properties for TWebHTMLDiv .. 210
Events for TWebHTMLDiv ... 210

TWebHTMLSpan ... 211
Description ... 211
HTML template tag .. 211
Properties for TWebHTMLSpan ... 211
Events for TWebHTMLSpan .. 212

TWebHTMLAnchor .. 212
Description ... 212
HTML template tag .. 213
Properties for TWebHTMLAnchor .. 213

TWebConsoleLog .. 214
Description ... 214
HTML template tag .. 214
Methods for TWebConsoleLog ... 214
Properties for TWebConsoleLog .. 214

8

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebImageControl ... 215
Description ... 215
HTML template tag .. 215
Properties for TWebImageControl .. 216
Methods for TWebImageControl .. 216
Events for TWebImageControl ... 217

TWebImageZoomControl .. 218
Description ... 218
HTML template tag .. 218
Properties for TWebImageZoomControl ... 218
Events for TWebImageControl ... 219

TWebLinkLabel ... 220
Description ... 220
HTML template tag .. 220
Properties for TWebLinkLabel .. 221
Events for TWebLinkLabel ... 221

TWebRichEdit ... 222
Description ... 222
HTML template tag .. 222
Properties for TWebRichEdit .. 222
Methods for TWebRichEdit .. 223
Events for TWebRichEdit ... 223

TWebSyntaxMemo .. 224
Loading a file ... 224
Downloading a file .. 225
Properties for TWebSyntaxMemo .. 226
Methods for TWebSyntaxMemo ... 227
Events for TWebSyntaxMemo .. 228

TWebTabSet ... 229
Description ... 229
HTML template tag .. 229
Properties for TWebTabSet ... 229
Methods for TWebTabSet .. 230
Events for TWebTabSet ... 230

TWebPageControl ... 230
Description ... 230
HTML template tag .. 231
Properties for TWebPageControl ... 231
Methods for TWebPageControl .. 232
Events for TWebPageControl ... 232

TWebTabsheet .. 232
Description ... 233

9

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebTabSheet .. 233
TWebLoginPanel ... 234

Description ... 234
Properties for TWebLoginPanel ... 234
Events for TWebLoginPanel... 235

TWebRatingPanel ... 236
Description ... 236
Properties for TWebRatingPanel .. 236
Events for TWebRatingPanel ... 237

TWebChatBox ... 238
Description ... 238
Properties for TWebChatbox .. 238
Events for TWebChatbox ... 240
Methods for TWebChatbox .. 240
Properties for TMessage .. 240
Events for TMessage ... 241

TWebSpeedButton .. 242
Description ... 242
HTML template tag .. 242
Properties for TWebSpeedButton .. 242
Events for TWebSpeedButton .. 243

TWebPayPal ... 245
Description ... 245
HTML template tag .. 245
Properties for TWebPayPal .. 245
Events for TWebPayPal ... 247

TWebToolbar ... 249
Description ... 249
Properties for TWebToolbar ... 249
Events for TWebToolbar .. 249

TWebRichEditToolbar ... 251
Description ... 251
Properties for TWebRichEditToolbar .. 251
Events for TWebRichEditToolbar ... 252

TWebGridPanel ... 252
Description ... 252
HTML template tag .. 252
Properties for TWebGridPanel ... 253
Events for TWebGridPanel .. 254

TWebTreeview .. 254
Description ... 254
HTML template tag .. 255

10

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebTreeview ... 255
Methods for TWebTreeview ... 255
Events for TWebTreeview .. 256
Sample code .. 256

TWebAccordion ... 259
Description ... 259
HTML template tag .. 259
Properties for TWebAccordion ... 259
Events for TWebAccordion .. 260
Properties for TAccordionSection ... 260

TWebResponsiveGridPanel .. 261
Description ... 261
HTML template tag .. 261
Properties for TWebResponsiveGridPanel ... 261
Methods for TWebResponsiveGridPanel ... 262
Events for TWebResponsiveGridPanel .. 262
Properties for TResponsiveLayoutItem .. 262

TWebResponsiveManager .. 263
Description ... 263
Getting Started ... 263
Properties .. 269
Events .. 270
Methods ... 270

TWebMessageDlg ... 272
Description ... 272
Properties for TWebMessageDlg ... 273
Methods for TWebMessageDlg .. 274
Events for TWebMessageDlg... 274

TWebInputMessageDlg ... 275
Description ... 275
Properties for TWebInputMessageDlg ... 276
Methods for TWebInputMessageDlg .. 277
Events for TWebInputMessageDlg ... 277

TWebWaitMessage ... 279
Description ... 279
Properties for TWebWaitMessage ... 279
Methods for TWebWaitMessage .. 280
Events for TWebWaitMessage ... 280

TWebFileUpload .. 281
Description ... 281
Properties for TWebFileUpload .. 281
HTML template tag .. 281

11

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebFileUpload ... 281
Properties for TFile .. 282
Methods for TFile ... 283

TWebFilePicker ... 285
Description ... 285
HTML template tag .. 285
Properties for TWebFilePicker ... 285
Events for TWebFilePicker ... 285
Example code .. 286

TWebShare ... 287
Description ... 287
Methods for TWebShare .. 287

TWebOpenDialog .. 288
Description ... 288
Properties for TWebOpenDialog .. 288
Methods for TWebOpenDialog ... 288
Events for TWebOpenDialog.. 289

TWebToast .. 290
Description ... 290
Properties for TWebToast .. 290
Events for TWebToast ... 291
Properties for TToastItem .. 291
Methods for TToastItem ... 291

TWebToggleButton.. 292
Description ... 292
Properties for TWebToggleButton .. 292
Events for TWebToggleButton ... 292

TWebBitBtn ... 293
Description ... 293
HTML template tag .. 293
Properties for TWebBitBtn ... 294
Events for TWebBitBtn ... 295

TWebGroupBox ... 296
Description ... 296
HTML template tag .. 296
Properties for TWebGroupBox ... 296
Events for TWebGroupBox .. 297

TWebStretchPanel .. 298
Description ... 298
HTML template tag .. 299
Properties for TWebStretchPanel ... 300
Events for TWebStretchPanel .. 300

12

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebStringGrid ... 301
Description ... 301
HTML template tag .. 301
Properties for TWebStringGrid ... 302
Methods for TWebStringGrid.. 303
Events for TWebStringGrid .. 305

TWebListControl .. 307
Description ... 307
Properties for TListItem .. 308
Methods for TListItem .. 308
Properties for TWebListControl .. 309
Events for TWebListControl ... 310

TWebTableControl .. 310
Description ... 310
HTML template tag .. 311
Properties for TWebTableControl ... 311
Methods for TWebTableControl ... 312
Events for TWebTableControl .. 314
Properties for TTableControlHeader .. 315
Properties for TTableControlPaging ... 316
Properties for TTableControlOptions .. 316

TWebEditDropDownTableControl .. 317
Description ... 317
Properties for TWebEditDropDownTableControl .. 317
Properties for TTableOptions ... 318

TWebDBEditDropDownTableControl ... 319
Description ... 319

TWebResponsiveGrid ... 322
Description ... 322
HTML template tag .. 322
Properties for TWebResponsiveGrid .. 323
Methods for TWebResponsiveGrid .. 324
Events for TWebResponsiveGrid ... 324
Properties for TWebResponsiveGridItem ... 326

TWebImageSlider .. 327
Description ... 327
Properties for TWebImageSlider .. 327
Public properties for TWebImageSlider .. 328
Methods for TWebImageSlider ... 328
Events for TWebImageSlider ... 329
Example code .. 329

TWebContinuousScroll .. 330

13

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 330
Properties for TWebContinuousScroll .. 331
Methods for TWebContinuousScroll ... 332
Events for TWebContinuousScroll ... 332

TWebSignatureCapture ... 335
Description ... 335
Properties for TWebSignatureCapture ... 335
Methods for TWebSignatureCapture .. 335

TWebCalendar .. 336
Properties for TWebCalendar ... 336
Methods for TWebCalendar ... 337
Events for TWebCalendar .. 337

TWebGoogleReCaptcha ... 338
Description ... 338
Properties for TWebGoogleReCaptcha .. 338
Methods for TWebGoogleReCaptcha .. 338
Events for TWebGoogleReCaptcha ... 338

TWebGoogleDrive ... 339
Description ... 339
HTML template tag .. 339
Properties for TWebGoogleDrive ... 340

TWebGoogleMaps... 340
Description ... 340
HTML template tag .. 341
Properties for TWebGoogleMaps ... 341
Methods for TWebGoogleMaps ... 342
Events for TWebGoogleMaps .. 346

TWebLeafletMaps ... 347
Description ... 347

TWebGoogleChart... 347
Description ... 347
Properties for TWebGoogleChart ... 349
Methods for TWebGoogleChart ... 351
Events for TWebGoogleChart .. 352
Examples ... 352

TWebSentry .. 355
Steps to set up ... 355
First bring up Project Settings .. 356
Continuing with the rest of the Demo ... 363
Properties for TWebSentry ... 372
Methods for TWebSentry ... 372

TWebBrowserControl .. 374

14

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 374
HTML template tag .. 374
Properties for TWebBrowserControl ... 375
Methods for TWebBrowserControl ... 375

TWebMultimediaPlayer ... 376
Description ... 376
HTML template tag .. 376
Properties for TWebMultimediaPlayer .. 376

TWebMediaCapture .. 378
Description ... 378
Properties for TWebMediaCapture ... 378
Methods for TWebMediaCapture ... 379
Events for TWebMediaCapture .. 379

TWebYoutube ... 380
Description ... 380
HTML template tag .. 380
Properties for TWebYoutube .. 380

TWebTwitterFeed .. 382
Description ... 382
HTML template tag .. 383
Properties for TWebTwitterFeed .. 383

TWebCSSClass .. 383
Description ... 383
Properties for TWebCSSClass ... 384
Properties for TCSSBorder .. 385
Properties for TCSSBoxShadow .. 386
Properties for TCSSFont .. 386
Properties for TCSSText .. 387
Properties for TCSSPadding .. 387
Properties for TCSSSize .. 387

TWebCamera .. 388

 Description ... 388
Selecting a device .. 388
Starting the camera stream automatically .. 389
HTML template tag .. 389
Properties for TWebCamera .. 390
Methods for TWebCamera ... 390
Events for TWebCamera .. 390

TWebXLSX ... 391
Properties for TWebXLSX .. 391
Methods for TWebXLSX .. 392

15

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebXLSX ... 393
Properties for TXLSXCell ... 393
Properties for TXLSXStyleFont .. 394
Properties for TXLSXStyleAlignment .. 394
Properties for TXLSXStyleBorder ... 395
Properties for TXLSXStyleBorderBase ... 395
Properties for TXLSXStyleBorderDiagonal ... 395

DB-aware components .. 398
TWebDataSource .. 398

Description ... 398
Properties for TWebDataSource .. 399

TWebClientDataSet ... 399
Description ... 399
Properties for TWebClientDataSet ... 399
Methods for TWebClientDataSet .. 400
Events for TWebClientDataSet .. 401

TWebClientConnection .. 402
Description ... 402
Properties for TWebClientConnection .. 402
Events for TWebClientConnection ... 403

TWebDBLabel ... 404
Description ... 404

TWebDBEdit.. 404
Description ... 404

TWebDBEditBtn .. 404
Description ... 404

TWebDBEditAutoComplete ... 405
Description ... 405

TWebDBCheckBox.. 405
Description ... 405

TWebDBSpinEdit .. 405
Description ... 405

TWebDBMaskEdit ... 406
Description ... 406

TWebDBComboBox .. 406
Description ... 406

TWebDBLookupComboBox ... 406
Description ... 406

TWebDBListControl ... 407
Description ... 407

TWebDBMemo .. 407
Description ... 407

16

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBDateTimePicker... 407
Description ... 407

TWebDBRadioGroup ... 408
Description ... 408

TWebDBLinkLabel... 408
Description ... 408

TWebDBImageControl .. 408
Description ... 408

TWebDBTableControl ... 410
TWebDBResponsiveGrid... 410

Description ... 410
TWebDBGrid ... 412

Description ... 412
TWebDBNavigator... 413

Description ... 413
Non-visual components and classes ... 414

TWebTimer ... 414
TWebClipboard ... 414
TWebBluetooth .. 414

TWebBluetooth class ... 415
TWebBluetoothDevice class .. 415
TWebBluetoothService class ... 416
TWebBluetoothCharacteristic class.. 417

TWebUSBHID ... 419
Select a device/interface .. 419
Properties for TWebUSBHID.. 420
Methods for TWebUSBHID .. 420
Events for TWebUSBHID ... 421

TWebUSBSerial .. 421
Properties for TWebUSBSerial ... 421
Methods for TWebUSBSerial ... 422
Events for TWebUSBSerial .. 422

TWebElementActionList .. 423
Description ... 423
Properties for TWebElementActionList ... 424
Events for TWebElementActionList .. 424
Properties for TWebElementAction .. 425
Methods for TWebElementAction ... 427
Events for TWebElementAction ... 427
Example ... 427

TWebLocalStorage .. 429
TWebSessionStorage .. 429

17

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDeviceOrientation .. 430
TWebSpeechSynthesis ... 430

Methods ... 431
Properties .. 431
Events .. 431

TWebSpeechRecognition .. 432
Methods ... 432
Properties .. 432
Events .. 433
TCommand .. 434

TWebURLValidator.. 436
Properties for TWebURLValidator .. 436
Events for TWebURLValidator ... 436

TWebLocalTextFile.. 437
Properties for TWebLocalTextFile .. 437
Methods for TWebLocalTextFile .. 437
Events for TWebLocalTextFile ... 438

TWebLocalBinaryFile .. 439
Properties for TWebLocalBinaryFile ... 439
Methods for TWebLocalBinaryFile ... 440
Events for TWebLocalBinaryFile .. 440

TWebLocalFolder .. 441
Properties for TWebLocalFolder .. 441
Methods for TWebLocalFolder ... 441
Events for TWebLocalFolder .. 442

TWebGeoLocation... 443
Methods for TWebGEOLocation .. 443
Events for TWebGEOLocation ... 443

TWebSocketClient ... 444
Properties for TWebSocketClient ... 444
Methods for TWebSocketClient .. 445
Events for TWebSocketClient .. 445

TWebHttpRequest ... 445
Properties for TWebHttpRequest ... 449
Methods for TWebHttpRequest .. 451
Events for TWebHttpRequest ... 451

TWebCookies .. 453
TWebClientConnector ... 454
TWebAESEncryption ... 457

Properties for TWebAESEncryption ... 457
Methods for TWebAESEncryption .. 457
Events for TWebAESEncryption .. 459

18

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRSAEncryption ... 461
Properties for TWebRSAEncryption ... 461
Methods for TWebRSAEncryption ... 462
Events for TWebRSAEncryption .. 464

TWebRSASignature .. 464
Properties for TWebRSASignature... 465
Methods for TWebRSASignature ... 465
Events for TWebRSASignature .. 466

TWebHMACSignature ... 468
Properties for TWebHMACSignature ... 468
Methods for TWebHMACSignature .. 468
Events for TWebHMACSignature ... 469

TWebSHAHash ... 470
Properties for TWebSHAHash ... 470
Methods for TWebSHAHash .. 470

TWebPushNotifications ... 471
Registration for push notifications .. 471
Multiple users on the same device ... 471
Properties for TWebPushNotifications .. 472
Methods for TWebPushNotifications .. 472
Events for TWebPushNotifications ... 473

TMS WEB Core 3D ... 474
Your first 3D Chart application ... 474
3D Business Chart Applications... 476

The 3D Bar Chart Demo .. 476
The Terminology for Axes .. 477
Creating the Data Series object ... 477
Other features shown in the Demo ... 478
Events .. 479

3D Math Chart Applications ... 479
The 3D Scatter Chart Demo ... 479
The Terminology for Axes .. 479
Creating the Data Series object ... 480
Other features shown in the Demo ... 480
The 3D Surface Chart Demo .. 480
How it works .. 481
Creating the Data Series object ... 481
Other features shown in the Demo ... 482

3D PaintBox Applications .. 482
The 3D PaintBox Demo ... 483

The Terminology for Axes.. 483
The code for adding objects .. 483

19

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Direct Use of the Three.Js API ... 484
Sample code for Other features ... 484
Events .. 485

3D Model Applications ... 485
“ThreeJS Models (3d)” JS Library is required ... 485
The 3D Model Demo .. 485
The Code to Load OBJ/MTL Models .. 486
The code to Load GLTF Model .. 486
Additional features for Models .. 487

TWebStellarDataStoreClientDataset Component .. 488
Introduction ... 488
Your first web application using TWebStellarDataStoreClientDataSet 488

Properties of TWebStellarDataStoreClientDataSet .. 492
Methods of TWebStellarDataStoreClientDataSet ... 493

TWebStellarDataStoreConnection Component ... 494
Introduction ... 494

Properties of TWebStellarDataStoreConnection .. 494
Events of TWebStellarDataStoreConnection .. 495

TWebMyCloudDbClientDataset Component ... 496
Introduction ... 496
Your first web application using TWebmyCloudDbClientDataset ... 496

Set up your myCloudData project in the myCloudData console 496
Create a TMS Web Application .. 496
Set up the TWebmyCloudDbClientDataset component .. 496
Specify the Component Properties ... 497
Create the Fields or Properties of each object in the Object Store 497

Select the fields in the Object Inspector .. 497

Create the Fields in code ... 497

Add Data Components that connect to the DataSet ... 497
Set up the DataSource and Data components ... 498
Set up the Columns of the DBGrid ... 498
Set up a New Record event ... 498

Run the Web Application ... 498
Todo List Demo ... 498

Additional features in this Demo ... 498
Troubleshooting ... 499

Reference Section ... 499
TWebMyCloudDbClientDataset ... 499
Properties of TWebmyCloudDbClientDataSet .. 499

Methods of TWebmyCloudDbClientDataset ... 500
TWebFirestoreClientDataset Component .. 502

20

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Introduction ... 502
Your first web application using TWebFirestoreClientDataset .. 502

Set up your Firestore project in the Firebase console .. 502
Create a TMS WEB application .. 503
Set up the TWebFirestoreClientDataset component .. 504
Add Data Components that connect to the DataSet ... 505
Run the Web Application .. 505

Todo List Demo ... 506
Troubleshooting ... 507

Filtering records at Firestore .. 507
Filtering methods available at Firestore level ... 508
Firestore Filtering Demo ... 511
New Async methods for code-based processing .. 513
Sign In Authentication Summary and Alternatives .. 516
User specific data (multi-tenant) ... 519

TWebFirestoreClientDataset reference .. 522
Methods of TWebFirestoreClientDataset ... 523
Async methods .. 525
Sign-In related methods ... 527
Tips, tricks, troubleshooting notes .. 529

TWebRadServerClientDataset .. 530
Introduction ... 530
Configuring your Embarcadero Rad server back-end .. 530
Use Rad Server via TWebRadServerClientDataset ... 533
Reference .. 533

Properties .. 533
Methods ... 534
Events .. 534

TWebDreamFactoryClientDataset ... 535
Introduction ... 535
Configuring your DreamFactory back-end ... 535

Create the SQLite Service 'tasksdb' ... 535
Create Schema Table Task ... 535
Setup CORS .. 537
Set up a Role "LoggedIn" to access the “tasksdb” service ... 537
Create App Tasks .. 537

Using DreamFactory via TWebDreamFactoryClientDataset .. 538
Reference .. 538

Properties .. 539
Methods ... 539
Events .. 539

TWebFaunaDbClientDataSet .. 540

21

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Introduction ... 540
Configuring the FaunaDb server back-end .. 540
Using FaunaDB via TWebFaunaDBClientDataset ... 542
Reference .. 543

Properties .. 543
Methods ... 543
Events .. 544

TWebSQLRestClientDataset, TWebSQLRestConnection ... 545
Introduction ... 545
Configuring the SQLDBRESTBridge server back-end ... 545
Using SQLite via TWebSQLRestClientDataset .. 546

jQuery components ... 549
TWebJQXButton ... 551

Description ... 551
HTML template tag .. 551
Properties for TWebJQXButton .. 551
Events for TWebJQXButton ... 552

TWebJQXButtonGroup .. 553
Description ... 553
HTML template tag .. 553
Properties for TWebJQXButtonGroup .. 553
Events for TWebJQXButtonGroup ... 554

TWebJQXCalendar ... 555
Description ... 555
HTML template tag .. 555
Properties for TWebJQXCalendar .. 555
Events for TWebJQXCalendar ... 556

TWebJQXColorPicker ... 557
Description ... 557
HTML template tag .. 557
Properties for TWebJQXColorPicker .. 557
Events for TWebJQXColorPicker ... 558

TWebJQXComboBox .. 559
Description ... 559
HTML template tag .. 559
Properties for TWebJQXComboBox ... 559
Methods for TWebJQXComboBox ... 560
Events for TWebJQXComboBox .. 560

TWebJQXDateTimeInput... 561
Description ... 561
HTML template tag .. 561
Properties for TWebJQXDateTimeInput ... 561

22

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebJQXDateTimeInput .. 562
TWebJQXDropDownList ... 563

Description ... 563
HTML template tag .. 563
Properties for TWebJQXDropDownList .. 563
Methods for TWebJQXDropDownList .. 564
Events for TWebJQXDropDownList ... 564

TWebJQXGrid ... 565
Description ... 565
HTML template tag .. 566
Properties for TWebJQXGrid ... 566
Methods for TWebJQXGrid .. 568
Events for TWebJQXGrid ... 568

TWebJQXKnob ... 570
Description ... 570
HTML template tag .. 570
Properties for TWebJQXKnob .. 570
Events for TWebJQXKnob ... 572

TWebJQXMaskedInput ... 573
Description ... 573
HTML template tag .. 573
Properties for TWebJQXMaskedInput .. 573
Events for TWebJQXMaskedInput ... 574

TWebJQXMenu ... 575
Description ... 575
HTML template tag .. 575
Properties for TWebJQXMenu ... 575
Events for TWebJQXMenu .. 576

TWebJQXNumberInput ... 577
Description ... 577
HTML template tag .. 577
Properties for TWebJQXNumberInput .. 577
Events for TWebJQXNumberInput ... 578

TWebJQXProgressBar .. 579
Description ... 579
HTML template tag .. 579
Properties for TWebJQXProgressBar .. 579

TWebJQXRangeSelector .. 581
Description ... 581
HTML template tag .. 581
Properties for TWebJQXRangeSelector ... 581
Events for TWebJQXRangeSelector .. 582

23

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXRating ... 583
Description ... 583
HTML template tag .. 583
Properties for TWebJQXRating .. 583
Events for TWebJQXRating ... 584

TWebJQXResponsivePanel .. 584
Description ... 584
Properties for TWebJQXResponsivePanel ... 585
Methods for TWebJQXResponsivePanel ... 585
Events for TWebJQXResponsivePanel .. 585

TWebJQXSlider ... 586
Description ... 586
HTML template tag .. 586
Properties for TWebJQXSlider ... 586
Events for TWebJQXSlider .. 587

TWebJQXTabs .. 588
Description ... 588
HTML template tag .. 588
Properties for TWebJQXTabs .. 588
Events for TWebJQXTabs ... 589

TWebJQXTagCloud .. 589
Description ... 589
HTML template tag .. 590
Properties for TWebJQXTagCloud ... 590
Events for TWebJQXTagCloud .. 591

Connecting to data .. 592
Using WebSockets .. 597
IndexedDB .. 602

TMS WEB Core IndexedDB Library ... 602
TIndexedDbClientDataset Component .. 602
TIndexedDb class .. 602
Your first IndexedDB application .. 602

Create a TMS web application ... 602
Add DB-aware components that connect to the DataSet .. 605
Run the Web Application .. 605

Managing the IndexedDB Database .. 605
Todo List Demo ... 606

Additional features in this Demo ... 606
TWebIndexedDbClientDataSet .. 607

Description ... 607
Properties of TWebIndexedDbClientDataSet ... 607
Methods of TWebIndexedDbClientDataSet .. 608

24

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TIndexedDb (Advanced Use) .. 609
Description ... 609
Properties .. 609
Methods and Events of TIndexedDb .. 610

Out-of-line key specification ... 612

Setting up the Indexes ... 616
Handling Asynchronous behavior of IndexedDB .. 617

TMS WEB Electron ... 619
Your first TMS Web Electron Application ... 619
Building the application .. 622
Migrate your application to newer versions .. 623

Replace the main.js file .. 623
Dialog callbacks ... 623
Remove the Sender parameter from TElectronIPCCommunication.OnMessage.............. 624
Remove TElectronIPCMain related codes .. 624

Accessing the Developer Tools ... 625
Drag and drop ... 625
Fonts ... 627
Set up your project with local databases .. 628

Electron Components.. 629
TElectronOpenDialog .. 629

Description ... 629
Properties for TElectronOpenDialog ... 629
Methods for TElectronOpenDialog ... 630

TElectronSaveDialog ... 630
Description ... 630
Properties for TElectronSaveDialog ... 630
Methods for TElectronSaveDialog .. 631

TElectronMessageBox .. 631
Description ... 631
Properties for TElectronMessageBox ... 631
Methods for TElectronMessageBox ... 632

TElectronErrorBox ... 632
Description ... 632
Properties for TElectronErrorBox ... 633
Methods for TElectronErrorBox .. 633

TElectronMainMenu .. 633
Description ... 633

TElectronPopupMenu .. 634
Description ... 634
Methods for TElectronPopupMenu ... 634

25

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronBrowserWindow ... 634
Description ... 634
Properties for TElectronBrowserWindow .. 635
Methods for TElectronBrowserWindow .. 635
Events for TElectronBrowserWindow ... 636
Multiple windows using forms ... 636
Multiple windows using other sources .. 637
Showing a window ... 637

TElectronTrayIcon ... 637
Description ... 637
Properties for TElectronTrayIcon ... 638
Events for TElectronTrayIcon ... 638

TElectronIPCCommunication .. 638
Description ... 638
Properties for TElectronIPCCommunication ... 638
Methods for TElectronIPCCommunication ... 638
Events for TElectronIPCCommunication .. 638
Send message to parent .. 639
Send message to a channel ... 639
Receiving messages .. 639

TElectronMySQLClientDataSet ... 640
Description ... 640
Todo List Demo.. 640
BLOB demo ... 641
Properties for TElectronMySQLClientDataSet .. 641

TElectronMySQLConnection ... 642
Description ... 642

TElectronPostgreSQLClientDataSet .. 642
Description ... 642
Todo List Demo.. 642
BLOB demo ... 643
Properties for TElectronPostgreSQLClientDataSet .. 644

TElectronPostgreSQLConnection .. 644
Description ... 644

TElectronFileWatcher .. 644
Description ... 644
Properties for TElectronFileWatcher .. 644
TElectronFileWatch .. 644

TElectronGlobalShortcut ... 645
Description ... 645
Properties for TElectronGlobalShortcut .. 645
Events for TElectronGlobalShortcut ... 645

26

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronStringList .. 645
Methods for TElectronStringList ... 645

TElectronBinaryDataStream .. 647
Properties for TElectronBinaryDataStream .. 647
Methods for TElectronBinaryDataStream ... 647

TElectronClipboard .. 647
Properties of TElectronClipboard ... 647
Methods of TElectronClipboard .. 647

TElectronShell ... 648
Methods for TElectronShell .. 648

TElectronIPCRenderer .. 648
Methods for TElectronIPCRenderer ... 648

TElectronDragAndDrop ... 649
TElectronPath .. 650

Methods for TElectronPath .. 650
TElectronWindow .. 650

Methods for TElectronWindow ... 650
Other available methods .. 651

TMS WEB Miletus ... 653
Your first TMS Web Miletus Application ... 653
Debugging and accessing the Developer Tools ... 656
Deployment ... 657
Custom extensibility ... 658

Loading and unloading a library ... 658
Example of Miletus compatible library from Delphi ... 659
Sending custom messages to a Miletus application ... 660

Drag and drop ... 661
From desktop to Miletus ... 661
From Miletus to desktop ... 662

Miletus components .. 662
TMiletusOpenDialog .. 662

Description ... 662
Properties for TMiletusOpenDialog .. 663

Methods for TMiletusOpenDialog ... 664
TMiletusSaveDialog ... 664

Description ... 664
Properties for TMiletusSaveDialog ... 665
Methods for TMiletusSaveDialog ... 666

TMiletusMessageBox .. 666
Description ... 666
Properties for TMiletusMessageBox ... 666
Methods for TMiletusMessageBox ... 667

27

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusErrorBox ... 667
Description ... 667
Properties for TMiletusErrorBox ... 668
Methods for TMiletusErrorBox .. 668

TMiletusMainMenu .. 668
Description ... 668
Updating a TMiletusMainMenu ... 668

TMiletusPopupMenu .. 668
Description ... 668
Methods for TMiletusPopupMenu .. 669
Events for TMiletusPopupMenu ... 669
Updating a TMiletusPopupMenu .. 669

TMiletusNotificationCenter... 669
Description ... 669
Methods for TMiletusNotificationCenter ... 670

TMiletusWindow .. 670
Description ... 670
Properties for TMiletusWindow .. 670
Methods for TMiletusWindow ... 671
Events for TMiletusWindow .. 671
Multiple windows using forms ... 671
Multiple windows using other sources .. 672
Showing a window ... 672
Communication between forms .. 672

TMiletusTrayIcon ... 672
Description ... 672
Properties for TMiletusTrayIcon ... 673
Events for TMiletusTrayIcon... 673

TMiletusClientDataSet ... 673
Properties for TMiletusClientDataSet ... 673

TMiletusAccessDBDriver ... 674
TMiletusMySQLDBDriver... 674
TMiletusSQLiteDBDriver.. 674
TMiletusPostgreSQLDBDriver ... 674
TMiletusMSSQLDBDriver .. 675
TMiletusIBDBDriver ... 675
TMiletusFBDBDriver .. 675
TMiletusFileWatcher .. 676

Description ... 676
Properties for TMiletusFileWatcher .. 676

TMiletusFileWatch ... 676
TMiletusGlobalShortcuts ... 676

28

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description ... 676
Properties for TMiletusGlobalShortcut .. 676
Events for TMiletusGlobalShortcut ... 676

TMiletusStringList .. 677
Methods for TMiletusStringList ... 677

TMiletusBinaryDataStream .. 678
Properties for TMiletusBinaryDataStream .. 678
Methods for TMiletusBinaryDataStream ... 678

TMiletusClipboard ... 679
Properties of TMiletusClipboard ... 679
Methods of TMiletusClipboard .. 679

TMiletusShell ... 679
Methods for TMiletusShell .. 679

TMiletusINIFile .. 680
Methods for TMiletusINIFile ... 680

TMiletusRegistry .. 682
Properties for TMiletusRegistry .. 682
Methods for TMiletusRegistry ... 682
Other available methods .. 685

Miletus Raspberry Pi components ... 686
TMiletusRaspberryI2C ... 686
TMiletusRaspberrySPI ... 687
TMiletusRaspberryUART ... 688
TMiletusRaspberryMemoryBuffer .. 689
GPIO Methods ... 690
TMiletusUpdate ... 690

Setting the update distribution location ... 691
Control file .. 691
Update section ... 692
Files section ... 692
File section ... 692
Debugging ... 694
Properties for TMiletusUpdate .. 694
Methods for TMiletusUpdate .. 694

Custom control development ... 696
Appendix ... 707

Browser locale values .. 707
TUILanguage... 709

29

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Introduction

Welcome to TMS WEB Core. TMS WEB Core is the foundation of an exciting new and modern

way for creating web client applications from Delphi using RAD development methodology and

using a component-based framework.

Scope and architecture

TMS WEB Core is based on compiling Delphi UI code to JavaScript and creating this way what

is called Single-Page-Applications. The terminology “page” should not be confused with forms

that Delphi developers are used to. A TMS WEB Core application can contain multiple forms.

These multiple forms will be hosted in a JavaScript application a web browser user can navigate

to via a single page URL. Any modern HTML5 compliant browser can run TMS WEB Core web

client applications. This includes Chrome, Safari, Edge, Firefox, Firefox Developer Edition,

Opera.

We will further refer to TMS WEB Core applications as web client applications. This means

applications running as JavaScript code in the browser client (left). The web client application

will typically communicate with a server or servers for working with data or other services (right).

The TMS WEB Core web client application is open to work with different server technologies.

This includes but is not limited to TMS XData, Embarcadero RAD Server, node.js, ASP.NET

Core microservices. The typical technology used for this communication is via HTTP REST

APIs.

30

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

More information about using TMS XData as a backend for TMS WEB Core web client

applications can be found at:

https://download.tmssoftware.com/business/xdata/doc/web/web-applications-tms-web-core.html

TMS XData provides 3 components to make it easier to consume a TMS XData REST API:

TXDataWebConnection:

https://download.tmssoftware.com/business/xdata/doc/web/txdatawebconnection.html

TXDataWebClient:

https://download.tmssoftware.com/business/xdata/doc/web/using-txdatawebclient.html

TXDataWebDataset:

https://download.tmssoftware.com/business/xdata/doc/web/using-txdatawebdataset.html

Additional resources

In addition to this product manual and the various sample applications included in the product

are additional resources

Online videos

We have produced several videos explaining specific functionality in the TMS WEB Core

framework:

https://www.tmssoftware.com/site/videos.asp?EN=on&DE=on&PT=on&vcatsel=9

Online training course

Landgraf.dev is offering an extensive online video course explaining TMS WEB Core, its

architecture, its components, working with templates and connecting with databases in the

backend:

https://courses.landgraf.dev/p/web-applications-with-delphi-tms-web-core

https://download.tmssoftware.com/business/xdata/doc/web/web-applications-tms-web-core.html
https://download.tmssoftware.com/business/xdata/doc/web/txdatawebconnection.html
https://download.tmssoftware.com/business/xdata/doc/web/using-txdatawebclient.html
https://download.tmssoftware.com/business/xdata/doc/web/using-txdatawebdataset.html
https://www.tmssoftware.com/site/videos.asp?EN=on&DE=on&PT=on&vcatsel=9
https://courses.landgraf.dev/p/web-applications-with-delphi-tms-web-core

31

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Books

A book covering TMS WEB Core written by Dr. Holger Flick, chief evangelist at

tmssoftware.com is available in both German and English language at Amazon.

The book content is summarized here:

• Detailed description of the basics, the functionality, and the transpiler (based on pas2js)

• Step-by-step creation of the first web application

• Progressive Web Applications (PWA) for offline use

• Electron applications: Cross-platform Desktop applications based on web applications

• Integration of JavaScript classes and controls

• Creating web services for databases with TMS XData

• Integration of databases with TDataset controls

• XData-specific functionality for use in web applications

• Responsive web design (form designer, HTML, CSS, Bootstrap)

• The final chapter provides a comprehensive and practical example of server and web

application with Google Maps and Google Charts

• The content is suitable for both beginners and advanced developers interested in

creating web applications with TMS WEB Core.

32

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Amazon.com: https://www.amazon.com/dp/B0C2RX8NXK/

https://www.amazon.com/dp/B0C2RX8NXK/

33

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Getting started

From the Delphi IDE, choose File, New, Other and pick from the wizard either a TMS Web

Application or TMS Web Console application:

When you created a new project, it is shown in the project manager:

The project consists of a project source file and one or more form files similar to how VCL

Windows applications and FMX cross platform applications work.

Other than the project source file (.DPR file), there is a project HTML file. This HTML file

34

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

contains the body HTML for your application and this can include references to CSS and/or

JavaScript files. For each form, there is a .PAS file, a .DFM file and a .HTML file. The .PAS file

contains the user interface logic for the form and its controls. The purpose of the .DFM file is to

persist the component settings and the HTML file serves as the HTML container in which the

form controls will be hosted or that contains the HTML elements to which the Delphi control

class instances will be mapped.

The project context menu in the IDE also shows a number of extra items:

35

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

From this context menu, the output path (where HTML, JS, CSS are generated) can be opened

via Windows Explorer. It is also possible to add a new web form or data module directly from

36

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

this context menu and finally, the JavaScript Library Manager can be started. For details about

the JavaScript Library Manager, see the paragraph specifically about that.

Technically, a TMS WEB Core application is at design-time in Delphi a VCL Windows

application. This is for the technical reason to make use of the Delphi IDE form designer to

create the web client application. The TMS WEB Core Delphi IDE plugin takes care to compile

the project with all its form files with the pas2js compiler to a JavaScript (.JS) file and deploy it to

a web server.

The default project source is:

This looks very much the same as a standard VCL application. When the project is compiled to

a JavaScript application, it can be automatically launched in the browser from the IDE. This is

done via a debug server and browser launcher application (TMSWebServerManager.exe) that is

configured in the IDE under Tools, Options, TMS Web, Web Server. By default, the JavaScript

application is launched in the browser that is set in the operating system as default browser. If

you want to launch the application in a different browser, this can be set at project level via

Project, Options, TMS Web, Browser.

To get the browser start the web client application, by default TMS WEB Core ships with a

lightweight debug webserver and this is configured at install time to operate at port 8000. The

web server is specified under Tools, Options, TMS Web, Web Server. See the paragraph on

“Configuring TMS WEB Core settings” for more information on how to specify the web server to

be used.

The default project HTML file contains:

37

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This is a HTML file specifying the HTML5 DOCTYPE. As you can see, by default, there is only

one reference in the HTML file and that is to $(ProjectName).js. The TMS WEB Core IDE plugin

will in this case compile the application to Project1.js and in the deployed HTML file, this

reference will as such be:

<script type="text/javascript" src="Project1.js"></script>

From the HTML file, you can see that the application is launched by

 <script type="text/javascript">

 rtl.run();

 </script>

When the form file in the web project is open, the IDE tool palette offers all components /

controls that have been designed & registered for use with TMS WEB Core:

38

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Just like with VCL applications, drag the controls on the form and add the UI logic code to the

form file.

As you can see, with each form file comes a HTML file, unit1.html in this case. This is the HTML

container in which the web form will be embedded. This HTML file will be loaded in to the

browser document BODY when the web application launches the form. The HTML file can be

directly edited from the IDE in its embedded HTML editor but it can also be edited by any web

editor or by a separate web designer using his own tools.

39

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This is an empty HTML file. When adding UI controls to the form file, at runtime the HTML

elements of which these controls are composed will be dynamically added to the HTML BODY.

Configuring TMS WEB Core settings

The configuration of TMS WEB Core can be found in the Delphi IDE under Tools, Options, TMS

WEB:

The settings are:

Web Compiler: this points to the location where the Pascal to Javascript compiler (pas2js) is

located.

Library path: this is the path the Pascal to Javascript compiler uses. Note that 3rd party controls

can separately register paths and this does not affect the general library path.

Open Output path in Explorer: this is the default path the compiler uses to generate the resulting

project Javascript (.JS) file. The default is under the project source folder \TMSWeb\Debug or

\TMSWeb\Release

40

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

URL: this is the URL with which the web application can be launched via the browser. If another

web server than the default TMS webserver is used, the URL can be modified here.

Single JS file: Default a single Javascript for the entire web application is generated. If this is

turned off, it will be needed to specify each generated .js file reference (for each unit there is a

.js file in this case) in the project HTML file.

ECMA Script: This sets the JavaScript standards level for which to generate the compiled

application.

Installation directory: this holds the path where TMS WEB Core is installed. Relative to this path,

the compiler searches for source files & resources.

Web Runner: this is a the path to the application that is used to start the selected browser for

running the web application

Web Server: this is the path where the webserver that is used and that will be launched is

located.

Use ShellExecute : this setting controls whether the IDE plugin will use Windows ShellExecute

to launch the web runner application or create the process directly

Web Server Params: can contain extra command-line parameters to launch the web server

Web Server Visibility: configures whether the web server is hidden when launched or remains

visible.

Wait for Web Server: when true, the IDE will wait until the webserver is effectively running

before launching the browser to open the web application URL.

Browser: specifies if the preferred browser to launch to debug the web application.

Debug Manager: this specifies the debug tool that is used to communicate between the IDE and

the browser. Via this debug manager it is possible to relaunch a web application in the same

browser tab when a new version is compiled instead of launching the application in a new

browser window or new browser tab.

Under the list of settings, you can find a list of installed 3rd party components for TMS WEB Cor

and you can check or uncheck what 3rd party component paths will be used to compile the web

client application.

41

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Configuring TMS WEB Core project settings

From the project context menu in the IDE project manager, a new pane is added to configure

the options of the TMS WEB Core application:

This contains the project specific settings. By default, the TMS WEB Core general settings

defined in the IDE are applied when a new project is created.

TMS Web Source Paths: optional project specific source library paths.

Open Output Path in Explorer: optional custom output path. When nothing is specified, the

default output path is the folder TMSWeb\Debug or TMSWeb\Release under the project source

folder

Browser: sets the browser to launch to run the application. When nothing is specified, this is the

default operating system browser.

Debug Information: when true, the JavaScript debug map file is generated. This option is set by

default for the Debug mode of the application.

42

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Directives: Sets the compiler directives to use for compiling the application

ECMA Script: sets the JavaScript standards level to compile for

HTML file: sets optionally a different HTML file to launch the web application

Optimization: defines whether to compile with or without compiler optimization. When

optimization is enabled (default), unused Pascal code does not get compiled to JavaScript,

reducing the size of the generated JavaScript file significantly.

Single Tab in Browser: when enabled and in Debug mode, when compiling a new version of an

already running web application in the browser, will result in relaunching the web application in

the same browser tab as the already running application instead of opening it in a new tab.

Web Server: optionally specifies a project specific web server to use

Web Server Visibility: configures whether the web server is hidden when launched or remains

visible.

Wait for Web Server: when true, the IDE will wait until the webserver is effectively running

before launching the browser to open the web application URL.

Automatic versioning

If the project name is project1.dproj, the default application JavaScript file will be project1.js and

is referenced in the HTML project file as

<script type="text/javascript" src="Project1.js"></script>

In some situations, the browser might have cached this project1.js file and the browser / web

server communication fails to inform an updated project1.js should be downloaded instead of

using the cached version.

To overcome this potential issue, TMS WEB Core features automatic project versioning. With

this automatic versioning, each time a project is build, a new version number is generated and

referenced in the HTML file, making each each project version unique and avoiding the use of a

cached version when it was not expected.

Enabling automatic versioning in the project is easy. Go to project options. Set the initial version

to X.Y.Z and set Auto-increment version to True

43

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Each time a build is done, the Z-value increases.

In this screenshot, you see the result after 2 builds when the initial version was set to 1.0.0:

44

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Installation for Lazarus

Installing the design-time components and the design-time integration is done through installing

the package tmswebcorepkgliblaz.lpk. This package has the dependency to the design-time

integratrion package tmswebcorepkgdelaz.lpk that will also be automatically installed.

So, the steps to take is by opening and installing the package tmswebcorepkgliblaz.lpk

45

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Open Tools, Environment where you can see as the last item in the list TMS WEB Core where

you can find all paths that need to be set:

46

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

After verifying the settings, you are ready to create your first TMS WEB Core project. Go to

Project, New project

47

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core will appear in the wizard:

For a first basic application, leave the options unchecked and proceed to create the application.

48

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Your first TMS WEB Core application

Let’s create step by step a first TMS WEB Core application. After creating a new TMS WEB

Core project from the wizard

and opening the Delphi IDE form designed for the web form, let’s add a TWebButton, TWebEdit

and TWebListBox:

49

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now, let’s add a WebButton event handler for OnClick:

When running this project, the result we see in the browser is:

50

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

When you have compiled the application in debug mode, the output folder contains the following

files:

The file project1.js contains the Javascript compiled application. The file project1.html is the

general project HTML file. The unit1.html is the HTML that is specific to form1 which is the

default form in the project here.

An interesting file is the project1.js.map file. This is the file that facilitates debugging directly

using the Delphi language from the browser. When compiling in release mode, this file is not

generated.

When one would want to deploy the application to a web server, all that is needed to do is put

the files project1.html / project1.js and unit1.html in a folder on a web server.

51

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Your first TMS WEB Core progressive web application

It is also possible to automatically create a progressive web application (PWA) from the IDE

wizard. A progressive web application is a web application designed to adapt itself to

online/offline situations, to various device types and most importantly, to let itself install similar

to a native application on the desktop and start from a desktop icon. More information about

progressive web applications can be found here:

https://developers.google.com/web/progressive-web-apps/

To create a new progressive web application from TMS WEB Core, select the icon “TMS Web

PWA Application” from the wizard:

At first sight, it looks like this generates the template for a regular TMS WEB Core web

application. However, several important additional files are generated: the manifest file, the

JavaScript serviceworker file and application icons in different sizes:

https://developers.google.com/web/progressive-web-apps/

52

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The manifest file is the file that contains the name, description, icons and general information of

your progressive web application. This manifest must be conform to the standard:

https://developers.google.com/web/fundamentals/web-app-manifest/ When it is available, it

allows the browser to identify the application as progressive web application and offer to install

the application from the desktop.

In a TMS WEB Core, the manifest is automatically linked from the project main HTML file via:

<link rel=manifest href="Manifest.json"/>

The serviceworker is registered and invoked as well from the main HTML script

 <script type="text/javascript">

 if ("serviceWorker" in navigator)

 {

 navigator.serviceWorker.register("ServiceWorker.js").then(

 function(ARegistration)

 {}).catch(

 function(AErr)

 {

 console.log("TMS WEB Core service worker registration failed", AErr);

 });

 }

 </script>

While the default generated serviceworker.js contains all functionality to automatically cache

your entire TMS WEB Core application for offline use, it can be further customized by editing

this file in JavaScript.

https://developers.google.com/web/fundamentals/web-app-manifest/

53

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The manifest file content can be customized directly from the project options:

When the progressive web application is launched from the browser via its URL, browsers

supporting progressive web applications (Safare on iOS, Chrome on Android), will show a

dialog upon launching to offer the possibility to add the application icons to the home screen:

54

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

When a progressive web application is used, the Application singleton object returns the

online/offline state of the application and will also trigger an event when the online/offline state

changes.

Check the property

Application.IsOnline: boolean

to check whether the application is online or offline.

Or attach an event handler to:

55

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Application.OnOnlineChange: TApplicationOnlineChangeEvent

with

TOnlineStatus = (osOnline, osOffline);

TApplicationOnlineChangeEvent = procedure(Sender: TObject; AStatus:

TOnlineStatus) of object;

This event handler will be triggered when the internet connection availability changes on the

device where the application is run.

56

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Your first TMS WEB Core Electron Application

TMS WEB Core allow to create cross platform Electron applications. These are packaged web

applications that can be deployed as executable code for Windows, macOS and Linux. You can

learn about the exciting Electron framework at: https://electronjs.org/

It is the Electron framework that offers a large API to take advantage of operating system

features such as application menu, notifications, local file access, … Your TMS WEB Core

application gets compiled to JavaScript and it is the Electron packager that turns the compiled

result into an executable for the 3 operating systems: Windows, macOS, Linux. TMS WEB Core

integrates all these steps for you from the IDE for Windows & Linux. For macOS, the packager

needs to be run separately from a macOS operating system.

To create a new Electron application from TMS WEB Core, select the “TMS Web Electron

Application” from the wizard:

https://electronjs.org/

57

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

It generates a project that is similar to a TMS Web PWA Application, but instead of the manifest

and serviceworker files, it has generated a main javascript file, a package file and 3 icons for the

different platforms:

For Electron application development with TMS WEB Core, a whole range of components is

available that let you take advantage of the Electron APIs for interfacing with the operating

system. This is covered in the chapter specifically about Electron.

58

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Your first TMS WEB Miletus Application

Miletus technology enables software developers to create desktop applications with TMS WEB

Core. Similary to Electron it provides access to the local file system, shell dialogs, clipboard and

much more. Different from Electron, its deployment has a very small footprint.

To create a new Miletus application, select the "TMS Web Miletus Application" from the wizard:

It generates a project similar to a TMS Web Application, with an extra icon file and different

configurations to select from:

59

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

:

The icon file can be changed through the project options:

60

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

You can now develop your application like you would normally do with a TMS Web Application.

61

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

62

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Debugging

As explained in the previous paragraph, when compiling in the Delphi IDE in debug mode, the

extra file project1.js.map is generated to offer the capability to debug the application directly

from Delphi code in the browser. This capability is supported in both the Chrome and Firefox

browser.

To start the debugger, press F12 from the browser and go to the Sources tab. On the source

window, press shortcut Ctrl-P and you get to see the file list of all files involved in the project.

From the file list, pick unit1.pas:

After picking this file unit1.pas, you can add breakpoints by clicking in the line number gutter:

63

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now, adding a value in the TWebEdit control and pressing the TWebButton triggers the

breakpoint:

and as you can see in the browser debugger, you can step Delphi line by Delphi line through the

code and see the values of Delphi variables directly in the browser debugger:

64

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This shows how easy and comfortable it is to debug TMS WEB Core application using the

Delphi language directly from the browser.

To make it even more convenient to debug your TMS WEB Core applications in the browser,

when you compile your application in Debug mode and you have added a breakpoint in the

Delphi IDE, this is automatically converted to a debugger breakpoint in the browser.

For example, set the breakpoint in the Delphi IDE:

and run the web application in the browser results in:

So, the browser debugger is automatically forced to stop just before the line where the

breakpoint was set in the IDE. This saves you from locating the code in the browser console

and set any breakpoints again from there.

An alternative to setting breakpoints via the IDE, is to set a breakpoint by inserting the identifier

{BP} in the code. For every line in the Pascal code that contains {BP}, a JavaScript code line

“debugger” will be inserted.

65

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Pascal to JavaScript Compiler

For creating the single-page JavaScript application, the Pascal code of your project is compiled

to JavaScript and this JavaScript application runs in the browser. Typically, a connection to the

server will be made by HTTP REST requests or via WebSocket communication. To compile the

Pascal code to JavaScript code, the pas2js compiler is used that is an open-source project and

builds on years of experience of the FPC compiler team. More information about the pas2js

project can be found here: http://wiki.freepascal.org/pas2js

At this moment, this support for the Pascal language is highly compatible with the Delphi

language. Pas2js v2.0 introduces advanced features such as attributes, generics, type helpers,

support for JavaScript await, promises and much more. Some of the newest Delphi language

features are not yet supported in pas2js v2.0 but on the radar for future releases:

- Advanced Records

- Advanced RTTI

- Inplace variables

For more details about the capabilities of the pas2js compiler, please refer to

http://wiki.freepascal.org/pas2js#Compiler

TMS WEB Core ships with a validated version of the pas2js compiler. We recommend using the

pas2js compiler included in the TMS WEB Core distribution as this is the version we test &

approve our entire framework and IDE integration with.

http://wiki.freepascal.org/pas2js
http://wiki.freepascal.org/pas2js#Compiler

66

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

RTL

Equally important to move existing VCL or FMX code bases to the web is the support for RTL. A

huge part of the Delphi RTL is available and delivered with the compiler. This includes now:

There is a basic Object Pascal RTL, several units from the FPC Packages are also available

-system

-sysutils

-math

-strutils

-rtlconst

-classes

-contnrs

-typinfo

-objpas

-dateutils

-DB

-js (javascript system objects)

-web (browser provided objects)

-libjquery

For more information about RTL support, please see: http://wiki.freepascal.org/pas2js#RTL

http://wiki.freepascal.org/pas2js#RTL

67

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Preprocessor

As a webbrowser does not know the concept of DFM files to load form configuration from and

as the form designer in the Delphi IDE is technically a VCL form, there is a preprocessing step

before compiling the code to JavaScript. This preprocessing step handles the conversion from

DFM file to code for initialization of the form. The pre-processor will also convert the unit

namespaces from VCL to WEBLib. This unit namespace conversion not only applies to unit

names but also when unit name prefixes are explicitly used for types. If there is a special reason

to disallow the pre-processor to skip lines in the code, prefix these lines with the {NOPP}

specifier.

So, the line

VCL.StdCtrls.TLabel

will be converted to

WEBLib.StdCtrls.TLabel

The line

{NOPP} VCL.MyUnit.MyType

will remain as-is before it is being compiled, i.e.

VCL.MyUnit.MyType

68

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Command-line compiler

It is possible to build TMS WEB Core web client projects outside the IDE. This is done via the

command-line compiler. The command-line compiler is located in the CommandLineCompiler

subfolder of the install folder. It contains a Windows version and a Linux version. The name is:

TMSWebCompiler.

Running the command-line compiler for a project is done with:

tmswebcompiler.exe /ParseDprojFile /ProjectFile:myproject.dproj

The compiler has various flags that can be used. Frequently used flags will be to choose the

config from the project, i.e.

tmswebcompiler.exe /ParseDprojFile /ProjectFile:myproject.dproj /Config:Release

selects to compile in release mode.

To see a full list of command-line parameters, use

tmswebcompiler.exe -help

Note that several of these command-line parameters will override the settings used in the

.DPROJ file.

This is an extensive list of the parameters:

CompilerBin, Pas2JS dll, example /CompilerBin:c:\temp\libpas2js.dll

Config, configuration, example /Config:Release

CopyFiles, files that are copied to the html dir, example

/CopyFiles:"c:\temp\picture.bmp;c:\temp\styles.css"

Debug, example /Debug

Compiler defines, example /Defines:RELEASE;DEBUG

Compile all dproj files which can be found here, example

/DprSearchPath:c:\temp

EcmaScript, 0 = default, 1 = EcmaScript5, 2 = EcmaScript6, example

/EcmaScript:1

Version of the generated Electron binary, example /ElectronAppVersion:"1.0.0"

Target-System, Win32: 2, Win64: 3, Linux32:4, Linux64:5, MacOS32: 6, MacOS64:

7, example /ElectronBuild:3

Name of the Electron Linux icon file, example

/ElectronIconLinuxFileName:"IconLinux.png"

69

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Name of the Electron Mac icon file, example

/ElectronIconMacFileName:"IconMac.icns"

Name of the Electron Windows icon file, example

/ElectronIconWindowsFileName:"IconWindows.ico"

Name of the Electron main.js file, example /ElectronMainJSName:"main.js"

Name of the Electron package.json file, example

/ElectronPackageJSONName:"package.json"

Electron Application, example /Electron

Version of Electron with which the binary should be created, example

/ElectronVersion:"6.0.0"

help or no switch, example /help

HiddenMessages, example /HiddenMessages:123,456

HTMLOutputDir, html and JavaScript output directory, example

/HTMLOutputDir:c:\temp

IncSearchPaths, include search paths, example

/IncSearchPaths:c:\temp;c:\temp2

Set the language of the compiler (0 = English, 1 = German, 2 = French),

example /Language:0

Absolute paths in the map file, example /MapFileAbsolutePath

No XSSIProtection, example /NoXSSIProtection

Obfuscation, /Obfuscation

Optimization, optimization or not, 0 = no optimization, 1 = optimization,

example /Optimization:1

Parse the dproj file, example /ParseDprojFile

ProjectFile, name of the project file, example

/ProjectFile:c:\temp\project.dpr

ProjectHTMLFile, name of the project html file, example

/ProjectHTMLFile:c:\temp\project.html

PWA BackgroundColor, example /PWABackgroundColor:Black

PWA Description, example /PWADescription:Description

PWA Icon Res High, example /PWAIconResHigh:Icon.png

PWA Icon Res Low, example /PWAIconResLow:Icon.png

PWA Icon Res Mid, example /PWAIconResMid:Icon.png

PWA Manifestfile, example /PWAManifest:Manifest.json

PWA Name, example /PWAName:Name

PWA ServiceWorkerfile, example /PWAServiceWorker:ServiceWorker.js

PWA ShortName, example /PWAShortName:ShortName

PWA StartURL, example /PWAStartURL:127.0.0.1/Project1.html

Progressive Web Application, example /PWA

PWA ThemeColor, example /PWAThemeColor:Black

ShowConditionals, example /ShowConditionals

ShowDebugNotes, example /ShowDebugNotes

ShowErrors, example /ShowErrors

ShowEverything, example /ShowEverything

ShowHints, example /ShowHints

ShowInfo, example /ShowInfo

ShowLineNumbers, example /ShowLineNumbers

70

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ShowMessageNumbers, example /ShowMessageNumbers

ShowNotes, example /ShowNotes

ShowNothing, example /ShowNothing

ShowTriedFiles, example /ShowTriedFiles

ShowUsedTools, example /ShowUsedTools

ShowWarnings, example /ShowWarnings

SingleInstance, single tab in the browser, should only be used for debug

purpose, example /SingleInstance

SingleJS, single JavaScript file or not, example /SingleJS

UnitSearchPaths, unit search paths, example /UnitSearchPaths:c:\temp;c:\temp2

Verbose, example /Verbose

Version, example /Version:1.0.0

71

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Utility functions

The unit WEBLib.WebTools contains several helper functions that can be handy.

The list of available utility functions is:

procedure MessageBeep(AType: integer);

Method with a VCL compatible signature playing a beep in the browser.

procedure OutputDebugString(const s: string);

Sends the string to the browser event log

function GetTickCount: longint;

Returns the number of ticks since browser start in milliseconds

function GetQueryParam(AName: string): string;

Returns the URL query parameter value for the URL with which the web application was started.

Example:

https://www.myserver.com/mysite?user=Admin

with return ‘Admin’ for GetQueryParam(‘user’);

function HasQueryParam(AName: string; var AValue: string): boolean;

Returns true if a specific query parameter is present in the URL with which the application was

launched.

function GetLocaleShortDateFormat(ALocale: string = ''): string;

Gets the short date format according to the browser locale

function GetLocaleLongDayName(DayOfWeek: integer; ALocale: string =

''): string;

Gets the long day name for a specific day in the week according to the browser locale

https://www.myserver.com/mysite?user=Admin

72

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

function GetLocaleShortDayName(DayOfWeek: integer; ALocale: string =

''): string;

Gets the short day name for a specific day in the week according to the browser locale

function GetLocaleLongMonthName(Month: integer; ALocale: string = ''):

string;

Gets the long month name for a specific day in the week according to the browser locale

function GetLocaleShortMonthName(Month: integer; ALocale: string =

''): string;

Gets the short month name for a specific month in the year according to the browser locale

function GetLocaleDecimalSeparator(ALocale: string = ‘’): string;

Gets the decimal separator character according to the browser locale or the specified locale

function GetLocaleThousandSeparator(ALocale: string = ‘’): string;

Gets the thousand separator character according to the browser locale or the specified locale

function GetLocaleCurrency(ALocale: string = ‘’): string;

Gets the currency according to the browser locale or the specified locale

function LocaleFormatCurrency(Value: double; ACurrency: string;

ALocale: string = ''): string;

Formats a value with a currency according to the browser locale or the specified locale

function GetBrowserLocale: string;

Retrieves the browser locale as string. See appendix for possible locale names.

function ProcessAccelerator(AValue: string; var Accelerator: string):

string;

Converts a string using accelerator keys (i.e. characters preceeded by &) as underlined HTML

text. The Accelerator var parameter is set to the accelerator key value.

73

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Example:

‘My &Button’

will be converted to

‘My utton’ and the Accelerator var parameter will be set to ‘B’

function GetBase64Image(AImage: TJSHTMLElement): string

Retrieves the image data as base64 encoded string

procedure DebugBreak;

Sets a breakpoint in the code at the line where DebugBreak is called.

74

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Page Design

Absolute positioning

By default, the Delphi form designer serves as a WYSIWYG design surface for your web

application forms. This means that the UI controls on the Delphi form will appear absolute

positioned on the web page. For page layout & organization, there are the typical Delphi

container controls like a panel, groupbox, scrollbox, gridpanel.

75

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The parent/child relationship of the Delphi controls is also reflected on the produced web pages.

Additional facilities like control alignment, anchoring, grid panel and a splitter control are

available to let you and the end user control the layout of the pages. In this default mode,

everything is as such very familiar to Delphi developers and users of Delphi VCL Windows

applications and sometimes this similarity is desirable.

Relative positioning

Controls can also be added to the designer and positioning set to relative position. This is set by

the property Control.ElementPosition to epRelativate. In this mode, coordinates for the control

are not rendered. It is up to the browser DOM to determine the layout. If for the Control the

HeightStyle and WidthStyle are set to ssAuto, also the DOM will determine the runtime size of

the control. There is one very important consideration with relative positioned controls and that

is control order. The relative ordering of controls is set by the Control.ChildOrder property.

When Control.ElementPosition is epRelative, the Control.ChildOrder is used to control the

ordering of the HTML elements of the control in the parent. The control with Control.ChildOrder

set to 0 will be the first control under the parent HTML element hierarchy, the next control will be

the control with Control.ChildOrder set to 1 and so on …

Example:

In the designer, there is a panel with ElementPosition = epRelative and WidthStyle, HeightStyle

are set to ssAuto. It contains 3 child controls, a label, edit and button with ElementPosition set to

epRelative as well. The label’s ChildOrder is set to 0, the edit’s ChildOrder to 1 and the button’s

ChildOrder to 2.

The result in the browser is:

76

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The corresponding HTML will be: a HTML SPAN element for the panel, a DIV element with

child HTML LABEL element for the label. A HTML INPUT element for the edit control and a

HTML BUTTON element for the button:

<DIV><LABEL></LABEL></DIV>

<INPUT type=”TEXT”>

<BUTTON type=”BUTTON”>

Now, CSS can take care of further styling of the generated HTML elements.

Theming

Meanwhile, all major desktop and mobile operating systems have introduced the concept of a

light and dark themes to accommodate the typical preference of dark themes for young

computer users and light themes for older computer users. Naturally, there is a tendency that

young computer users will come to expect that a web application adopts a dark theme and vice

versa for older users. Meanwhile, browsers offer capabilities of detecting whether the operating

system where the browser runs is configured for a dark theme or light theme. And so, a TMS

WEB Core application can automatically run using a dark theme or a light theme depending on

these settings. Of course, this feature is optional, and it can be used in an automatic way or you

can add application level code for switching to your desired theme in a customized way.

77

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

To enable this feature, go into project options and enable automatic theming via:

78

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

BiDiMode

Default TMS WEB Core web client applications are designed for left to right written languages.

For languages written from right to left, you can application wide configure the browser to use

right to left rendering. To do this, edit the project main HTML file and add the attriubute dir=”rtl”

for the <HTML> tag:

79

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

If you only want to enable right-to-left for specific controls on a page that is mainly left-to-right,

you can use the control’s BiDiMode property for this (similar as in Delphi VCL applications).

Use of HTML templates

The TMS WEB Core framework is also completely open to have the page layout designed

directly from HTML & CSS. The architecture of the framework provides for separating design &

code and even have the design done by people with a role, i.e. graphical designers.

So, how is this separation handled? Fortunately, in a very easy and straightforward way. The

link between HTML and the UI controls and code used in the Delphi IDE is based on the unique

HTML element ID. Every TMS WEB Core control has a property ElementID. When the

ElementID is not used, i.e. left empty, the HTML elements the control consists of is generated

by the TMS WEB Core framework. When the ElementID is specified, the HTML element found

is hooked up to the Pascal class for the control. This means that property accessors directly get

and set values from the HTML element and the various HTML element Javascript events are

hooked up the class and exposed as Pascal event handlers.

Here the TWebMemo is hooked up via the ElementID property to a TEXTAREA HTML element

with ID set to “mem” and already in the HTML file.

80

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The software developer and the graphical designer can collaborate by simply ensuring that the

designer provides the HTML element IDs to the software developer or the software developer

can provide a list of IDs of controls needed to the graphical designer.

Alternatively, the mapping between UI controls on the form designer and HTML elements can

also be done via the binding editor which is invoked from the TWebForm context menu of the

form designer:

81

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

In this control binding editor, two views are possible: the view that shows the UI controls found

on the form in the first column and the possibility to pick in the right column the HTML element

to map the control to and vice versa in the HTML Element-Control tab.

It speaks for itself that using this technique empowers us to take advantage of responsive

design for TMS WEB Core web applications. When the HTML template for the page is applying

responsive design techniques, i.e. different layouts for different device screen sizes, the UI

controls will appear where the designer defined these should appear depending on the screen

size. That is not all though. It is also possible to let the Delphi designed UI be generated in the

body part of a HTML page or in any specified HTML container element in a HTML page. As

such, a graphical designer could create a page layout with a header, footer and other elements

in the HTML page and add a specific area via a HTML DIV or SPAN element where the Delphi

designed UI will be generated in. To do so, all that is needed is set to the ID for the HTML

element where the form should be generated via the Form.AppContent property. Finally, each

UI control also exposes an ElementClass property. Via this ElementClass property a CSS style

can be specified for an UI control. Via this way for example, it is very easy to use a popular

framework like bootstrap. It is sufficient to set the bootstrap CSS class names to the UI controls

on the Delphi form designer by their ElementClass properties.

82

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Here the ElementClass property of the edit control on the form is set to the bootstrap ‘form-

control’ style:

One of the demos included in the TMS WEB Core framework shows this. By simply changing

the bootstrap theme via changing the reference in the HTML page template, the appearance of

the web application will adapt automatically.

Demo without styling:

http://www.tmssoftware.biz/tmsweb/demos/tmsweb_simple/

Demo with bootstrap styling applied:

http://www.tmssoftware.biz/tmsweb/demos/tmsweb_bootstrap/

Further fine-tuning on how the design-time setup translates to run-time look & feel and layout is

possible via the UI control properties ElementFont and ElementPosition.

Default, the UI control ElementFont property is set to efProperty. This means that the UI control

Font property values will be used to generate the style attributes for the HTML element (in case

ElementID and ElementClassName are blank). When ElementFont is set to efCSS, this means

the font for the HTML element will be determined by the browser CSS resolving.

Example:

http://www.tmssoftware.biz/tmsweb/demos/tmsweb_simple/
http://www.tmssoftware.biz/tmsweb/demos/tmsweb_bootstrap/

83

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This is a TMS WEB Core project web form with 3 controls. The font for the controls was set at

design-time to Verdana, 10pt. In the browser, this renders exactly the same:

Now, changing the ElementFont property on the 3 controls to efCSS and including the following

CSS in the form’s unit1.html:

results in:

84

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The ElementPosition property determines how the form designer based coordinates are used as

style attributes for the HTML element. When ElementPosition is set to epAbsolute (default), the

HTML element style attributes are set to absolute and the control position and size will match

exactly how it was designed in the form designer. When the setting is epRelative or epNone, the

HTML element layout, position and size will be determined by the browser and possible CSS

applied to the HTML element(s).

85

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

JavaScript and CSS

In the previous paragraph, it was explained how a form uses a HTML file and that the HTML file

can contain HTML elements, CSS, JavaScript as well as references to existing JavaScript

libraries and CSS. While these references can always be manually added to the HTML file, the

IDE also provides for automatic insertion or removal of such references.

To do this, choose from the project context menu in the project explorer pane in the IDE the

menu option:

“Manage JavaScript Libraries …”

This brings a dialog with several preconfigured popular JavaScript libraries that can be added:

From this dialog, simply check the JavaScript libraries you want to use for your project.

86

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Via the Add button, you can also insert here your own preferred JavaScript or CSS libraries.

These custom settings are persisted, also when you install a newer version of TMS WEB Core.

The parameters to add a new JavaScript library or CSS library can be entered via this dialog:

87

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Click “Add Link” to insert a new library link.

Click the 2nd column to toggle between CSS or a JavaScript library.

For each link added, one or more attributes can be set via the Add attribute button. An attribute

is a name/value pair added to the link inserted.

88

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Using off the shelf HTML templates

This chapter explains step by step a typical scenario for adopting an existing 3rd party HTML

template for use in your application.

In this example, we will highlight step by step how such 3rd party template can be integrated into

a TMS WEB Core web application. For this example, we will use a free off the shelf HTML

template as available from https://www.creative-tim.com/ in particular the Paper Dashboard

template https://www.creative-tim.com/product/paper-dashboard

This template offers a modern design and is responsive. The sidebar will collapse when the

device screen is small.

After downloading the template, unzip the distribution and in the main folder of the distribution

we see template.html and a folder assets. The assets folder contains all css, images, fonts,

JavaScript used in this template.

Copy this assets folder under your project folder and import it into the project from the IDE with

the “Import folder” function found in the project context menu:

https://www.creative-tim.com/
https://www.creative-tim.com/product/paper-dashboard

89

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

After importing, all files under the assets folder are added to the project and will as such also be

automatically deployed when running the application.

Next we look at template.html. This looks like:

90

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

It is this template we are going to use for a form in the TMS WEB Core application. As explained

in the previous chapters, each form in a TMS WEB Core application has associated HTML. It is

for this form HTML we are going to use the template. Note that the form’s HTML is loaded

dynamically when the application loads the form. The application itself is started from the project

HTML file.

To start using the template for a website for a TMS WEB Core application form, the first

recommended step is to look into the template HTML for references to external JavaScript or

CSS libraries. Moving these references to the main project HTML file has the advantage that all

the libraries are already loaded by the browser when the form is being loaded.

For this template, following library references are used:

91

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

We won’t use Google Maps or charts in the demo using the template, so these can be

removed. All other references are cut from the template HTML file and pasted into the project

HTML file.

This way, the project HTML file becomes (in highlight the library references added):

Normally, we could copy the remaining HTML from the template.html file into the form’s

unit1.html now and we will have the first TMS WEB Core web application based on this HTML

template:

92

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Next step will be to couple the TMS WEB Core web application to the template. The first items

we will couple are the left sidebar items and the page title. The content of the TMS WEB Core

form will be displayed in the content area of the template.

Sidebar

We locate in the HTML file the 3 sidebar items.

93

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

and add a unique element ID to these <p> HTML elements for the sidebar items.

Adding IDs “menu1”, “menu2”, “menu3”, this becomes:

Now, we can add 3 TWebLabel components on the TMS WEB Core form and connect these

labels to the <p> elements. This is done via the WebLabel.ElementID property.

94

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Note that the TMS WEB Core plugin automatically detects all HTML elements where an ID is

set and displays these in the dropdown for ElementID property. Further, we set for the 3 added

labels ElementFont = efCSS and WidthStyle, HeightStyle to ssAuto. It will be the template that

controls this label font and label size. We set the label captions to “Orders”, “Customers”,

“Config” respectively as these will be the sidebar items.

Next, we do the same for the “Title” label in the template and connect it to over the ElementID

property to another label on the form. This allows us to set per form a title controlled from the

TMS WEB Core application code.

We also want to control where the TMS WEB Core form will be displayed within this template.

95

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

As the goal is to bind 3 forms to this template, the most efficient way will be to add a frame with

these 3 sidebar labels that will be reused on each form.

In the template we find the content area under the navbar:

Also here, we introduce a unique ID to the element where we want the form to be rendered. The

ID is “webform” and to make a form appear within this HTML element, all we need to do is set

the property WebForm.FormContainer to this ID.

96

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Note that the form’s ElementFont was set to efCSS to pickup the CSS that applies to the

element where the form will rendered. We also set the ElementClassName to a CSS class

defined by the template so the font of controls will match the font used in the template.

Let’s drop some controls on the TMS WEB Core form and see how the result looks in the

browser:

97

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

becomes:

98

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Note that for the edit & datepicker controls, the ElementClassName was set to “form-control”, a

bootstrap style. The button control ElementClassName was set to: “btn btn-primary btn-round”

to show this green rounded shape.

Now it is time to add the code that will take care of loading a different TMS WEB Core form

when a sidebar item is clicked. Therefore, add OnClick event handlers for the labels on the

frame that are connected to the sidebar HTML elements.

We create one wrapper function that can load the form by just passing the form class.

procedure TMenuFrame.LaunchForm(AInstanceClass: TFormClass);

var

 frm: TForm;

 procedure FormCreated(AForm: TObject);

 begin

 (AForm as TForm).Show;

 end;

begin

 if Uppercase(Application.ActiveForm.ClassName) <>

Uppercase(AInstanceClass.ClassName) then

 begin

 Application.CreateForm(AInstanceClass, 'body', frm, @FormCreated);

 end;

end;

Note that the FormCreated method is asynchronously loaded when the form HTML was loaded.

In a browser, loading such external form HTML file is always an asynchronous process.

This way, the click handlers for the sidebar labels become simply:

procedure TMenuFrame.WebLabel1Click(Sender: TObject);

begin

 LaunchForm(TForm1);

end;

procedure TMenuFrame.WebLabel2Click(Sender: TObject);

begin

 LaunchForm(TForm2);

end;

99

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure TMenuFrame.WebLabel3Click(Sender: TObject);

begin

 LaunchForm(TForm3);

end;

The end result becomes:

There is one more detail here handled in this example at template level. As we added multiple

forms to the project, the template for each form in this project will be the same for one detail and

that is the class for the selected item in the sidebar. Note there is a triangle indicating the

selected item and the selected item is shown in orange.

So, to move the selected sidebar item to another item when a different form is loaded, the

class=”active” attribute will be moved to the respective item for each of the form’s HTML

templates:

100

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Or alternatively, we could also do this in code. The advantage of doing this in code is that we

could this way keep the HTML template for the 3 forms in the applications identical. This means

that whenever a designer wants to modify the page, by changing one template file, all forms in

the application will be updated.

For this approach, all we need to do is add element IDs to the sidebar navigation elements and

then programmatically set the CSS class for the active element.

101

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

With this approach all we need to do in each form’s code is:

procedure TForm1.WebFormShow(Sender: TObject);

var

 el: TJSElement;

begin

 // set sidebar element active style

 el := document.getElementById('side1');

 el['class'] := 'active';

end;

procedure TForm2.WebFormShow(Sender: TObject);

var

 el: TJSElement;

begin

 // set sidebar element active style

 el := document.getElementById('side2');

 el['class'] := 'active';

end;

…

As you can see in the template file, it has a few other central items. In the top right corner, there

is a search bar and a dropdown menu.

This search function and dropdown menu will return for all forms displayed in the content area

of the template. So, ideally, this is handled in a centralized way. In TMS WEB Core, we can do

this by means of a frame and a TWebElementActionList. As the frame is reused on all 3 forms

in the application, the event handlers for the elements of the dropdown menu and the search

102

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

button can be handled and centralized by the TWebElementActionList on the frame.

So, first of all, set unique ID values for the dropdown menu item HTML elements and the search

button HTML element. Here we will use “action1”, “action2”, “action3” and “search”.

The dropdown menu is easily recognized in the HTML template and the IDs set:

The search button is a material icon found here:

Now, we add a TWebElementActionList on the frame and add 4 actions to handle each of the

clicks on the elements given an ID.

Here is the list with 4 items and the ID of the HTML element to handle the click is set to

“action1”.

103

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Finally, the OnExecute event handler code is written for the TElementActionList that will handle

the events of each of the 4 actions added:

procedure TMenuFrame.WebElementActionList1Execute(Sender: TObject;

 AAction: TElementAction; Element: TJSHTMLElementRecord;

 Event: TJSEventParameter);

begin

 case AAction.Index of

 0: ShowMessage('action 1');

 1: ShowMessage('action 2');

 2: ShowMessage('action 1');

 3: ShowMessage('search');

 end;

end;

And this completes the HTML template based 3 form TMS WEB Core application.

104

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Automatic synchronisation with HTML templates

It is not necessary to manually put UI controls on the designer for binding to HTML elements in

the template. The form designer offers the capability to automatically insert UI controls on the

form designer matching with the type of HTML elements in the HTML template.

This can be invoked from the form designer context menu item “Control Sync”.

So, all you need to do is add the HTML for your form to the form's HTML file and choose "HTML

Sync" from the form's context menu. This will parse the HTML, and it will create an appropriate

UI control on the form designer and bind it to the HTML element when it has an ID attribute

value. When you change the template later, for example, add more HTML elements, you can do

the "HTML Sync" again and the added corresponding UI controls will be added to the form

designer. We have a fixed mapping for specific HTML elements to UI controls as well as steered

sync by specifying the UI control’s class name as the attribute for the HTML element.

The automatic mapping of HTML elements to TMS WEB Core UI controls is based on the

following relationship:

HTML Element UI control class

105

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

<LABEL> TWebLabel

<INPUT type=”TEXT”> TWebEdit

<INPUT type=”NUMBER”> TWebSpinEdit

<INPUT type=”CHECK”> TWebCheckBox

<INPUT type=”RADIO”> TWebRadioButton

<INPUT type=”COLOR”> TWebColorPicker

<INPUT type=”DATE”> TWebDateTimePicker

<INPUT type=”RANGE”> TWebTrackbar

<SELECT> TWebComboBox

<TEXTAREA> TWebMemo

<PROGRESS> TWebProgressbar

 TWebListControl

 TWebListControl

<BUTTON> TWebButton

<DIV> TWebHTMLDiv

 TWebHTMLSpan

In addition to this automatic mapping, it is possible to steer the mapping of the HTML element to

a specific UI control with the twc attribute.

For HTML elements that have the “twc” attribute and an ID, the following mapping happens

upon import:

<ELEMENT twc=”classname” id=”xx”> → create a new control from class of type classname

So, the twc attribute has priority to determine the classname of the generated control.

Example:

<DIV ID=”mygrid” twc=”TWebPanel”> will cause a TWebPanel class to be bound to this HTML

DIV element on the form designer.

Note that the twc attribute can also be used to exclude a HTML element with the ID set to be

bound to a UI control when the twc attribute is set to “none”.

106

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Live preview

Note that the form designer in the Delphi IDE (and also the Lazarus IDE) is based on the VCL

(LCL) framework. This means that at design-time, the controls on the form designer are

rendered as VCL/LCL controls. While the designer is fast, familiar, and flexible, it is still a

different way of rendering it than a real web browser-based rendering. Live preview is a function

that allows you to view directly in a separate browser window a live rendering of the form open

in the Delphi form designer.

To start a live preview for a specific form in the project, click the form’s unit in the Delphi IDE

project manager and select “Live Preview”.

This will bring up a browser (the browser is the default brower or a specific selected browser

from the TMS WEB Core toolbar in the IDE).

Once the live preview is ready and shows the selected form rendered in the browser:

107

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

- Make a change to a control's property,

or

- Add a new control on the form or change something in the layout

and

- Press Ctrl-S.

This triggers the live preview browser window to automatically update. The trick here is that live,

a single form project consisting of this form in the designer is compiled live and shown in the

web browser. Evidently, also when you use HTML templates, the live preview takes this into

account and gives you a real preview of this form.

108

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Note that you can simultaneously launch multiple live previews for multiple forms. Each browser

tab will then display a preview of the form selected for live preview.

109

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Working with databases

The TMS WEB Core framework in combination with the pas2js compiler generate web client

applications that run in the browser. This means that the entire application is started from a

JavaScript file and runs as such in the browser. This means that any code executed in the client

eventually runs as JavaScript code in the browser. Technically, after the web server sent the JS,

HTML, CSS and possibly some image resources to the browser, there is no more connection to

the web server. From that moment, the web client application can start to run stand-alone in the

browser. All further communication with the server is typically done via HTTP REST calls

(websocket communication could be a possible alternative). For designing applications using

databases, this has a number of implications:

1) Classic VCL database components can NOT be used, such as FireDAC, dbExpress,

ADO, or other 3rd party database access components.

These are VCL components that will natively directly access the database layer on a

Windows machine and the security layer of the browser would prevent such direct

access anyway.

2) The database the web client application uses is typically not installed on the client

machine. The browser shields database applications running on the client or in the

network of the client machine for security reasons.

3) Even if a database supports a socket-based communication to perform database

operations, this is typically NOT done from a web client application for security reasons.

As this code is running in the browser, any experienced hacker could follow this code

and could find out how to access your database and possibly invoke code himself to do

malicious operations on the database.

Instead, working with databases is in this architecture of SPA’s (single-page web applications)

also used with Angular, Vue, React, … done via a REST API. The web client application will

authenticate & authorize against this REST API and when obtaining access, it will perform

HTTP requests to perform CRUD operations on the database. It is as such the REST API server

that handles the communication between client and database server and it is the REST API

server that performs the database operations. The REST API server code runs on the server,

can be a native application and this code cannot be seen nor affected by anyone with malicious

intentions. It is very similar to a native smartphone application that connects to a central

database. Also here, a typical solution is that the central database is managed by a REST API

server.

110

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core is designed to be fully open with respect to the REST server providing the

access to the database. As a basis, the TWebHttpRequest component can be used to perform

HTTP GET/PUT/POST/DELETE requests to the REST server. Typically the REST service will

expect JSON formatted data as input/output. The TJSONObject class in unit WebLib.JSON

offers similar classes as offered in the System.JSON unit included standard with Delphi for VCL

or FMX applications.

In addition, TMS WEB Core includes database binding mechanisms on a higher level, i.e. the

level of a client dataset that will under the hood perform all necessary HTTP based

communication with your REST DB server. And it includes also components for making cloud

based databases accessible as datasets from your TMS WEB Core web client application.

Solutions with REST APIs for classic databases

TXDataWebDataSet Dataset component designed for use with TMS XData

REST server. This offers a code-less interface to an XData

REST server with the additional advantage that XData

supports meta data information. So, without additional

configuration, the web client dataset TXDataWebDataSet

will pickup all DB field meta data information automatically.

See: https://www.tmssoftware.com/site/xdata.asp

TWebRadServerClientDataset Dataset component designed for a REST server created

with Embarcadero RAD server. Create your REST API with

Embarcadero RAD server to expose CRUD operations on a

https://www.tmssoftware.com/site/xdata.asp

111

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

dataset and TWebRadServerClientDataset will handle all

HTTP communication and offer client-side a dataset to

connect DB-aware UI controls to

See: https://www.embarcadero.com/products/rad-server

TWebSQLRestClientDataset Dataset component designed to work together with the

open-source SQLDBRestBridge server. This offers a no-

code configurable DB Rest Bridge server that

TWebSQLRestClientDataset communicates with and offers

access to via this TDataset interface.

See: https://wiki.freepascal.org/SQLDBRestBridge

TWebDreamFactoryClientDataset DreamFactory offers the creation of REST APIs, including

to access databases via configuration via a web interface.

So, without writing code, it is possible to create your REST

API for CRUD operations on a database. When such REST

API is configured in DreamFactory, the

TWebDreamFactoryClientDataset can automatically

communicate with it and offer database access this way via

its TDataset interface to DB-aware UI controls in the TMS

WEB Core web client application

See: https://www.dreamfactory.com

Solutions with REST APIs for cloud database solutions

TWebMyCloudDbCLientDataset The myCloudData service offers an online cloud hosted

dataset. So, here you do not need to host the database

yourself, you can used an account on an already hosted

database. The TWebMyCloudDbCLientDataset exposes the

tables on the myCloudData service as easy to use datasets.

See: https://myclouddata.net

TWebFirestoreClientDataset Google web services also includes cloud data storage with

Firestore. Thanks to the TWebFirestoreClientDataset, using

the Google cloud data storage becomes as seamless as

possible.

See https://firebase.google.com/products/firestore

TWebFaunaDbClientDataset FaunaDB is a cloud data service company that focuses on

cloud enabled data storage with data stored on the server

infrastructure of FaunaDB. It offers a console for configuring

the tables, queries and REST API access to it.

With the TWebFaunaDbClientDataset component, using

https://www.embarcadero.com/products/rad-server
https://wiki.freepascal.org/SQLDBRestBridge
https://www.dreamfactory.com/
https://myclouddata.net/
https://firebase.google.com/products/firestore

112

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

data hosted at FaunaDB becomes as simple as connecting

DB-aware UI controls to the dataset and you are up &

running.

Existing REST APIs

In many cases, there is already a REST API available to access data or services in a company

that could have been created with node.js, ASP.NET core, PHP, …

When this REST API uses OAuth2 for authentication & authorization, the component

TWebRESTClient can be used for OAuth2 and performing REST HTTP requests to the server.

When there is no OAUTH2 based authentication & authorization, the TWebHttpRequest

component can be used for all REST HTTP GET/PUT/POST/DELETE commands.

113

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Application

Just like in a VCL application, a TMS WEB Core application has a singleton TApplication object.

The application is mainly responsible for creating and managing forms and provides in addition

a couple of methods, properties and events to help in various ways. The Application object is

also responsible to retrieve various formatting settings (date, time, numbers) from the browser

locale.

Normally, the IDE will automatically generate the needed code so the main application form is

created. Following methods, properties and events are available:

Application.Active: boolean Read-only property that returns true when the

application is running in the active tab of an

active browser window.

Application.CreateForm(AInstanceClass:

TFormClass; var AReference);

Creates a new instance of a form class. The

new form instance is returned via the

AReference parameter. Note that creating a

new form involves loading the form HTML file

and as such, this is an asynchronous process.

Application.CreateForm(AInstanceClass:

TFormClass; AElementID: string; var

AReference);

Creates a new instance of a form class. The

new form instance is returned via the

AReference parameter. The form content is

loaded in the HTML element set via

ElementID. Thus, the form is hosted in the

element in the form that contains it. Note that

creating a new form involves loading the form

HTML file and as such, this is an

asynchronous process.

Application.CreateForm(AInstanceClass:

TFormClass; AElementID: string; var

AReference; AProc: TFormCreatedProc);

Overload of the CreateForm() method that has

an extra parameter AProc. This allows to pass

a procedure pointer for the procedure that will

be called when the asynchronous creation of

the form is ready.

Application.CreateForm(AInstanceClass:

TDataModuleClass; var AReference);

Creates a new instance of a data module

Application.AppContainer: TElementID Sets the HTML element ID for the HTML

element in which TwebForm instances will be

created. Default Application.AppContainer is

set to ‘body’, putting the new created form

instances in the document body.

Application.ErrorType Defines the type of error messages that is

114

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

displayed.

aeSilent: non-obtrusive message in the

browser console. Default when application is

compiled in release mode

aeDialog: HTML dialog with error message

centered in browser window

aeAlert:Javascript alert with error message

aeFooter: Rectangular area in footer of

browser window containing error message

Application.FormCaptionHeight: integer; Sets the dialogs caption height throughout the

application. The default height is 22.

Application.GoBack; Navigate to the previous form (when automatic

form routing is enabled) or th previous URL

Application.Hash: string Gets or sets the application URL hash

Application.LoadForm(AForm: TCustomForm;

AFormFile: string);

Loads the HTML file corresponding with the

form instance. This is an asynchronous

process.

Application.InitFormatSettings(const

BrowserLocale: string);

This allows to override the automatic

initialization of format settings from the default

browser locale. See Appendix for possible

browser locale values.

Application.Navigate(AURL: string; ATarget:

TNavigationTarget);

Method to navigate from the application to a

given URL. With the ATarget parameter it can

be set to navigate to the URL in a new

browser window or in the window where the

current application is running.

Application.Download(AURL: string); Starts the download of a file from the

application from location AURL

Application.DownloadTextFile(const AText:

string; AFileName: string);

Starts the download of a text file from the

application with content of the text file set as

AText

Application.DownloadBinaryFile(const Data:

TJSUint8Array; AFileName: string; ANewTab:

Boolean = false);

Starts the download of a binary file from the

application with content of the binary file set as

Data, an array of bytes. When ANewTab =

true, the download is started in a new browser

window

Application.DownloadBinaryFile(const Data:

TJSBlob; AFileName: string: ANewTab:

Boolean = false);

Starts the download of a binary file from the

application with content of the binary file set as

Data available in TJSBLob format. When

ANewTab = true, the download is started in a

new browser window

115

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Application.DownloadBinaryFile(const Data:

TBytes; AFileName: string: ANewTab:

Boolean = false);

Starts the download of a binary file from the

application with content of the binary file set as

Data available in TBytes dynamic array format.

When ANewTab = true, the download is

started in a new browser window

Application.EXEName: string Returns the application URL

Application.ColorScheme:

TApplicationColorScheme

Function returns whether the browser is

running on an operating system with a regular

color theme or a dark color theme.

TApplicationColorScheme = (csNoScheme,

csLight, csDark);

csNoScheme: No operating color scheme

could be detected

csLight: Operating system has a default light

color them

csDark: Operating system has a default dark

theme

Application.Themed: boolean When true, the forms in the application and its

controls will automatically adapt their color to

match the operating system default color

theme being csLight or csDark.

Application.InsertCSS(CSSID, CSSFile:

string);

Insert a CSS library reference with CSSID

dynamically into the application main form

HTML

Application.RemoveCSS(CSSID: string); Removes the CSS library reference with

CSSID dynamically from the application main

form HTML

Application.ActiveForm: TForm Returns the active form of the application

Application.AutoRouteForm: boolean When true, a form classname can be passed

as a hash on the URL and then the application

will automatically create and display a form of

this classname.

Application.HandleOAuth: boolean Default this is true and the Application object

handles OAuth callbacks. Set this to false

when OAuth callbacks will be handled in a

custom way.

Application.HintClassName: string Sets the classname for hints displayed when

the form is a Bootstrap form

Application.HintHidePause: integer Sets the time in milliseconds after which the

116

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

hint hides when the mouse hovers a control.

This applies to Bootstrap forms

Application.HintPause: integer Sets the time in milliseconds after which the

hint is displayed when the mouse hovers a

control. This applies to Bootstrap forms

Application.HintPosition: THintPosition Sets the position of the hint displayed relative

to the control. The options are hpLeft, hpTop,

hpRight, hpBottom. This applies to Bootstrap

forms

Application.IsOnline: Boolean Read-only property returning the online status

of the application

Application.IsMobile: boolean Read-only property returning whether the web

application is running on a mobile device

(smartphone or table)

Application.IsPWA: boolean Read-only property returning whether the web

application is running as PWA, i.e. started

from a desktop icon on the device

Application.MainForm: TForm Returns the main form of the application

Application.ObjectURL(Afile: TJSHTMLFile):

string;

Returns a data URL from a file object

Application.Route When an URL hash is used, uses it to open

automatically the form class specified via the

hash

Application.RouteForm(AParameter: string); Automatically start the form with class name

passed as request parameter

form=TFormClassName

Application.RunScript(AScript: string); Executes a block of JavaScript code

immediately

Application.MainForm Returns the form instance that is the current

active main form of application.

Application.Parameters: TStrings; Returns the list of possible optional URL

request parameters with which the application

was started

Application.Language: TUILanguage Sets optionally the application language.

When the application language is set, it is

possible that a language specific HTML file for

a form is loaded. Default,

Application.Language is set to lNone. When

Application.Language is set to a different

value, the HTML file loaded for a form gets a

language specific suffix. For example, when

117

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Application.Language is set to lGerman, the

application will load for a form in unit1.pas and

having the form HTML file named unit1.html as

unit1_de.html. This way, it is possible to have

different language specific HTML files and

have the application load the desired HTML

form file when the language is set. The list of

supported languages and the used language

suffix is found in the appendix.

Application.ThemeColor: TColor Gets and sets the application theme

background color. This theme background

color is used as form caption background color

when popup forms are created.

Application.ThemeTextColor: TColor Gets and sets the application theme text color.

This theme text color is used as form caption

text color when popup forms are created.

Application.ThemeButtonClassName Gets and sets the application CSS style

classname for the buttons created on dialog

boxes.

Application.OnActivate Event triggered when the browser or browser

tab where the app is runnnig becomes the

active or inactive browser window. The Active

parameter returns whether the app is running

in the active brower or browser tab or not.

Application.OnException Event triggered when an RTL exception is

triggered. This allows for central application

level exception handling.

Application.OnError Event triggered when an error occurs in the

application. This can be a Pascal exception or

any HTML DOM specific error. The event

passes the information about the error in the

parameter AError: TAppplicationError. When

the Handled parameter is set to true, the

standard error is not longer performed.

Application.OnExit Event triggered when the user navigates away

from the application or closes the browser app

where the application is running

Application.OnFontCacheReady Event triggered when fonts were successfully

loaded in the cache. Font caching is used for

client-side PDF generation

Application.OnHashChange Event triggered when a hash query parameter

118

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

in the application URL changes. When the

application was started with myapp.html and

then the URL myapp.html#newform is used,

the OnHashChange event will be triggered.

When used in combination with

AutoRouteForm, the form classname can be

passed as a hash and this form will be created

when the hash changes.

Application.OnImageCacheReady Event triggered when images that were set to

be loaded by setting the URL are finished with

loading asynchronously. It might be necessary

to force a repaint of controls from this event.

Application.OnOnlineChange Event triggered when the online status of the

application changes. That is, when the device

goes from online to offline or vice versa, this

event is triggered

Application.OnPopState Event triggered when browser back button is

pressed when window history contains a state

Application.OnOAuthToken This event is triggered when the token is

returned from a REST API service after

authentication & authorization through a popup

window.

Application.OnOAuthCallBack This event is triggered when the REST API

service against which authentication &

authorization is performed by means of a

popup window is doing a callback to the

application from where it was started.

119

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Forms

In TMS WEB Core, the base class for forms is TWebForm.TWebForm is similar to a TForm in

the VCL. Controls can be put at design time on the TWebForm and will be displayed. The

TWebForm is by default displayed as a full page in the browser. In addition to the controls that

the form hosts that are created at design-time or at runtime, there is also the HTML code

associated with the form. This HTML can be an empty HTML BODY when all controls are

created by Delphi classes or it can contain additional HTML elements or HTML elements to

which Delphi classes are mapped.

The default project looks like:

and you see under unit1.pas not only a reference to the DFM file where Delphi class properties

are stored but also the HTML file associated with the form in Unit1. The default HTML for this

form can be opened & edited from the Delphi IDE but can also be ‘designed’ by any other tool

for creating HTML files. The default content of the HTML file is:

120

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

In the default HTML files, the BODY is empty and the controls defined in Delphi will be put in the

BODY upon creation of the form instance. The application creates the main form in the same

way as in a VCL application, i.e. with the code:

 Application.CreateForm(TForm1, Form1);

It is also possible that the Delphi controls will be created within another HTML element than the

HTML BODY element.

If unit1.html contains:

we can specify at form class level Form.FormContainer: string and set this to the HTML

element ID of the HTML element in which the form should be rendered, i.e. in this case it could

be set to “form”.

Alternatively, there are also forms in the project that have not HTML template file. These are

added to the project via the IDE wizard and selecting TMS WEB Direct Form:

121

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This appears in the project manager as:

The big difference here is that when the application opens this form via

Application.CreateForm(TForm1, Form1);

no additional HTML file needs to be loaded and the form will use the HTML as specified in the

application HTML file. This type forms as such loads faster. It does not need a server to return

the form specific HTML file (meaning such project can also be directly started by double-clicking

the application HTML file from Windows Explorer). If you want to use HTML elements linked to

122

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

form controls, these HTML elements will need to be present in the main application HTML file.

As such, when wanting to use this type direct form for applications with multiple forms, it will

require a different application management code to handle the HTML file (possibly

programmatically).

123

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Creating forms at runtime

Due to the asynchronous behaviour of loading the HTML for a form, the creation of a form in

code is slightly different in the web than in VCL. To create a form, following code can be used:

procedure TForm1.WebButton1Click(Sender: TObject);

var

 newform: TForm2;

 // async called when the form is closed (via form.Close method where

ModalResult can be set)

 procedure AfterShowModal(AValue: TModalResult);

 begin

 ShowMessage('Form 2 closed with new

value:'+newform.frm2Edit.Text);

 WebEdit1.Text := newform.frm2Edit.Text;

 end;

 // async called OnCreate for TForm2

 procedure AfterCreate(AForm: TObject);

 begin

 (AForm as TForm2).frm2Edit.Text := WebEdit1.Text;

 end;

begin

 newform := TForm2.CreateNew(@AfterCreate);

 newform.ShowModal(@AfterShowModal);

end;

An alternative way to create forms is using equivalent functions that use promises. With this

approach, code can be written as if it is sequential but still, in execution it is asynchronous. The

equivalent code to create a form using promises and await() is

procedure TForm1.WebButton1Click(Sender: TObject);

var

 newform: TForm2;

begin

 newform := TForm2.Create(Self);

 // load file HTML template + controls

124

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 await(TForm2, newform.Load());

 // init control after loading

 newform.frm2Edit.Text := WebEdit1.Text;

 try

 // excute form and wait for close

 await(TModalResult, newform.Execute);

 ShowMessage('Form 2 closed with new

value:"'+newform.frm2Edit.Text+'"');

 WebEdit1.Text := newform.frm2Edit.Text;

 finally

 newform.Free;

 end;

end;

Note that there is one additional important difference to make the promise/await based

approach work, and that is to make the form method WebButton1Click as async. This can be

done via an attribute:

 TForm1 = class(TWebForm)

 [async]

 procedure WebButton1Click(Sender: TObject);

 end;

By default, the new form TForm2 will replace the page showing the actual form. When this form

is closed, the original form from where TForm2 is shown, will be displayed in the browser page

again. The procedure AfterCreate is shown when the HTML for TForm2 is loaded and its

controls are created. The ShowModal() method will display the actual form in the browser page

and a reference to the method that will be called when the form is closed can be passed as

parameter as ShowModal is not a blocking method, as such blocking methods are not possible

in a browser environment.

In addition to forms displayed in the full browser page, it is also possible to create popup forms.

These forms will be displayed on top of other forms, effectively disabling the forms on top of

which the new form is displayed till this new form is closed. To display a form as popup, all that

is needed is setting form.Popup = true.

Example:

begin

125

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 newform := TForm2.CreateNew(@AfterCreate);

 newform.Popup := true;

 newform.PopupOpacity := 0.2; // only needed when main form should

 // remain visible under a layer with

 // opacity

 newform.ShowModal(@AfterShowModal);

end;

For popup forms, 2 more settings are relevant.

The popup form can have a caption or not. When the popup form has a caption, the user will be

able ot move the popup form on the screen via the caption. The caption of the form is set via

WebForm.Caption: string;

The popup form can be resizable (on desktop browsers) via a resizer area in the bottom-right

corner of the form.

These extra form settings are done via the TWebForm.Border property:

WebForm.Border setting Description

fbDialogSizeable Popup form has caption and can be sized

fbDialog Popup form has caption and has a fixed size

fbSingle Not sizeable form, no caption

126

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Hosting forms in other controls

Finally, it is also possible to embed other forms in controls or HTML elements in other forms.

To do so, create the form with overloads of the CreateForm method of the Application object or

via the CreateNew constructor overload of TWebForm:

Via the TApplication object:

 procedure CreateForm(AInstanceClass: TWebFormClass; AElementID:

string; var AReference); overload;

 procedure CreateForm(AInstanceClass: TWebFormClass; AElementID:

string; var AReference; AProc: TFormCreatedProc); overload;

The AInstanceClass is the class type of the form to be created. The AElementID is the ID of the

HTML element (or Delphi class control ID) that is the HTML container in which the form will be

created. The AReference is a reference to the form instance that will be created and optionally a

referene to a procedure that will be called when the form was effectively created can be passed.

Via the TWebForm CreateNew overload:

constructor TWebForm.CreateNew(AElementID: string; AProc:

TFormCreatedProc);

The AElementID is the ID of the HTML element (or Delphi class control ID) that is the HTML

container in which the form will be created. Optionally a method can be passed that will be

called when the form was created.

Example code:

127

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

In this sample code, a new form of the type TSubForm1 is created. The form will be displayed

inside a panel on the form as we use the panel’s HTML element ID. When the form is created,

and this all controls on the form are accessible, the AfterCreate() procedure is called.

Overview of TWebForm properties, methods, events:

Properties

Property Description

ActiveControl: TCustomControl Get and set the focused/active control on the

form

Caption: string Sets the form caption. For a regular form, this

is the browser title text, for a popup form, this

is the text in the form caption area

CaptionElement: TJSHTMLElement Read-only property giving access to the HTML

element used for the form caption

Color Sets the background color of the form

CSSLibrary: TCSSLibrary Can be:

- cssNone

- cssBootstrap

Selects between using a default Bootstrap

CSS library use for the form or no default CSS

library.

When CSSLibrary is set to cssBootstrap,

adding new controls at design-time on the

form, will automatically preset the control’s

128

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName property to the best

matching Bootstrap class for the control.

ElementCaptionClasssName CSS class for the form caption DIV element,

allows to use CSS to customize the caption

element

ElementPopupClassName CSS class for the form popup container DIV

element, allows to use CSS to customize this

element

FormContainer: TElementID Sets the ID of the HTML element in the form

HTML template serving as the container of the

entire form

FormFileName: string Holds the filename of the HTML template for

the form. By default this is the unit name with

extension .HTML

FormStyle: TFormStyle Unused property for backwards compatibility

with VCL forms

Menu: TCustomControl Sets the main menu for the form

ModalResult: TModalResult Holds the modal result when the form closes

Popup: Boolean When true, the form will be shown as popup

dialog over the parent form, otherwise it will be

displayed in the entire browser window.

PopupOpacity: single Sets the opacity of the layer making the parent

form UI elements inaccessible while a popup

form is shown

ShowClose: Boolean When true, a close button is shown in the

caption right corner of a form displayed as

popup form

Shadow: boolean When true, the popup form is shown with a

shadow border over the parent form

Methods

Method Description

AddCSS(const id: string; const CSS: string); Adds new CSS code to the form. The CSS

code is added in the STYLE section of the

document with given id.

Close Closes the form

Execute: TJSPromise Async method called to show a form modally,

waiting for it to be closed

129

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Load: TJSPromise Async method loading the form HTML

template

RemoveCSS(id: string); Removes the CSS style element with id

SelectFirst Sets focus to the first element on the form

SelectNext(CurControl: TControl; GoForward:

Boolean = true)

Sets the focus to the next element on the form

(or previous element when GoForward = false)

ShowModal(AProc: TModalResultProc = nil) Shows a form modally and calls the

anonymous method returning the modal result

when the form is closed

UpdateCSS(const id: string; const CSS: string) Updates the CSS style information for CSS

style element id.

Events

Event Description

OnClick: TClickEvent Event triggered when the form is clicked

OnClose: TCloseEvent Event triggered when the form is closed

OnCloseQuery: TCloseQueryEvent Event triggered just before the form is about

the be closed. Can be used to prevent actual

closing of the form via the CanClose

parameter

OnCreate: TNotifyEvent Event triggered when the form instance was

created

OnDestroy: TNotifyEvent Event triggered when the form is destroyed

OnDeactivate: TNotifyEvent

OnDblClick: TNotifyEvent Event triggered when the form is double-

clicked

On DOMContentLoaded Event triggered when the form’s HTML

template fully finished loading in the browser

DOM

OnHashChange: THashChangeEvent Event triggered when the browser navigation

hash changed

OnOrientationChange:

TOrientationChangeEvent

Event triggered when the page orientation

changed, typically happening on a mobile

device

OnPaint: TOnPaintEvent Event added for compatibility with a VCL form

OnResize: TNotifyEvent Event triggered when the form resizes due to

the browser window being resized

OnScroll: TNotifyEvent Event triggered when there is scrolling of the

form in the browser window

130

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnShow: TNotifyEvent Event triggered when the form is shown

OnUnload: TNotifyEvent Event triggered when the browser unloaded

the HTML associated with the form

Automatic form routing

Normally, in a SPA (Single Page Application) model, there is only one URL to start the

application and regardless of multiple forms being shown in the application, the URL remains

the same. As such, it is default not possible to share a link with another person that would open

the application at exactly the same form as the form open at the moment the link is copied.

To overcome this limitation in an SPA, the browser can assist with adding a hash to the URL in

code (suffix #hash on the URL) and the application can be made in such way that based on the

hash found in the URL, a specific form is opened. You can programmatically handle this at

application level by setting window.location.hash.

But automatic form routing can take the work out of your hands. To take advantage of automatic

form routing, a couple of things are required:

1) Register each form class in your application. Do this by calling RegisterClass(TMyForm) in

the unit initialization section.

2) In the project code, instead of automatically creating the main form, add the code:

 if not Application.Route then

 Application.CreateForm(TForm1, Form1);

3) Instead closing a form, call Application.GoBack.

As such, the main project code becomes:

begin

 Application.Initialize;

 Application.MainFormOnTaskbar := True;

 if not Application.Route then

 Application.CreateForm(TForm1, Form1);

 Application.Run;

end.

131

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

To open a new form or close the form and go back to the previous form, all there is needed to

do is:

procedure TForm2.WebButton1Click(Sender: TObject);

begin

 Application.CreateForm(TForm3, Form3);

end;

procedure TForm2.WebButton2Click(Sender: TObject);

begin

 Application.GoBack;

end;

When automatic form routing is used, when you use the link:

http://localhost:8000/TMSWeb_Routing/index.html

the application will start on Form1.

When you use the following link though:

http://localhost:8000/TMSWeb_Routing/index.html#Form2

the application will automatically start with Form2 opened.

This is demonstrated in the demo under Demo\Basic\Routing

Form inheritance

Just like in a Delphi VCL application, TMS WEB Core web client applications can also work with

the concept of visual form inheritance. This means that a TWebForm can be created, UI

controls and UI control logic can be applied to this form and then a form descending from this

base form class can be created. The difference with a VCL application form is that for a

TWebForm, there is also an associated HTML template. As each form has a HTML template,

when creating a new descending form, a new HTML template will be created. Note that for a

descending form, the HTML template belonging to the descending form will be used to render

the form rather than the HTML template belonging to the base form.

132

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The process to create a descending form is done from the context menu in the Delphi IDE

project manager:

133

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Frames

In a TMS WEB Core application, the concept for frames can also be used. Frames can

encapsulate specific UI control logic in combination with UI controls. A frame in a TMS WEB

Core application has no associated HTML template. The template of the form hosting the frame

is used.

To create a new frame, follow the same steps as for adding a new VCL frame. After the frame is

added to the project, TMS WEB Core components can be dropped on the frame and the UI

control logic can be written in the frame unit.

Then, to use the frame, enter ‘Frames’ on the object inspector and select the frame you want to

add to a form from the frames list

To create a frame at runtime in code, this is similar to what one would do in VCL, except here it

is expected to call Frame.LoadFromForm (to do what is the equivalent of DFM loading)

134

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Example:

begin

 FFrame := TFrame1.Create(self);
 FFrame.LoadFromForm;
 FFrame.Top := 20;
 FFrame.Left := 20;
 FFrame.Parent := self;
end;

135

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

UI control types

TMS WEB Core supports 4 types of UI controls

UI controls encapsulating HTML elements

These are UI controls that are built-up from one or more HTML elements. All UI controls

included in TMS WEB Core are of this type. In its most basic form, this is for example a

TWebButton that maps on a HTML <BUTTON> element. In a more complex form, this is a

TWebLoginPanel that consists of several <INPUT> elements, a <BUTTON> element and <DIV>

elements.

Custom drawn controls using the HTML5 CANVAS element

These are UI controls that are based on the HTML5 CANVAS element and that are similar to

VCL custom controls, custom drawn using the override of the Paint method. For UI interaction,

the base class TCustomControl provides the exact same protected methods

KeyPress/KeyDown/KeyUp/MouseDown/MouseMove/MouseUp to override. The control

exposes a Canvas: TCanvas that has the same interface as the VCL TCanvas, i.e. a Pen,

Brush, methods MoveTo(), LineTo(), Rectangle(), etc...

In addition to the VCL TCanvas object, it features methods to get the content of the control as

image or to download it as image:

TCanvas.GetBase64Image: string;

TCanvas.DownloadImage(AFileName: string; AType: TImageType = itPNG);

function GetAsImage(AType: TImageType): string;

With TimageType = (itBase64, itBMP, itPNG, itJPEG, itGIF);

An extension to the VCL TCanvas interface is the ability to draw linear or radial gradients.

Therefore, the TBrush has the interface:

TBrushGradient = (bgNone, bgLinearVert, bgLinearHorz, bgRadial);

TBrush = class(TPersisent)

public

 procedure AddGradientColor(AColor: TColor; AStop: single);

136

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 procedure GetGradientColor(AIndex: integer; var AColor: TColor;

var AStop: single);

 function GradientCount: integer;

 procedure ClearGradient;

published

 property Gradient: TBrushGradient;

 property Color: TColor;

 property Style: TBrushStyle;

end;

To add gradient colors, use the AddGradientColor() method. The gradient is always defined

within the bounding rectangle of the shape that will be drawn with the brush. The brush Color

property is the color used from the start (top/left) of the rectangle and additional colors are

added at position AStop that is a value from 0 to 1, whereas 0 is the position top/left in the

rectangle and 1 is the position bottom/right in the rectangle.

Sample code: draws an ellips with a horizontal gradient fill going from red over yellow in the

center to white on the right side:

 Canvas.Brush.Color := clRed;

 Canvas.Brush.Gradient := bgLinearHorz;

 Canvas.Brush.AddGradientColor(clWebOrange,0.5);

 Canvas.Brush.AddGradientColor(clWhite,1);

 Canvas.Ellipse(40,40,160,80);

TMS FNC controls

The TMS FNC component framework is an abstraction layer that facilitates writing UI controls

with a single code base that can be used for VCL, FMX, LCL and also TMS WEB Core

applications. Several TMS FNC products, i.e. TMS FNC Chart, TMS FNC UI Pack and TMS

FNC Dashboard Controls Pack support to use of the components also in web applications.

For documentation about FNC controls, this is included in the different TMS FNC products and

all documentation that applies to use of the controls in VCL, FMX or LCL applications also

applies to use of the controls in TMS WEB Core applications.

jQuery UI controls

Several controls are provided that are actually Pascal wrapper classes for underlying jQuery UI

controls. This includes a set of Pascal wrapper classes for the jQWidget controls

(www.jqwidgets.com)

http://www.jqwidgets.com/

137

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

138

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Standard Components

TMS WEB Core comes with a lot of components out of the box enabling you to go ahead

immediately creating web applications from the Delphi IDE. Many of these standard controls

resemble VCL controls and great care has been taken to give these controls class names and

properties, methods and event handlers that match their VCL counterparts. This has been done

to make the learning curve for Delphi developers used to create Windows VCL applications as

light as possible to create web applications. The standard controls have the prefix “TWeb”, i.e.

where in VCL a TButton is used, there is in TMS WEB Core a component TWebButton. Where

there is in VCL a TListBox, in TMS WEB Core, its counterpart is TWebListBox etc…

Common properties of visual controls

Visual controls are descending from TControl. For controls without a Canvas, i.e. controls that

map directly on a hierary of HTML elements (excluding the HTML5 CANVAS element),

TWinControl descending from TControl is defined. Controls doing custom painting are

descending from TCustomControl that descends from TControl. Finally, when the control does

not need user-interface interaction via mouse or keyboard, the TGraphicControl is introduced

that descends from TCustomControl. At TControl level, a number of properties is introduced that

are then further common for all descending user interface controls.

Align Sets the alignment of the control in

relationship to its parent control:

alLeft: control aligns to the left-side of its

parent

alTop:control aligns to the top of its parent

alBottom:aligns to the bottom of its parent

alRight:aligns to the right-side of its parent

alClient:aligns to the client-size of its parent

AlignWithMargin When true, the margins settings are taking in

account for calculating the alignment

Anchors Gets or sets the anchoring of the control.

Values can be

akLeft

akTop

akRight

akBottom

Cursor Sets the mouse cursor used when the mouse

139

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

is over the control

Enabled Sets the control to enabled or disabled

ElementClassName Sets the CSS class name(s) for the HTML

element used to represent the control

ElementFont Sets whether the control Font property is used

to set the font (efProperty) or CSS will control

the font (efCSS)

ElementID Sets the HTML ID of the HTML element

already present in the HTML document that

the Pascal class needs to connect to (instead

of creating a new HTML element instance)

ElementPosition Sets the position of the element in the HTML

page as epAbsolute, epRelative or epNone.

EventStopPropagation: TEventPropagation Different from the Windows operating system,

a HTML element event such as for mouse and

keyboard are sent to the element but also to

the parent element and so on by default. This

is for UI controls typically not desired and as

such for TMS WEB Core controls by default

disabled. However, with the

EventStopPropagation, you can control what

event are propagated and what not.

EventStopPropagation: TEventPropagation is

defined as:

TElementEvent = (eeClick, eeMouseDown,

eeMouseUp, eeMouseMove, eeDblClick,

eeKeyPress, eeKeyDown, eeKeyUp);

TEventPropagation = set of TElementEvent;

As such, by default it is initialized to:

EventStopPropagation := [eeClick, eeDblClick,

eeMouseUp, eeMouseMove, eeMouseDown,

eeKeypress, eeKeyDown, eeKeyUp];

so all event propagation is blocked.

To allow all event propagation, you would set

Control.EventStopPropagation := [];

Height Absolute height value for the control

HeightPercent Height value used when HeightStyle is

140

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ssPercent

HeightStyle When HeightStyle is set to ssAbsolute, the

Height value is used to set the absolute height

of the container HTML element of the control.

When HeightStyle is set to ssPercent, the

HeightPercent value is used. When

HeightStyle is set to ssNone, no height is

specified on the container HTML element,

meaning it will auto size.

Hint Sets the hint value for the container HTML

element

Margins Sets the margin values

ShowHint When true, the hint is used for the control

Visible When true, the control is visible

Width Absolute width value for the control

WidthPercent Width value used when WidthStyle is

ssPercent

WidthStyle When WidthStyle is set to ssAbsolute, the

Width value is used to set the absolute width

of the container HTML element of the control.

When WidthStyle is set to ssPercent, the

WidthPercent value is used. When WidthStyle

is set to ssNone, no width is specified on the

container HTML element, meaning it will auto

size.

Common events of visual controls

OnClick Event triggered on a mouse click on the

control

OnDblClick Event triggered on a mouse double click on

the control

OnEnter Event triggered when control gets focus

OnExit Event triggered when focus leaves control

OnMouseDown Event triggered when mouse goes down on

control

OnMouseMove Event triggered when mouse moves over

control

OnMouseUp Event triggered when mouse goes up on

141

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

control

OnMouseEnter Event triggered when mouse enters control

OnMouseLeave Event triggered when mouse leaves control

OnDragDrop Event triggered when a drop happens on

control during drag operation

OnDragOver Event triggered when a mouse drag is

occurring over the control

OnStartDrag Event triggered when a drag operation starts

OnEndDrag Event triggered when a drag operation ends

TWebLabel

Description

Below is a list of the most important properties methods and events for the TWebLabel.

TWebLabel is a label control similar to a VCL TLabel.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

142

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebLabel

Alignment Sets the alignment of the text within the label

control

AutoSize When true, the size of the label adapts to the

text in the label

Caption Sets the text for the label

ElementClassName Optionally sets the CSS classname for the

outer DIV element of the label when styling

via CSS is used

ElementLabelClassName Optionally sets the CSS classname for the

label HTML element

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

EllipsisPosition Sets the type of ellipsis to use for showing

the text when it doesn’t fit in the label

rectangle.

epNone: no ellipsis used

epEndEllipsis: ellipsis at the end of the text

epPathEllipsis: label text contains a path

name and ellipsis is set taking a file path in

account

epWordEllipsis: ellipsis is positioned at word

boundary

HTMLType Sets the type of the HTML element that is

created for the label. This can be:

tDIV

tH1..tH6

tLABEL

tSPAN

The respective HTML elements created

within the label will be

<DIV><H1>..<H6><LABEL>

Layout Sets the vertical text position in the label

tlTop: top aligned

tlCenter: center aligned

143

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

tlBottom: bottom aligned

Transparent When true, no background color is used

WordWrap When true, the text is rendered with

automatic wordwrap

Events for TWebLabel

OnClick Triggered when the mouse is clicked on the

label

OnDblClick Triggered when the mouse is double-clicked

on the label

TWebButton

Description

Below is a list of the most important properties methods and events for TWebButton.

TWebButton is a button control similar to a VCL TButton control.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the id

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

144

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag <BUTTON ID=”UniqueID”></BUTTON>

ElementID UniqueID

Properties for TWebButton

ButtonType Allows to set the type attribute for the HTML

button element when needed

(button|submit|reset)

Caption Sets the text for the button

ElementClassName Optionally sets the CSS classname for the

button when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML BUTTON element in the form HTML

file the button needs to be connected with.

When connected, no new button is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebButton

OnClick Event is triggered when the button is clicked

OnEnter Event triggered when the button gets focus

OnExit Event triggered when the focus leaves the

button

145

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebEdit

Description

Below is a list of the most important properties methods and events for TWebEdit. TWebEdit is

an edit input control similar to a TEdit in VCL.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebEdit

AutoCompletion Sets the auto completion type that the

browser uses to fill the edit controls on a

form based on its cache of entries previously

made. Note that in order to have

autocompletion working, it is required that

the TWebEdit control is placed on a

TWebHTMLForm.

Set value to acNone to force no

autocompletion suggestion from the

browser.

146

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

AutoFocus When true and the control is the first control

in the tab order, it will display focused

BorderStyle Sets the border style for the control

CharCase Sets the handling of character casing in the

edit control:

wecNormal: do not change case

wecLowerCase: force to lower case

wecMixedCase: force to initial uppercase on

words

wecUppercase: force to upper case

EditType Sets the allowed type of characters that can

be entered. Options are weFloat, weHex,

weNumeric, weSignedFloat,

weSignedNumeric, weString, weSearch

ElementClassName Optionally sets the CSS classname for the

edit control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML INPUT element in the form HTML file

the edit control needs to be connected with.

When connected, no new edit control is

created but the Delphi class is connected

with the existing HTML element in the form

HTML file

Pattern Sets the pattern of accepted characters for

form validation (used when TWebEdit is

used on a TWebHTMLForm)

Maps on HTML pattern attribute:

https://developer.mozilla.org/en-

US/docs/Web/HTML/Attributes/pattern

Required When true, the content of the TWebEdit

being empty will cause a validation popup

when used on a TWebHTMLForm.

Maps on HTML required attribute:

https://developer.mozilla.org/en-

US/docs/Web/HTML/Attributes/required

RequiredText Sets the hint text the browser shows when

validation is false upon submit

SelLength Gets or sets the length of selected text in the

edit control

SelStart Gets or sets the caret position in the edit

control

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/pattern
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/pattern
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/required
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/required

147

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the text of the edit control

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Methods for TWebEdit

Clear Removes text from the edit

ClearSelection Removes the selected text from the edit

CopyToClipboard Copies contents of the edit control to the

clipboard

SelectAll Sets all text of the edit control in selection

state

Events for TWebEdit

OnClick Event triggered when the control is clicked

OnChange Event triggered when the value in the edit

control is changed via the UI

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

148

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebEditAutocomplete

Description

Below is a list of the most important properties methods and events for TWebEditAutocomplete.

TWebEditAutocomplete is an edit control with the possibility to display a list of predefined values

in a popup, filtered based on user input.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

Note that for the popup to be displayed at the correct position, it is required to add a set the

CSS position property to relative or absolute.

HTML tag <DIV ID="UniqueID"

style="position:relative"></DIV>

ElementID UniqueID

Properties for TWebEditAutocomplete

149

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ActiveItemClassName Optionally sets the CSS classname for the

active item in the popup list when styling via

CSS is used

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

edit control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML INPUT element in the form HTML file

the edit control needs to be connected with.

When connected, no new edit control is

created but the Delphi class is connected

with the existing HTML element in the form

HTML file

Items The list of pre-defined values to display in

the popup

ItemIndex Gets the currently selected item index

ItemClassName Optionally sets the CSS classname for the

items in the popup list when styling via CSS

is used

LookupCaseSensitive Sets if the lookup search is case sensitive

LookupMinLength The minimum text length required before the

lookup is initiated.

LookupType The type of lookup search that is performed.

ltAnywhere: Search for the character(s)

anywhere in the text

ltFirstCharacter: Search for the character(s)

in the beginning of the text

PopupClassName Optionally sets the CSS classname for the

the popup styling via CSS is used

PopupHeight Sets the height of the popup. If the number

of visible items exceeds the height of the

popup a scrollbar is displayed.

Set to 0 to let the popup autosize based on

the number of displayed items.

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the text of the edit control

150

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebEditAutocomplete

OnClick Event triggered when the control is clicked

OnChange Event triggered when the value in the edit

control is changed via the UI

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

OnRenderItem Event triggered for each displayed item.

Items can be customized with the

Args.ItemElement parameter

OnSelect Event triggered when an item is selected

from the popup list

TWebEditBtn

Description

Below is a list of the most important properties methods and events for TWebEditBtn.

TWebEditBtn is an edit input control similar to a TEdit in VCL with a button attached to it.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

151

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebEditBtn

AutoCompletion Sets the auto completion type that the

browser uses to fill the edit controls on a

form based on its cache of entries previously

made. Note that in order to have

autocompletion working, it is required that

the TWebEdit control is placed on a

TWebHTMLForm.

Set value to acNone to force no

autocompletion suggestion from the

browser.

AutoFocus When true and the control is the first control

in the tab order, it will display focused

Button.Caption

Sets the caption button for the attached

button

Button.MaterialGlyph Sets the name of the material glyph when

used

Button.MaterialGlyphColor Sets the color for the material glyph icon in

the button

Button.MaterialGlyphSize Sets the size of the material glyph icon in the

button

Button.MaterialGlyphType Sets the material glyph type (mgNormal,

mgOutlined, mgRound, mgSharp,

mgTwoTone)

Button.Width Sets the width of the attached button

BorderStyle Sets the border style for the control

CharCase Sets the handling of character casing in the

edit control:

wecNormal: do not change case

wecLowerCase: force to lower case

wecMixedCase: force to initial uppercase on

words

wecUppercase: force to upper case

EditType Sets the allowed type of characters that can

be entered. Options are weFloat, weHex,

152

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

weNumeric, weSignedFloat,

weSignedNumeric, weString, weSearch

ElementButtonClassName Optionally sets the CSS classname for the

button control when styling via CSS is used

ElementClassName Optionally sets the CSS classname for the

outer container control when styling via CSS

is used

ElementInputClassName Optionally sets the CSS classname for the

edit control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML INPUT element in the form HTML file

the edit control needs to be connected with.

When connected, no new edit control is

created but the Delphi class is connected

with the existing HTML element in the form

HTML file

Pattern Sets the pattern of accepted characters for

form validation (used when TWebEdit is

used on a TWebHTMLForm)

Required When true, the content of the TWebEdit

being empty will cause a validation popup

when used on a TWebHTMLForm.

RequiredText Sets the hint text the browser shows when

validation is false upon submit

SelLength Gets or sets the length of selected text in the

edit control

SelStart Gets or sets the caret position in the edit

control

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the text of the edit control

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Methods for TWebEditBtn

153

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Clear Removes text from the edit

ClearSelection Removes the selected text from the edit

Events for TWebEditBtn

OnClick Event triggered when the control is clicked

OnChange Event triggered when the value in the edit

control is changed via the UI

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebSearchEdit

Description

Below is a list of the most important properties methods and events for TWebSearchEdit.

TWebSearchEdit is an edit input control with a built-in search & clear button.

Designtime

Runtime

HTML template tag

154

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebSearchEdit

AutoCompletion Sets the auto completion type that the

browser uses to fill the edit controls on a

form based on its cache of entries previously

made. Note that in order to have

autocompletion working, it is required that

the TWebEdit control is placed on a

TWebHTMLForm.

Set value to acNone to force no

autocompletion suggestion from the

browser.

AutoFocus When true and the control is the first control

in the tab order, it will display focused

BorderStyle Sets the border style for the control

CharCase Sets the handling of character casing in the

edit control:

wecNormal: do not change case

wecLowerCase: force to lower case

wecMixedCase: force to initial uppercase on

words

wecUppercase: force to upper case

ClearImageURL Property allowing to override the standard

built-in clear icon and use an URL to set a

custom clear image

EditType Sets the allowed type of characters that can

be entered. Options are weFloat, weHex,

weNumeric, weSignedFloat,

weSignedNumeric, weString, weSearch

ElementClassName Optionally sets the CSS classname for the

edit control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML INPUT element in the form HTML file

155

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the edit control needs to be connected with.

When connected, no new edit control is

created but the Delphi class is connected

with the existing HTML element in the form

HTML file

Pattern Sets the pattern of accepted characters for

form validation (used when TWebEdit is

used on a TWebHTMLForm)

Required When true, the content of the TWebEdit

being empty will cause a validation popup

when used on a TWebHTMLForm.

RequiredText Sets the hint text the browser shows when

validation is false upon submit

SearchImageURL Property allowing to override the standard

built-in search icon and use an URL to set a

custom search image

SelLength Gets or sets the length of selected text in the

edit control

SelStart Gets or sets the caret position in the edit

control

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the text of the edit control

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Methods for TWebSearchEdit

Clear Removes text from the edit

ClearSelection Removes the selected text from the edit

Events for TWebSearchEdit

OnClick Event triggered when the control is clicked

156

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnChange Event triggered when the value in the edit

control is changed via the UI

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebSpinEdit

Description

Below is a list of the most important properties methods and events for TWebSpinEdit.

TWebSpinEdit is an edit control with an embedded spin up & down button, similar to a VCL

TSpinEdit. The TWebSpinEdit requires a fully HTML5 compliant browser.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <INPUT TYPE=”NUMBER” ID=”UniqueID”>

ElementID UniqueID

157

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebSpinEdit

AutoSize When true, the width of the control adapts to

the text

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

spin control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the spin

control needs to be connected with. When

connected, no new spin contrl is created but

the Delphi class is connected with the

existing HTML element in the form HTML file

Increment Gets or sets the step to increment the value

with the up/down buttons

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Value Sets or gets the value of the control

Events for TWebSpinEdit

OnChange Event triggered when the value of the spin

edit control changes from the UI

OnClick Event triggered when the control is clicked

OnDblClick Event triggered when the control is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

158

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebMaskEdit

Description

Below is a list of the most important properties methods and events for TWebMaskEdit.

TWebMaskEdit is an edit control with a edit mask capability that controls what character(s) can

be typed at what position in the edit control, similar to a VCL TMaskEdit.

EditMask property set to: !99/99/00;1;_

Designtime

Runtime

Properties for TWebMaskEdit

Alignment Sets the alignment of the entered text in the edit control

AutoSelect When true, all text gets selected when the control gets focus

AutoSize When true, the width of the control adapts to the text

BorderStyle Sets the border style for the control

CharCase Controls whether characters are automatically entered as lowercase, uppercase

or entered as typed.

EditMask Sets the mask for the inplace editor. The mask that can be used for the

TWebMaskEdit is compatible with the mask available for a VCL TMaskEdit

control. The description of the mask capabilities can be found here:

http://docwiki.embarcadero.com/Libraries/Tokyo/en/System.MaskUtils.TEditMask

EditText Sets & gets the value of the edit control without taking the mask in account

ElementClassName Optionally sets the CSS classname for the spin control when styling via CSS is

used

ElementID Optionally sets the HTML element ID for a HTML element in the form HTML file

the spin control needs to be connected with. When connected, no new spin

contrl is created but the Delphi class is connected with the existing HTML

element in the form HTML file

ShowFocus When true, the border color changes when the control has focus

TabOrder Sets the tab order of the control

http://docwiki.embarcadero.com/Libraries/Tokyo/en/System.MaskUtils.TEditMask

159

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TabStop When true, the focus is turned to the control when pressing tab

Text Sets or gets the text in the edit control

Events for TWebMaskEdit

OnChange Event triggered when the value of the spin

edit control changes from the UI

OnClick Event triggered when the control is clicked

OnDblClick Event triggered when the control is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

OnKeyDown Event triggered on key down in the edit

control

OnKeyPress Event triggered on key press in the edit

control

OnKeyUp Event triggered on key up in the edit control

TWebDateTimePicker

Description

Below is a list of the most important properties methods and events for the

TWebDateTimePicker. TWebDateTimePicker allows to select a date or time, similar to a

date/time picker in VCL. This control requires a fully HTML5 compliant browser.

Designtime

Runtime

160

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <INPUT TYPE=”DATE” ID=”UniqueID”>

ElementID UniqueID

Properties for TWebDateTimePicker

BorderStyle Sets the border style for the control

Checked: boolean Sets or gets the checkbox state of the

checkbox in the datepicker when

ShowCheckBox = true

Date Gets or sets the date value of the control

ElementClassName Optionally sets the CSS classname for the

date/time picker when styling via CSS is

used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

date picker needs to be connected with.

When connected, no new date picker is

created but the control class is connected

with the existing HTML element in the form

HTML file

Kind Configures the control as date or as time

picker

ShowCheckBox: boolean When true, a checkbox is shown in front of

the date/time picker to enable/disable it

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

161

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Time Gets or sets the

Events for TWebDateTimePicker

OnChange Event triggered when the date or time

changes via the UI

OnClick Event triggered when the control is clicked

OnDblClick Event triggered when the control is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebListBox

Description

Below is a list of the most important properties methods and events for TWebListBox. A

TWebListBox is a control having a list of (text) items, similar to a VCL TListBox.

Designtime

Runtime

162

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <SELECT ID=”UniqueID”></SELECT>

ElementID UniqueID

Properties for TWebListBox

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

listbox when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

listbox needs to be connected with. When

connected, no new listbox is created but the

control class is connected with the existing

HTML element in the form HTML file

Enabled Sets whether the control is enabled or

disabled

ItemHeight Sets the height of individual items in the

listbox

ItemIndex Sets or gets the index of the selected item

Items Access to the items in the listbox as a

TStringList

MultiSelect When true, multiple items can be selected in

the listbox

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

163

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebListBox

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebCheckListBox

Description

Below is a list of the most important properties methods and events for TWebCheckListBox. A

TWebCheckListBox is a control having a list of (text) items, similar to a VCL TCheckListBox.

Designtime

Runtime

The checked state of items in the list can be get & set in code via property

WebCheckListBox.Checked[Index]: Boolean;

The method WebCheckListBox.CheckAll(AState: TCheckBoxState; AllowGrayed,

 AllowDisabled: Boolean) can be called to check or uncheck all checkbox items at once.

HTML template tag

164

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebCheckListBox

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

checklistbox when styling via CSS is used

ElementItemClassName Optionally sets the CSS classname for the

items in the list when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

date picker needs to be connected with.

When connected, no new listbox is created

but the control class is connected with the

existing HTML element in the form HTML file

Enabled Sets whether the control is enabled or

disabled

ItemHeight Sets the height of individual items in the

listbox

ItemIndex Sets or gets the index of the selected item

Items Access to the items in the listbox as a

TStringList

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebCheckListBox

165

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

OnClickCheck Event triggered when a checkbox in the list

is clicked

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebComboBox

Description

Below is a list of the most important properties methods and events for TWebComboBox. A

TWebComboBox is a control having a list of (text) items, similar to a VCL TComboBox

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

For a combobox with Style = csDropDown

HTML tag <SELECT ID=”UniqueID”></SELECT>

166

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementID UniqueID

For a combobox with Style = csDropDownList

HTML tag <SELECT ID=”UniqueID”></SELECT>

ElementID UniqueID

Properties for TWebComboBox

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ItemIndex Sets or gets the index of the selected item

Items Access to the items in the listbox as a

TStringList

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the selected value in the

combobox

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebComboBox

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

167

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebLookupComboBox

Description

Below is a list of the most important properties methods and events for

TWebLookupComboBox. A TWebLookupComboBox is a control having a list of (text) items,

similar to a VCL TComboBox

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <SELECT ID=”UniqueID”></SELECT>

ElementID UniqueID

Properties for TWebLookupComboBox

168

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

DisplayText: string Public property returning the selected item

DisplayText

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ItemIndex Sets or gets the index of the selected item

LookupValues Access to a collection of items of the

TWebLookupComboBox where each item

has DisplayText: string and Value: string

property.

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the selected value in the

combobox

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Value: string Public property returning the selected item

value.

Events for TWebLookupComboBox

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

169

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Add DisplayText/Value pairs to the TWebLookupCombobox with

TWebLookupCombobox.LookupValues.AddPair(AValue, ADisplayText);

TWebCountryComboBox

Description

Below is a list of the most important properties methods and events for

TWebCountryComboBox. A TWebCountryComboBox is a control having a list of all recognized

countries in the world.

Designtime

Runtime

HTML template tag

170

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <SELECT ID=”UniqueID”></SELECT>

ElementID UniqueID

Properties for TWebCountryComboBox

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ItemIndex Sets or gets the index of the selected item

ShowFocus When true, the border color changes when

the control has focus

Style Sets the dropdown style either csDropDown

(with editable part) and csDropDownList

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the selected value in the

combobox

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebCountryComboBox

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

171

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebCountryListBox

Description

Below is a list of the most important properties methods and events for TWebCountryListBox. A

TWebCountryListBox is a control having a list of all official countries in the world. The

TWebCountryListBox uses SVG flag icons from CDN https://cdnjs.cloudflare.com/ajax/libs/flag-

icon-css/2.3.1/css/flag-icon.min.css

The list of countries is automatically added.

Designtime

Runtime

HTML template tag

https://cdnjs.cloudflare.com/ajax/libs/flag-icon-css/2.3.1/css/flag-icon.min.css
https://cdnjs.cloudflare.com/ajax/libs/flag-icon-css/2.3.1/css/flag-icon.min.css

172

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <SELECT ID=”UniqueID”></SELECT>

ElementID UniqueID

Properties for TWebCountryListBox

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

date/time picker when styling via CSS is

used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

date picker needs to be connected with.

When connected, no new listbox is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

Enabled Sets whether the control is enabled or

disabled

ItemHeight Sets the height of individual items in the

listbox

ItemIndex Sets or gets the index of the selected item

MultiSelect When true, multiple items can be selected in

the listbox

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebCountryListBox

173

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebCountryDropDown

Description

Below is a list of the most important properties methods and events for

TWebCountryDropDown. A TWebCountryDropDown is a control having a list of all official

countries in the world in a dropdown to select from. The TWebCountryDropDown uses SVG flag

icons from CDN https://cdnjs.cloudflare.com/ajax/libs/flag-icon-css/2.3.1/css/flag-icon.min.css

The list of countries is automatically added. As input is typed into the edit control, the list of

countries is filtered down to matching countries.

https://cdnjs.cloudflare.com/ajax/libs/flag-icon-css/2.3.1/css/flag-icon.min.css

174

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebCountryDropDown

175

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

AutoDropDown When true, the list of countries will

automatically dropdown when the edit

control gets focus

BorderStyle Sets the border style for the control

ElementClassName Optionally sets the CSS classname for the

date/time picker when styling via CSS is

used

ElementInputClassName Sets the CSS classname for the input control

used in the dropdown control

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

date picker needs to be connected with.

When connected, no new listbox is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

Enabled Sets whether the control is enabled or

disabled

ItemHeight Sets the height of individual items in the

listbox

ItemIndex Sets or gets the index of the selected item

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the selected country

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Events for TWebCountryDropDown

OnChange Event triggered when the selected item

changes in the listbox

OnClick Event triggered when the listbox is clicked

OnDblClick Event triggered when the listbox is double-

clicked

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

176

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDropDownControl

Description

TWebDropDownControl is a control that allows any other control to appear in a dropdown when

the dropdown button is clicked. This control in the dropdown is typically used to perform a

selection that is then visualized in the always visible part of the control. The size of the

dropdown part is equal to the size (width/height) of the control in the dropdown.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebDropDownControl

177

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

AutoDropDown: Boolean When true, the dropdown will automatically

show when it gets focus

BorderStyle Sets the border style for the control

DropDownColor: TColor Sets the background color of the dropdown

DropDownHeight: integer Sets the height of the dropdown part when

different from zero. Otherwise, it uses the

height of the control assigned as dropdown

control.

DropDownShadow: Boolean When true, the dropdown is displayed with a

shadow

DropDownWidth: integer Sets the width of the dropdown part when

different from zero. Otherwise, it uses the

width of the control assigned as dropdown

control.

ElementClassName Optionally sets the CSS classname for the

date/time picker when styling via CSS is

used

ElementInputClassName Sets the CSS classname for the input control

used in the dropdown control

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

date picker needs to be connected with.

When connected, no new listbox is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

Enabled Sets whether the control is enabled or

disabled

ItemHeight Sets the height of individual items in the

listbox

ItemIndex Sets or gets the index of the selected item

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Text Gets or sets the text to display in the always

visible part of the dropdown control

Events for TWebDropDownControl

OnClick Event triggered when the listbox is clicked

178

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnCloseUp Event triggered when the dropdown closes

OnDblClick Event triggered when the listbox is double-

clicked

OnDropDown Event triggered when the dropdown is

displayed

OnEnter Event triggered when the control gets focus

OnExit Event triggered when focus leaves the

control

TWebEditDropDownControl

Description

TWebEditDropDownControl is similar to the TWebDropDownControl except that it offers an

editable always visible part whereas the TWebDropDownControl can only show a selected

value. The selected value is also set via the Text property.

TWebDBEditDropDownControl

Description

TWebDBEditDropDownControl is a DB-aware version of TWebEditDropDownControl. The edit

value is automatically linked to a dataset field via DataField/DataSource properties.

TWebColorPicker

Description

179

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Below is a list of the most important properties methods and events for TWebColorPicker.

TWebColorPicker is a control to allow selecting a color. Note that a browser with full HTML5

compliance is needed for this control.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <INPUT TYPE=”COLOR” ID=”UniqueID”>

ElementID UniqueID

Properties for TWebColorPicker

Color Gets or sets the selected color of the color

picker

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebColorPicker

180

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnSelect Event triggered when a color is selected via

the color picker

TWebCheckBox

Description

Below is a list of the most important properties methods and events for TWebCheckBox,

TWebCheckBox represents a two-state checkbox or three-state checkbox and is similar to a

VCL TCheckBox

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

Note that the control using the template checkbox will only link to the checkbox itself and not

use the caption. The caption or label is expected to be already in the template when it is

needed.

HTML tag <INPUT TYPE=”CHECKBOX”

ID=”UniqueID”>

ElementID UniqueID

Properties for TWebCheckBox

Alignment: TLeftRight Sets whether the checkbox is left or right

181

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

from the label

Caption Sets or gets the text for the checkbox

Checked Sets or gets the checkbox state

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ShowFocus When true, the border color changes when

the control has focus

State Allows to get or set the checkbox state in

three states: checked, unchecked, grayed.

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Events for TWebCheckBox

OnClick Event triggered when the checkbox is

clicked

TWebRadioButton

Description

Below is a list of the most important properties methods and events for TWebRadioButton,

TWebRadioButton represents a two-state checkbox or three-state checkbox and is similar to a

VCL TRadioButton

182

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

Note that the control using the template radiobutton will only link to the radiobutton INPUT

element itself and not use the caption. The caption or label is expected to be already in the

template when it is needed.

HTML tag <INPUT TYPE=”RADIO”

ID=”UniqueID”>

ElementID UniqueID

Properties for TWebRadioButton

Caption Sets or gets the text for the radiobutton

Checked Sets or gets the radiobutton state

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ShowFocus When true, the border color changes when

the control has focus

TabOrder Sets the tab order of the control

183

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TabStop When true, the focus is turned to the control

when pressing tab

Events for TWebRadioButton

OnClick Event triggered when the radiobutton is

clicked

TWebMainMenu

Description

Below is a list of the most important properties methods and events for TWebMainMenu.

Represents a menu control with support for sub-menus. The TWebMainMenu optionally can be

displayed as a vertical hamburger menu. By default the menu automatically transforms into a

hamburger menu if the available browser width is 768 pixels or less. This behavior can be

customized with the HamburgerMenu properties.

Designtime

184

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebMainMenu

Appearance

BackgroundColor Sets the background color of the menu

HamburgerMenu

BackgroundColor Sets the background color the menu

185

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

caption

Caption Sets the caption text

CaptionColor Sets the caption font color

ResponsiveMaxWidth Sets the maximum browser window width

for which the hamburger menu is

displayed

Visible Sets when the hamburger menu is visible.

hmAlways: The menu is always displayed

as a hamburger menu regardless of

window width

hmNever: the hamburger menu is never

displayed and the default main menu is

always displahed.

hmResponsive: the hamburger menu is

only displayed when the available browser

window width is 768 pixels or less.

HoverColor Sets the background color of a hovered

menu item

HoverFontColor Sets the font color of a hovered menu item

ImageSize Sets the size of the image if available

ImageURLs Set the list of images available to use for

menu items. Set the MenuItem.ImageIndex

value to the index of the image that should

be displayed in the menu item.

SubmenuIndicator Sets the symbol used to indicate a

submenu is available

Container Sets the external control the menu is

displayed in. For example, a TWebPanel

control. By default, the menu is displayed in

the top left corner of the browser window.

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementItemClassName Optionally sets the CSS classname for the

menu item when styling via CSS is used. Set

via Color / Background-Color CSS setting

background and text color in a menu item

Items

186

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Caption The caption text

Checked Sets if a checkmark is displayed next to the

caption text

Enabled Sets if the item is enabled

ImageIndex Sets the index of the image from the

Appearance.imageURLs list that should be

displayed next to the caption text

RadioItem Sets if the menu item should be displayed

as a readiobutton

Visible Sets if the menu item is visible

Events for TWebMainMenu

OnChange Event triggered when a menu item is clicked.

TWebPopupMenu

Description

Below is a list of the most important properties methods and events for TWebPopupMenu.

Represents a popup menu control with support for sub-menus that can be assigned to the

Popup property of other controls to show as context menu.

Designtime

187

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebPopupMenu

Appearance

BackgroundColor Sets the background color of the menu

HoverColor Sets the background color of a hovered

menu item

HoverFontColor Sets the font color of a hovered menu item

ImageSize Sets the size of the image if available

ImageURLs Set the list of images available to use for

menu items. Set the MenuItem.ImageIndex

value to the index of the image that should

be displayed in the menu item.

SubmenuIndicator Sets the symbol used to indicate a

submenu is available

Container Sets the external control the menu is

displayed in. For example, a TWebPanel

control. By default, the menu is displayed in

the top left corner of the browser window.

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementItemClassName Optionally sets the CSS classname for the

menu item when styling via CSS is used. Set

188

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

via Color / Background-Color CSS setting

background and text color in a menu item

Items

Caption The caption text

Checked Sets if a checkmark is displayed next to the

caption text

Enabled Sets if the item is enabled

ImageIndex Sets the index of the image from the

Appearance.imageURLs list that should be

displayed next to the caption text

RadioItem Sets if the menu item should be displayed

as a readiobutton

Visible Sets if the menu item is visible

Methods for TWebPopupMenu

Popup(X,Y: integer): Shows the popup menu at coordinate X,Y

Events for TWebPopupMenu

OnChange Event triggered when a menu item is clicked.

OnPopup Event triggered when the popup menu is

being shown

189

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebMemo

Description

Below is a list of the most important properties methods and events for the TWebMemo.

TWebMemo is a multiline editable control, similar to a VCL TMemo. It is based on the HTML

TEXTAREA element.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <TEXTAREA ID=”UniqueID”></TEXTAREA>

ElementID UniqueID

Properties for TWebMemo

AutoSize When true, the size of the control will

automatically adapt to the text in the memo

BorderStyle Sets the border style of the control

190

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Lines: TStrings Access to the content of the memo via a

TStringList property

Modified: boolean Property that returns true when the memo

content was changed through editing

SelLength: integer Gets or sets the length of the selection in the

memo

SelStart: integer Gets or sets the selection starting point in

the memo

ShowFocus: Boolean When true, the border color changes when

the control has focus

SpellCheck: Boolean When false, the browser built-in spell

checking is not applied to the memo. Default

it is on.

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

TextDirection Sets the text direction to

tdDefault: does not use direction attribute

tdInherit: uses TextDirection of parent control

tdRightToLeft:uses rtl direction attribute

tdLeftToRight: uses ltr direction attribute

Methods for TWebMemo

Clear Removes text from the memo

ClearSelection Removes the selected text from the memo

CopyToClipboard Copies the entire text of the memo to the

clipboard

SelectAll Puts all text within the memo control in

selection state

191

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebMemo

OnChange Event triggered when the content of the

memo changes

OnClick Event triggered when the memo is clicked

OnDblClick Event triggered when the memo is double-

clicked

192

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRadioGroup

Description

Below is a list of the most important properties methods and events for the TWebRadioGroup.

TWebRadioGroup is a group of radio button controls similar to a VCL TRadioGroup.

Designtime

Runtime

Properties for TWebRadioGroup

Caption Sets the caption text of the radiogroup

Columns Defines in how many columns the

radiobuttons are displayed. Default is 1.

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ItemIndex Sets or gets the selected radio button in the

group

Items Access to the radio button captions in the

group via a TStringList property

193

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebRadioGroup

OnChange Event triggered when the selected radio

button in the radiogroup changes

TWebCheckGroup

Description

Below is a list of the most important properties methods and events for the TWebCheckGroup.

TWebCheckGroup is a group of checkbox controls similar to a VCL TCheckGroup.

Designtime

Runtime

Properties for TWebCheckGroup

Caption Sets the caption text of the checkgroup

Checked[AIndex: integer]: boolean Gets or sets the checkbox state of a

checkbox in the group with index AIndex

Columns Defines in how many columns the

checkboxes are displayed. Default is 1.

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

194

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Items Access to the checkbox captions in the

group via a TStringList property

Events for TWebCheckGroup

OnCheckClick Event triggered when a checkbox is toggled.

It returns the index of the checkbox

TWebProgressBar

Description

The TWebProgressBar is a progress indicating bar control that shows the progress (position)

between a configurable minimum and maximum. It can be also be shown in marquee style,

indicating that a process of indeterminate duration is busy.

Designtime

Runtime

HTML template tag

195

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV

ID=”UniqueID”><PROGRESS></PROGRESS></DIV>

ElementID UniqueID

Properties for TWebProgressBar

Max Sets the maximum value of the progress bar

Min Sets the minimum value of the progress bar

Position Sets the position of the progress bar

Style Sets the style of the progress bar:

pbstNormal: normal progress bar style

pbstMarquee: marquee progress bar style

for processes of indeterminate duration

pbstDIV: progressbar is made up of DIV

elements that can be styled by Bootstrap

196

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebBadge

Description

The TWebBadge is a badge control that can be used standalone or as part of other controls

(like a TWebListControl, TWebTableControl, …)

The badge can work standalone but is also designed so it can directly use Bootstrap styles.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebBadge

Color Sets the background color of the badge

Text Sets the text in the badge

TextColor Sets the badge text color

197

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebPaintBox

Description

Below is a list of the most important properties methods and events for the TWebPaintBox.

TWebPaintBox is a group of radio button controls similar to a VCL TPaintBox.

Designtime

Runtime

Properties for TWebPaintBox

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebPaintBox

OnPaint Event triggered when the paintbox needs to

be repainted. The WebPaintBox.Canvas can

be used as in the VCL TPaintBox to draw

within the paintbox control

OnTouchEnd Event triggered when a touch on the

paintbox ends

198

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnTouchMove Event triggered when a move is made while

touching the paintbox control

OnTouchStart Event triggered when a touch on the

paintbox starts

This example code snippet demonstrates how to paint something in the TWebPaintBox:

Result:

199

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebTrackBar

Description

Below is a list of the most important properties methods and events for TWebTrackBar.

TWebTrackBar is a trackbar control similar to a VCL TTrackBar. Note: in order to use the

TWebTrackBar control, a fully HTML5 compliant browser is needed.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <INPUT TYPE=”RANGE” ID=”UniqueID”>

ElementID UniqueID

Properties for TWebTrackBar

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

200

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML element in the form HTML file

Max Sets the maximum value of the trackbar

Min Sets the minimum value of the trackbar

Position Sets the thumb position of the trackbar

TabOrder Sets the tab order of the control

TabStop When true, the focus is turned to the control

when pressing tab

Events for TWebTrackBar

OnChange Event triggered when the thumb on the

trackbar is moved

TWebScrollBox

Description

Below is a list of the most important properties methods and events for TWebScrollBox.

TWebScrollBox is a container control that shows a scrollbar when it hosts child controls

exceeding the client area of the control. TWebScrollBox is similar to a VCL TScrollBox.

Designtime

Runtime

201

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebScrollBox

AutoScroll When true, the scrollbar will be automatically

displayed when child controls exceed the

client rectangle of the scrollbox control

BorderStyle Sets the border style of the scrollbox

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebScrollBox

OnClick Event triggered when the scrollbox is clicked

OnDblClick Event triggered when the scrollbox is

double-clicked

202

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSplitter

Description

Below is a list of the most important properties methods and events for TWebSplitter.

TWebSplitter is a splitter control that allows to change sizes of other controls aligned on the

form when the splitter is moved. TWebSplitter is similar to the VCL TSplitter.

Designtime

Runtime

Properties for TWebSplitter

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

GripColor Sets the color of the grip dots in the middle

of the splitter control

203

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebSplitter

OnMoved Event triggered when the splitter was moved

by the user

TWebSignIn

Description

Below is a list of the most important properties methods and events for TWebSignIn.

TWebSignIn allows letting users sign in through an existing Google or Facebook account.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebSignIn

204

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Optionally sets the CSS classname for the

edit control when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML INPUT element in the form HTML file

the edit control needs to be connected with.

When connected, no new edit control is

created but the Delphi class is connected

with the existing HTML element in the form

HTML file

Services: Google and Facebook

Enabled Sets if signin through the resepective

service is enabled

Visible Sets if the signin button is visible. If Visible

is False and Enabled is True you can still

start the signin procedure programmatically

(See SignIn method)

AppKey Sets the API Key used to identify with the

respective service. (See the topic

“TWebSignIn usage” for information on how

to obtain an API Key)

ControlID Sets the ID of the HTML element where the

signin button should be displayed. If the

value is left empty the button is rendered

inside the TWebSignIn control.

Methods for TWebSignIn

SignIn(Service) Starts the signin procedure programmatically

for the service specified with the Service

parameter

SignOut(Service) Starts the signout procedure

programmatically for the service specified

with the Service parameter

Events for TWebSignIn

205

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnGoogleSignedIn Event triggered if a user successfully signed

in through Google.

The event provides the user’s Token, ID,

FirstName, LastName, ImageUrl and Email

via the Args parameter values.

OnGoogleSignedOut Event triggered if a user successfully signed

out through Google

OnFacebookSignedIn Event triggered if a user successfully signed

in through Facebook.

The event provides the user’s ID, Name and

Email via the Args parameter values.

OnFacebookSignedOut Event triggered if a user successfully signed

out through Facebook

TWebPanel

Description

Below is a list of the most important properties methods and events for TWebPanel. TWebPanel

is a container control that can host other child controls. TWebPanel is similar to a VCL TPanel.

Designtime

Runtime

HTML template tag

206

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebPanel

AutoSize When true, the size of the panel

automatically adapts to space the child

controls it contains takes.

BorderStyle Sets the style of the border

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebPanel

OnClick Event triggered when the panel is clicked

OnDblClick Event triggered when the panel is double-

clicked

207

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebHTMLContainer

Description

Below is a list of the most important properties methods and events for TWebHTMLContainer.

TWebHTMLContainer is basically a placeholder to add any HTML to be rendered on the page

directly on the form. The HTML is added as text via the property WebHTMLContainer.HTML.

The outer element of the HTML container is a DIV element.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebHTMLContainer

HTML A stringlist holding the HTML (as text) that

will be rendered in a DIV

208

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebHTMLContainer

OnClick Event triggered when the outer DIV of the

HTML container is clicked

OnDblClick Event triggered when the outer DIV of the

HTML container is double-clicked

OnMouseDown Event triggered when the outer DIV of the

HTML container is clicked

OnMouseUp Event triggered when the mouse goes up on

the outer DIV of the HTML container

OnMouseMove Event triggered when the mouse moves over

the outer DIV of the HTML container

TWebHTMLForm

Description

TWebHTMLForm is just a structural control that represents the FORM HTML element as

structural element for the INPUT controls it has. The TWebHTMLForm is needed to indicate a

section of INPUT controls on the page and it will be rendered as <FORM> … child controls here

</FORM>

209

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

The HTML form is a structural element and

not visible at runtime. Controls in the form are

positioned on the form as if the

TWebHTMLForm does not exist.

Runtime

HTML template tag

The HTML tag the component can be associated with a FORM element in a HTML template.

Assign the ID attribute with a unique value and set the identical value to the ElementID property.

Detailed information can be found in the Use of HTML templates topic.

HTML tag <FORM ID=”UniqueID”></FORM>

ElementID UniqueID

Properties for TWebHTMLForm

Name Sets the name of the HTML FORM element

210

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebHTMLDiv

Description

TWebHTMLDiv is just a structural control that represents the DIV HTML element.

Designtime

The TWebHTMLDIV is a control that

represents a HTML DIV element

Runtime

HTML template tag

The HTML tag the component can be associated with a DIV element in an HTML template.

Assign the ID attribute with a unique value and set the identical value to the ElementID property.

Detailed information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebHTMLDiv

ElementClassName Sets the CSS class name attributes

ElementFont Determines whether the Font property

values will be applied as font style or if CSS

based font settings will be used

ElementPosition Defines whether the DIV is shown absolute

positions or relative positioned

HTML: THTMLText Sets the innerHTML text value for the DIV

element

Name Sets the name of the HTML DIV element

Events for TWebHTMLDiv

211

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnClick Event triggered when the outer DIV of the

HTML container is clicked

OnDblClick Event triggered when the outer DIV of the

HTML container is double-clicked

OnMouseDown Event triggered when the outer DIV of the

HTML container is clicked

OnMouseUp Event triggered when the mouse goes up on

the outer DIV of the HTML container

OnMouseMove Event triggered when the mouse moves over

the outer DIV of the HTML container

TWebHTMLSpan

Description

TWebHTMLSpan is just a structural control that represents the SPAN HTML element.

Designtime

The TWebHTMLSpan is a control that

represents a HTML SPAN element

Runtime

HTML template tag

The HTML tag the component can be associated with a SPAN element in an HTML template.

Assign the ID attribute with a unique value and set the identical value to the ElementID property.

Detailed information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebHTMLSpan

212

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Sets the CSS class name attributes

ElementFont Determines whether the Font property

values will be applied as font style or if CSS

based font settings will be used

ElementPosition Defines whether the SPAN is shown

absolute positions or relative positioned

HTML: THTMLText Sets the innerHTML text value for the SPAN

element

Name Sets the name of the HTML SPAN element

Events for TWebHTMLSpan

OnClick Event triggered when the outer DIV of the

HTML container is clicked

OnDblClick Event triggered when the outer DIV of the

HTML container is double-clicked

OnMouseDown Event triggered when the outer DIV of the

HTML container is clicked

OnMouseUp Event triggered when the mouse goes up on

the outer DIV of the HTML container

OnMouseMove Event triggered when the mouse moves over

the outer DIV of the HTML container

TWebHTMLAnchor

Description

TWebHTMLAnchor is just a structural control that represents the ANCHOR HTML element <A>.

Designtime

The TWebHTMLAnchor is a control that

represents a HTML ANCHOR element

Runtime

213

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with a ANCHOR element in an HTML

template. Assign the ID attribute with a unique value and set the identical value to the

ElementID property. Detailed information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebHTMLAnchor

ElementClassName Sets the CSS class name attributes

ElementFont Determines whether the Font property

values will be applied as font style or if CSS

based font settings will be used

ElementPosition Defines whether the ANCHOR is shown

absolute positions or relative positioned

HTML: THTMLText Sets the innerHTML text value for the

ANCHOR element

Name Sets the name of the HTML ANCHOR

element

214

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebConsoleLog

Description

TWebConsoleLog permits to capture the output sent normally to the browser console log to a

HTML element. This can be especially on mobile devices interesting for debugging purposes as

the browser console is not easily accessible on the mobile device itself. It captures calls to

console.log(), console.info(), console.warn(), console.error().

Designtime

The TWebConsoleLog is a control that

represents a HTML DIV element that captures

the output sent to the browser console.

Runtime

HTML template tag

The HTML tag the component can be associated with a DIV element in an HTML template.

Assign the ID attribute with a unique value and set the identical value to the ElementID property.

Detailed information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Methods for TWebConsoleLog

procedure Clear Clear all messages from the HTML element

for the console log

Properties for TWebConsoleLog

AutoScroll: boolean When true, the control will automatically

215

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

scroll to the last console output line when a

new log is sent to the console.

ElementClassName Sets the CSS class name attributes

ElementFont Determines whether the Font property

values will be applied as font style or if CSS

based font settings will be used

ElementPosition Defines whether the DIV is shown absolute

positions or relative positioned

Name Sets the name of the HTML DIV element

TWebImageControl

Description

Below is a list of the most important properties methods and events for TWebImageControl.

TWebImageControl can display an image on the form. TWebImageControl is similar to a VCL

TImage.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

216

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag

ElementID UniqueID

Properties for TWebImageControl

AutoSize When true, the size of the control

automatically adapts to the size of the image

it contains

Base64Image: string Returns the image data as base64 string

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Picture Sets the picture at design time. Note that the

image is automatically deployed by the

compiling process to a separate image file

with a unique name.

URL Specifies the image as an URL

Methods for TWebImageControl

DataURL: string Returns the image control image content as

data URL string

DataURL(Width,Height: integer): string; Returns the image control image content at

size width/height as data URL string

ImageHeight: integer Function returning the original image height

ImageWidth: integer Function returning the original image width

LoadFromArrayBuffer(AArray:

TJSArrayBuffer);

Loads image from binary data in the array

buffer

LoadFromURL(AURL) Async function to load the image from an

URL

LoadFromURL(AURL; ImageLoaded:

TImageLoadedProc; ImageError:

TImageErrorProc

Function to load image from an URL with

anonymous method handlers

ResizeImage(AWidth, AHeight: integer): Resizes the image to a new width/height

217

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ResizeImage(AWidth, AHeight: integer;

AspectRatio: boolean);

Resizes the image to a new width/height

maintaining the aspect ratio

Events for TWebImageControl

OnClick Event triggered when the image is clicked

OnDblClick Event triggered when the image is double-

clicked

OnLoaded Event triggered when the image load

completed after assigning the URL or

DataURL

218

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebImageZoomControl

Description

Below is a list of the most important properties methods and events for

TWebImageZoomControl. TWebImageZoomControl can display an image on the form and

display a zoomed-in image version in a popup when it is clicked.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebImageZoomControl

Appearance

HeightPercent Sets the percent of the browser window

height that is taken up by the popup

ResponsiveHeightPercent Sets the percent of the browser window

height that is taken up by the popup when

219

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the available browser window width is equal

or less than ResponsiveMaxWidth

ResponsiveWidthPercent Sets the percent of the browser window

width that is taken up by the popup when

the available browser window width is equal

or less than ResponsiveMaxWidth

ResponsiveMaxWidth Sets the maximum browser window width

for the ResponsiveHeightPercent and

ResponsiveWidthPercent values are used,

otherwise the HeightPercent and

WidthPercent values are used

WidthPercent Sets the percent of the browser window

width that is taken up by the popup

AutoSize When true, the size of the control

automatically adapts to the size of the image

it contains

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Picture Sets the picture at design time. Note that the

image is automatically deployed by the

compiling process to a separate image file

with a unique name.

PictureZoom Sets the zoom picture at design time. Note

that the image is automatically deployed by

the compiling process to a separate image

file with a unique name.

URL Specifies the image as an URL

URLZoom Specifies the zoom image that is displayed

when the image is clicked as an URL

Events for TWebImageControl

220

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnClick Event triggered when the image is clicked

OnDblClick Event triggered when the image is double-

clicked

TWebLinkLabel

Description

Below is a list of the most important properties methods and events for TWebLinkLabel.

TWebLinkLabel is similar to a VCL TLinkLabel.

For a sample TWebLinkLabel with caption set to:

This is a link to tms

the result is:

Designtime

Runtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

221

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebLinkLabel

AutoSize When true, the size of the label control

automatically adapts to the text it contains

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

EllipsisPosition Sets the type of ellipsis to use for showing

the text when it doesn’t fit in the label

rectangle.

epNone: no ellipsis used

epEndEllipsis: ellipsis at the end of the text

epPathEllipsis: label text contains a path

name and ellipsis is set taking a file path in

account

epWordEllipsis: ellipsis is positioned at word

boundary

Layout Sets the vertical text position in the label

tlTop: top aligned

tlCenter: center aligned

tlBottom: bottom aligned

WordWrap When true, the text can be displayed

wordwrapped in the label client rect

Events for TWebLinkLabel

OnClick Triggered when the label is clicked

OnDblClick Triggered when the label is double-clicked

OnLinkClick Event triggered when a hyperlink in the

TWebLinkLabel is clicked

222

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRichEdit

Description

Below is a list of the most important properties methods and events for TWebRichEdit.

TWebRichEdit is a control that allows to edit text and apply text formatting. TWebRichEdit is

similar to a VCL TRichEdit.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebRichEdit

AutoSize Non-functional property for compatibility with

Delphi form designer

BorderStyle Sets the border style

CursorPosition: integer Gets or sets the position of the cursor in the

rich edit control

ElementClassName Optionally sets the CSS classname for the

223

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

PlainText Gets the text of the rich editor control as

plain text

SelAttributes Gets or sets the attributes of the selected

text in the rich editor control

Lines: TStrings Gets or sets the text of the rich editor control

as HTML formatted text.

Note that when the content of the

WebRichEdit changed, to first call

WebRichEdit.GetContent and then access

WebRichEdit.Lines

Methods for TWebRichEdit

AppendHTML(HTML: string) Append HTML code to the rich editor

AppendLineBreak Append a linebreak at the end of the rich

editor

DoEditAction(StartPosition,EndPosition:

integer);

Perform an action on the selected text. See

the execCommand() in the JavaScript doc

for possible actions

DoSelectionAction(ActionString: string; Data:

string)

Select text from StartPosition to EndPosition

GetContent Transfers the formatted text of the rich editor

to the Lines: TStrings property

InsertHTML(HTML: string) Insert HTML code in the rich editor at cursor

position

InsertLineBreak Insert a linebreak in the rich editor at cursor

position

SelectText(StartPosition,EndPosition:

integer);

Select text from StartPosition to EndPosition

Events for TWebRichEdit

224

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnClick Triggered when the rich editor is clicked

OnDblClick Triggered when the rich editor is double-

clicked

OnChange Triggered when the content of the richeditor

changes

OnSelectionChange Triggered when the selection within the rich

editor is changed

TWebSyntaxMemo

Below is a list of the most important properties methods and events for the TWebSyntaxMemo.

TWebSyntaxMemo is using the external JavaScript written Ace editor.

Designtime

Runtime

Loading a file

Loading with TWebFilePicker

First the file should be retrieved as a text. This can be done in the TWebFilePicker’s OnChange

event:

https://ace.c9.io/

225

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure TForm4.WebFilePicker1Change(Sender: TObject);

begin

 //First nake sure that there's a file available

 if Assigned(WebFilePicker1.Files[0]) then

 begin

 WebFilePicker1.Files[0].GetFileAsText;

 //Additional code here

 end;

end;

Then assign the retrieved text to the TWebSyntaxMemo:

procedure TForm4.WebFilePicker1GetFileAsText(Sender: TObject;

 AFileIndex: Integer; AText: string);

begin

 WebSyntaxMemo1.Text := AText;

end;

Loading with drag and drop

For this approach a TWebFileReader is needed. Once the file is readed, the text content can be

assigned to the TWebSyntaxMemo.

procedure TForm4.WebFormCreate(Sender: TObject);

begin

 fr := TWebFileReader.Create(Self);

 fr.OnReadDone := DoReadLoaded;

end;

procedure TForm4.DoReadLoaded(aFileName: string; AResult: JSValue);

begin

 WebSyntaxMemo1.Text := JS.toString(AResult);

end;

What’s left to handle is the file reading itself when a file has been dropped onto the

TWebSyntaxMemo. In the OnDragDrop event, the following can be written:

procedure TForm4.WebSyntaxMemo1DragDrop(Sender, Source: TObject; X, Y:

Integer);

var

 f: TJSHTMLFile;

begin

 f := TJSDragEvent(TDragSourceObject(Source).Event).dataTransfer.files[0];

//Get the file

 //Make sure it's available

 if Assigned(f) then

 fr.readAsBinaryString(f); //Read the file using the TWebFileReader

end;

Downloading a file

226

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Downloading a file means a single line of code only.

For example with the code below, the contents of the editor can be downloaded to the test.txt

file.

Application.DownloadTextFile(WebSyntaxMemo1.Text, 'test.txt');

Properties for TWebSyntaxMemo

Property Description

Autocompletion There are 3 options: saNone to disable

autocompletion, saLive to autocomplete during

typing and saBasic to show autocompleting

keywords by pressing Ctrl+Space.

CaretPosition: Integer Position of the caret.

CustomAutocomplete A collection of custom keywords that can be added

to autocollection. Keyword highlighting is not

available.

FadeFoldWidgets: Boolean Enable or disable fading fold widgets.

FixedGutterWidth: Boolean Gutter width can be fixed up to 1000 lines.

FontName: string Name of the font. Only monospaced fonts will

work.

FontSize: Integer Size of the font.

HighlightActiveLine: Boolean Highlight the line where the caret is.

Lines: TStringList Access the editor’s content as a TStringList.

Mode: TSyntaxMemoMode Language mode for the editor.

PersistentHorizontalScrollbar: Boolean Always show horizontal scrollbar.

PersistentVerticalScrollbar: Boolean Always show vertical scrollbar.

PrintMargin: Integer Value of the print margin position. Default is 80.

ReadOnly: Boolean Enable or disable read only mode.

SelLength: Integer Selection length.

SelStart: Integer Selection start.

ShowFoldWidgets: Boolean Hide or show the fold widgets.

ShowGutter: Boolean Hide or show the gutter.

ShowIndentGuides: Boolean Hide or show the indent guides.

ShowInvisibles: Boolean Hide or show the invisible characters such as

whitespaces.

ShowLineNumbers: Boolean Hide or show the line numbers.

ShowPrintMargin: Boolean Hide or show the print margin.

SoftTabs: Boolean Enable or disable soft tabs.

TextDirection: TSyntaxTextDirection Text direction from left to right or right to left.

227

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TabSize: Integer Size of the tab in spaces.

Text: string Access the editor’s content as a single string.

Theme: TSyntaxMemoTheme The theme of the editor.

WordWrap There are 4 options for

wordwrapping: swNone means there’s no

wordwrap, swPrintMargin will wrap at the print

margin, swView will wrap at what’s visible

and swValue will use the WordWrapValue to wrap

at a configured length.

WordWrapIndented: Boolean Allow indenting in wordwrap.

WordWrapValue: Integer Wordwrap size. Only used if the WordWrap is set

to swValue

Methods for TWebSyntaxMemo

Property Description

Clear Clears the content of the editor.

DisableLocalKeywords Disables local keywords that are added

constantly while content is being added to the

editor.

Find(AText: string) Finds and highlights the AText (if exists) in the

editor’s content.

FindAll(AText: string) Finds all and highlights the first AText (if exists) in

the editor’s content.

FindNext Finds the next occurrence of the highlighted text.

FindPrevious Finds the previous occurrence of the highlighted

text.

Focus Focuses the editor.

InitializeKeyWords(ACompleter:

TSyntaxCompleter)

Initialize a set of keywords with ACompleter.

InsertText(AText: string) Insert AText at the caret position.

InsertText(APosition: TPoint; AText: string) Insert AText at APosition.

OpenSearchBox Opens the editor’s searchbox.

PreloadPascalKeywords Earlier versions of Ace does not support Pascal

keywords in autocompletion. With this function,

they can be preloaded as autocompletion

keywords.

Redo ‘Redo’ edit command. Redoes an undid change.

RemoveSelectedText Remove the selected text.

RemoveCustomAutocompleter Remove the added custom autocompleter.

228

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

RemovePascalKeywords Earlier versions of Ace does not support Pascal

keywords in autocompletion. With this function,

they can be removed from autocompletion

keywords if they had been added previously.

Replace(AReplacement: string) ‘Replace’ edit command. It replaces the selected

text with AReplacement.

Replace(AText, AReplacement: string) ‘Replace’ edit command. It replaces AText with

AReplacement.

ReplaceAll(AReplacement: string) ‘Replace all’ edit command. It replaces all

occurrences of the selected text with

AReplacement.

ReplaceAll(AText, AReplacement: string) ‘Replace all’ edit command. It replaces all

occurrences of AText with AReplacement.

SelectAll ‘Select all’ edit command. Selects all of the text.

Undo ‘Undo’ edit command. Undoes the previous

change.

Unselect ‘Unselect’ edit command. Unselects everything.

Events for TWebSyntaxMemo

Property Description

OnChangeCursor Event triggered when cursor position has changed.

OnChangeSelection Event triggered when text selection has changed.

OnDragDrop Event triggered when something is dropped onto the editor.

OnDragOver Event triggered when something is dragged over the editor.

229

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebTabSet

Description

Below is a list of the most important properties methods and events for TWebTabSet.

TWebTabSet is similar to a VCL TTabSet.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebTabSet

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ItemIndex Sets or gets the selected tab

Items List of tab captions

230

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

SelectedColor Sets the background color of the selected

tab

Methods for TWebTabSet

Clear Removes all tabs

SelectNextTab Selects the next or previous page in the

page control, depending on the value of the

parameter.

Events for TWebTabSet

OnClick Event triggered when a tab is clicked

OnDblClick Event triggered when a tab is double-clicked

OnSelectionChange Event triggered when the selected tab

changes

TWebPageControl

Description

Below is a list of the most important properties methods and events for TWebPageControl.

TWebPageControl is similar to a VCL TPageControl.

231

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Make sure to set at least a width/height for the outer span as the tabsheet HTML elements in

the pagecontrol are set in the outer container element as absolute positioned.

Properties for TWebPageControl

ActivePage: TWebTabSheet Gets or sets the active page in the page

control

ActivePageIndex: integer Gets or set the active page by its index

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

232

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

PageCount: integer Returns the number of pages

Pages[Index: integer]: TWebTabSheet Provides access to the pages in the page

control

SelectedColor: TColor Sets the background color of the selected

tab

SelectedTextColor: TColor Sets the text color of the selected tab

ShowTabs: boolean When true, the tabs of the page control are

visible

TabIndex Sets or gets the selected page index

Methods for TWebPageControl

SelectNextPage Selects the next or previous page in the

page control, depending on the value of the

parameter.

Events for TWebPageControl

OnChange Event triggered when the active page of the

page control changes

OnClick Event triggered when the page is clicked

OnDblClick Event triggered when the page is double-

clicked

TWebTabsheet

233

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Description

TWebTabsheet is the container control used in a TWebPageControl to host controls on a sheet.

Properties for TWebTabSheet

Caption Sets the text for the tabsheet caption

ElementBodyClassName Optionally sets the CSS classname for the

body of the tabsheet

ElementClassName Optionally sets the CSS classname for the

outer DIV of the tabsheet

MaterialGlyph Allows to pick an icon from the Google

material icon set

MaterialGlyphColor Sets the color of the material glyph icon

MaterialGlyphSize Sets the size of the material glyph icon

MaterialGlyphType Sets the material glyph type (mgNormal,

mgOutlined, mgRound, mgSharp,

mgTwoTone)

ShowCaption: boolean When true, the caption is shown on the tab

TabVisible: Boolean When true, the tab is shown on the

TWebPageControl hosting the tabsheet

234

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLoginPanel

Description

TWebLoginPanel is a control designed to capture a user email and login code for sign-in in a

web application.

Designtime

Runtime

Properties for TWebLoginPanel

CaptionLabel Sets the caption of the loginpanel

Color Sets the background color of the loginpanel

ElementButtonClassName Optionally sets the CSS classname for the

button in the login panel when styling via

CSS is used

ElementCaptionClassName Optionally sets the CSS classname for the

caption in the login panel when styling via

CSS is used

ElementClassName Optionally sets the CSS classname for the

login panel when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

235

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ElementInputClassName Optionally sets the CSS classname for the

input controls in the login panel when styling

via CSS is used

ElementLabelClassName Optionally sets the CSS classname for the

labels in the login panel when styling via

CSS is used

LoginLabel Sets the caption for the login panel

PasswordLabel Sets the caption for the label to indicate the

password input field

UserLabel Sets the caption for the label to indicate the

username input field

Events for TWebLoginPanel

OnClick Event triggered when the panel is clicked

OnLogin Event triggered when the login button is

clicked

236

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRatingPanel

Description

TWebRatingPanel is a control designed for allowing users to give a rating.

Designtime

Runtime

Properties for TWebRatingPanel

Hover When true, the star rating visually changes

while the mouse is hovering of the control

IconActive Sets the URL of the star icon to be used in

the rating control for value that is active.

IconInActive Sets the URL of the star icon to be used in

the rating control for value that is inactive.

Precision Sets the precision of values that can be

entered in the rating panel

rpFull: only full stars can be selected

rpHalf: only half or full stars can be selected

rpFractional: starts can be fractionally

selected

Range Selects the number of starts on the rating

panel that can be selected. The width of the

control is based on the number of stars.

Value Sets the value, i.e. number of active stars in

the rating panel control

ValueHint When true, show the value as hint while the

237

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

mouse hovers over the rating panel

ValueHintFormat Sets the format for the value to be displayed

in the hint

Events for TWebRatingPanel

OnValueChange Event triggered while the mouse is hovering

over the rating panel with the new value

OnValueChanged Event triggered when the rating panel was

clicked to select a new value

OnValueHint Event triggered when the hint for the rating

panel is about to be displayed allowing to

customize the content of the hint depending

on the value

238

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebChatBox

Description

TWebChatbox is a control designed for allowing users to send messages. The messages sent

by the user are displayed right-aligned in the chatbox and the messages received from other

users are displayed left-aligned.

Designtime

Runtime

Properties for TWebChatbox

AvatarURL Sets the URL for default user avatar image

ChatMessageFont Sets the default message font

ChatMessageInfoFont Sets the default message info font

DateTimeFormat Sets the format string for message

timestamp display

239

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

EmojiPicker When true, the emoji picker is shown in the

chatbox

IncomingChatBubbleBorderColor Sets the default border color for incoming

chat message bubbles

IncomingChatBubbleColor Sets the default background color for

incoming chat message bubbles

IncomingChatBubbleElementClassName Sets the default CSS class for the incoming

chat message bubbles

InputElementClassName Sets the CSS classname for the text entry

HTML input control

InputTextBoxBorderColor Sets the border color for the text entry area

InputTextBoxColor Sets the background color for the text entry

area

InputTextBoxEnabled Sets whether the input textbox is enabled for

entry or not

InputTextBoxFont Sets the font for the text entry area

InputTextBoxHeight Sets the height for the input text area

MessageHint Hint displayed for the text entry area

Messages Collection of incoming and outgoing

messages displayed in the chatbox

OutgoingChatBubbleBorderColor Sets the default border color for outgoing

chat message bubbles

OutgoingChatBubbleColor Sets the default background color for

outgoing chat message bubbles

OutgoingChatBubbleElementClassName Sets the default CSS class for the outgoing

chat message bubbles

SendButtonBorderColor Sets the border color for the text send button

SendButtonCaption Sets the text for the text send button

SendButtonColor Sets the background color for the text send

button

SendButtonElementClassName Sets the CSS class for the send text button

SendButtonFont Sets the font for the send text button

SendButtonImageURL Sets the image for the send text button

SendButtonWidth Sets the width in pixels of the send button in

the input area

UserAvatarsEnabled When true, an avatar is show on the chat

bubble

UserAvatarURL Sets the URL for the avatar of the current

user of the chatbox sending messages

Username Sets the username for the current user of the

chatbox sending messages

240

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebChatbox

OnCreateChatBubble Event triggered when the user is about to

send a chat message, allowing to customize

the bubble before being displayed

OnSendMessage Event triggered when a message is ready to

be sent

Methods for TWebChatbox

ReceiveMessage(const Value: TMessage) Call ReceiveMessage() when a new

message is received from the server and

needs to be displayed as chat bubble in the

TWebChatbox control

The TWebChatbox displays messages in bubbles in the chatbox control. This is managed by

the Messages collection that consists of items of the type TMessage class

Properties for TMessage

AvatarEnabled When true, the avatar is displayed in the

chat bubble

AvatarURL Sets the URL for the avatar

BorderColor Sets the default message font

ChatMessage Sets the default message info font

Color Sets the format string for message

timestamp display

ElementClassName Sets the CSS class for the message bubble

Outline Align the chat bubble left or right from the

chatbox

Sender Sets the chat message sender name

Tag Integer value

Timestamp Sets the timestamp for when the chat

message was received

241

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TMessage

OnClickChatBubble Event triggered when the chat bubble is

clicked

242

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSpeedButton

Description

Below is a list of the most important properties methods and events for TWebSpeedButton.

TWebSpeedButton is similar to a VCL TSpeedButton.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <BUTTON ID=”UniqueID”></BUTTON>

ElementID UniqueID

Properties for TWebSpeedButton

AllowAllUp When there is a group of speed buttons,

depending on AllowAllUp, there is always a

button down or not

Caption Sets the speedbutton text

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

243

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Enabled Sets the button as enabled or disabled

Flat When true, the button is displayed in flat

style

Glyph Sets the image for the speed button

GroupIndex To group buttons, set the GroupIndex

indentical for multiple speed buttons

MaterialGlyph Allows to pick an icon from the Google

material icon set

MaterialGlyphColor Sets the color of the material glyph icon

MaterialGlyphSize Sets the size of the material glyph icon

MaterialGlyphType Sets the material glyph type (mgNormal,

mgOutlined, mgRound, mgSharp,

mgTwoTone)

Events for TWebSpeedButton

OnClick Event triggered when the speed button is

clicked

OnDblClick Event triggered when the speed button is

double-clicked

244

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

245

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebPayPal

Description

Below is a list of the most important properties methods and events for TWebPayPal.

TWebPayPal allows using the PayPal checkout process.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebPayPal

APIKey Sets the API key retrieved from the PayPal

developers console Dashboard at:

https://developer.paypal.com/

Full instructions can be found here.

Notes:

- The value required for the API Key is

referred to as “Client ID” on The PayPal

https://developer.paypal.com/
https://www.tmssoftware.com/site/cloudkey.asp#PayPal

246

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Dashboard.

- The PayPal button will only be displayed if

an API key is provided.

- The API key can not be changed once the

PayPal button has been initialized.

Payment

Configure the PayPal payment details before the user can initiate the payment process.

Address1 Sets line 1 of the payer address

Address2 Sets line 2 of the payer address (optional)

City Sets the city of the payer address

CountryCode Sets the country code of the payer address

Note: If the country code is set to US

(United States) or CA (Canada) a valid

value is required in the City, PostalCode

and State property

Currency Sets the currency of the PayPal payment

Note: The Currency can not be changed

once the PayPal button has been initialized.

CustomText Sets a custom text to include with the

PayPal payment (optional)

Description Sets the description text associated with

the PayPal payment (optional)

HandlingFee Sets the handling fee cost associated with

the PayPal payment (optional)

Insurance Sets the insurance cost associated with this

PayPal payment (optional)

InvoiceNumber Sets the invoice number associated with

the PayPal payment (optional, must be

unique)

Items

Collection of items associated with the PayPal payment

Description Sets the description of the item

Name Sets the name of the item

Price Sets the price of the item

Quantity Sets the number of items

SKU Sets the SKU associated with the item

247

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Tag Sets the tag associated with the item

(optional)

TagObject Sets the object associated with the item

(optional)

Tax Sets the tax cost associated with the item

(optional)

Locale Sets the language used in the PayPal

checkout interface

Note: The Locale can not be changed once

the PayPal button has been initialized.

Phone Sets the phone number of the payer

(optional)

PostalCode Sets the postal code of the payer address

RecipientName Sets the name of the payer (optional)

Shipping Sets the shipping cost assocated with the

PayPal payment (optional)

ShippingDiscount Sets the shipping cost discount associated

with the PayPal payment (optional)

State Sets the state of the payer address

(optional, except if CountryCode is set to

US or CA)

Tax Sets the tax cost associated with the

PayPal payment (optional)

Events for TWebPayPal

OnPaymentDone

Event triggered when a PayPal payment was executed successfully.

Arguments:

Address1 Line 1 of the payer address

Address2 Line 2 of the payer address

City The city of the payer address

CountryCode The country code of the payer address

Currency The currency associated with the PayPal

248

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

payment

CustomText The custom text associated with the PayPal

payment

Description The payment description

Email The email address of the payer

FirstName The first name of the payer

InvoiceNumber The invoice number associated with the

PayPal payment

LastName The last name of the payer

OrderID The order ID associated with the PayPal

payment

PayerID The payer ID associated with the PayPal

payment

PaymentID The payment ID associated with the PayPal

payment

PaymentState The state of the PayPal payment

Phone The phone number of the payer

PostalCode The postal code of the payer address

RecipientName The name associated with the shipping

address

SaleID The sale ID associated with the PayPal

payment

State The state of the payer address

Total The total cost of the PayPal payment

OnPaymentCancelled Event triggered when a PayPal payment was

cancelled by the user

OnPaymentError

Event triggered when an error occurred during the PayPal checkout process.

Arguments:

ErrorName The name of the error that occurred

ErrorDetails A list of details about the error

249

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebToolbar

Description

Below is a list of the most important properties methods and events for TWebToolBar. A

TWebToolBar is a container control that can host several controls to form a toolbar.

Designtime

Runtime

Properties for TWebToolbar

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Events for TWebToolbar

OnClick Event triggered when the toolbar is clicked

OnDblClick Event triggered when the toolbar is double-

clicked

250

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Example: line wrapping (responsive behaviour)

To make the content of the TWebToolbar automatically adapt to the available width, set the

WidthStyle and HeightStyle of the TWebToolBar to ssAuto. Also set the ElementPosition of

each component conainted in the TWebToolBar to epRelative.

The order in wich the components are displayed can be controlled with the ChildOrder property.

 WebSpeedButton1.ElementPosition := epRelative;

 WebSpeedButton1.ChildOrder := 0;

 WebSpeedButton2.ElementPosition := epRelative;

 WebSpeedButton2.ChildOrder := 1;

 WebToolBar1.WidthStyle := ssAuto;

 WebToolBar1.HeightStyle := ssAuto;

251

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRichEditToolbar

Description

Below is a list of the most important properties methods and events for TWebRichEditToolbar.

Designtime

Runtime

Properties for TWebRichEditToolbar

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Hints Contains the list of hint property vaues for

the buttons in the ribbon

RichEdit Sets the TWebRichEdit component with

which the toolbar interacts

VisibleButtons Sets what button on the toolbar are visible.

This is a set property with following possible

values:

reFont, reFontSize, reBold, reItalic,

reUnderline, reStrikeThrough, reAlignLeft,

reAlignCenter, reAlignRight,

reUnorderedList, reOrderedList,

252

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

reForegroundColor, reBackgroundColor,

reHyperlink, reImageInsert, reLineSpacing

Events for TWebRichEditToolbar

OnClick Event triggered when the toolbar is clicked

OnDblClick Event triggered when the toolbar is double-

clicked

TWebGridPanel

Description

Below is a list of the most important properties methods and events for TWebGridPanel.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

253

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag

ElementID UniqueID

Properties for TWebGridPanel

ColumnCollection Access to the collection of columns in the

grid panel. The width, alignment, CSS, width

style of each column can be specified

Alignment: sets the vertical alignment in the

row to taLeftJustify, taCenter, taRightJustify

ElementClassName: sets an optional CSS

class name for the column

MarginLeft: sets a left margin in pixels

MarginRight: sets a right margin in pixels

SizeStyle: sets the style of the width

specification as percent, absolute, auto

Value: sets the width value

ControlCollection Collection through which access is provided

to the controls in the different grid panel

cells.

The function

FindItem(AControl: TWinControl) returns the

collection item that is hosting a specific

control.

The function

GetItemAtCell() returns the control collection

based on the column/row cell index

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ExpandStyle Can be set to

254

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

esAddRows: new rows are added when new

controls are inserted an no more grid cells

are available

esAddColumns: new columns are added

when new controls are inserted an no more

grid cells are available

GridLineColor Sets the color of the grid lines

GridLineWidth Sets the width of the grid lines

RowCollection Access to the collection of rows in the grid

panel. The height, alignment, CSS, height

style of each row can be specified

Alignment: sets the vertical alignment in the

row to vaTop, vaCenter, vaBottom

ElementClassName: sets an optional CSS

class name for the row

MarginBottom: sets a bottom margin in

pixels

MarginTop: sets a top margin in pixels

SizeStyle: sets the style of the height

specification as percent, absolute, auto

Value: sets the height value

Events for TWebGridPanel

OnClick Event triggered when the panel is clicked

OnDblClick Event triggered when the panel is double-

clicked

TWebTreeview

Description

Below is a list of the most important properties methods and events for TWebTreeview.

TWebTreeview is similar to a VCL TTreeview.

255

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebTreeview

Property Description

AutoExpand When true, a click on a node will select the node but also

expand the child nodes.

ElementClassName Optionally sets the CSS classname for the out DIV element

of the treeview when styling via CSS is used

ElementNodeClassName Optionally sets the CSS classname for the node SPAN

element that is used for each node

ElementNodeSelectedClassName Optionally sets the CSS classname for the node SPAN

element that is used for each node when it is in selected

state

ElementID Optionally sets the HTML element ID for a HTML element in

the form HTML file the label needs to be connected with.

When connected, no new label is created but the Delphi

class is connected with the existing HTML element in the

form HTML file

Items Hierarchical collection of nodes in the treeview. The interface

to access nodes is similar to a the VCL nodes collection.

Selected Gets or sets the selected TTreeNode in the treeview.

Methods for TWebTreeview

Property Description

256

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

GetNodeElement Gets the HTML element that is the container for the TTreeNode.

GetNodeFromID Gets the TTreeNode from the ID of the HTML element.

Events for TWebTreeview

Property Description

OnChange Event triggered when the selected node in the treeview changed

OnChanging Event triggered when the selected node in the treeview is about to change.

The Allow parameter can be used to control if the selected node can

change

OnClick Event triggered when the control is clicked.

OnClickCheckBox Event triggered when checkbox for node is clicked

OnClickNode Event triggered when a TTreeNode is clicked.

OnClickRadio Event triggered when radio button for node is clicked

OnCollapsed Event triggered when a node was collapsed.

OnCollapsing Event triggered when a node is about to be collapsed. The Allow parameter

can be used to control whether the node can be collapsed.

OnDblClick Event triggered when the control is double-clicked.

OnDblClickNode Event triggered when a TTreeNode is double-clicked.

OnExpanded Event triggered when a node was expanded.

OnExpanding Event triggered when a node is about to be expanded. The Allow

parameter can be used to control whether the node can be expanded.

OnRenderNode Event triggered when a node is about to be rendered. This returns a

reference to the Node and the HTML element that is the container for the

node and allows further customization of the node via AElement.element:

TJSHTMLElement.

Sample code

This code snippet shows how to programmatically add items to the treeview (very similar as with

a VCL TTreeView)

var

 tn: TTreeNode;

begin

 WebTreeView1.BeginUpdate;

257

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 tn := WebTreeView1.Items.Add('Root node 1');

 WebTreeView1.Items.AddChild(tn,'Child node 1');

 WebTreeView1.Items.AddChild(tn,'Child node 2');

 tn := WebTreeView1.Items.Add('Root node 2');

 WebTreeView1.Items.AddChild(tn,'Child node 1');

 WebTreeView1.Items.AddChild(tn,'Child node 2');

 WebTreeView1.EndUpdate;

end;

It is also possible to insert a checkbox or a radiobutton along with a node. To set the type of the

node, the property TTreeNode.NodeType can be used. This sample code snippet shows how to

create a TreeView with 2 main nodes and one main node with checkboxes for the child nodes

and the other radiobuttons that behave as a radiogroup.

var

 mn,sn: TTreeNode;

begin

 webtreeview1.BeginUpdate;

 mn := webtreeview1.Items.Add('Main check node');

 sn := webtreeview1.Items.AddChild(mn,'Child node 1');

 sn.NodeType := ntCheckbox;

 sn := webtreeview1.Items.AddChild(mn,'Child node 2');

 sn.NodeType := ntCheckbox;

 mn := webtreeview1.Items.Add('Main radio node');

 sn := webtreeview1.Items.AddChild(mn,'Child node 1');

 sn.NodeType := ntRadioButton;

 sn := webtreeview1.Items.AddChild(mn,'Child node 2');

 sn.NodeType := ntRadioButton;

 webtreeview1.EndUpdate;

end;

The result in the browser is:

258

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

259

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebAccordion

Description

Below is a list of the most important properties methods and events for TWebAccordion. An

accordion is a collection of expandable sections. The sections are expanded by clicking a

caption. The content of the section can be HTML or any other web controls.

Designtime Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebAccordion

Property Description

ElementClassName Optionally sets the CSS classname for the label when styling via CSS is

used

ElementID Optionally sets the HTML element ID for a HTML element in the form HTML

file the label needs to be connected with. When connected, no new label is

created but the Delphi class is connected with the existing HTML element in

the form HTML file

260

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Sections Collection of sections in the TWebAccordion

Events for TWebAccordion

Property Description

OnCollapsed Event triggered when a section was collapsed.

OnCollapsing Event triggered when a section is about to be collapsed. The Allow

parameter can be used to control whether the section can be collapsed.

OnExpanded Event triggered when a section was expanded.

OnExpanding Event triggered when a section is about to be expanded. The Allow

parameter can be used to control whether the section can be expanded.

OnRenderSection Event triggered when a section is about to be rendered. This returns a

reference the HTML element that is the container for the section and allows

further customization of the section.

Properties for TAccordionSection

Property Description

Caption Gets or sets the text or HTML of the section caption.

CaptionElement Gets the HTML container element of the section caption.

Content Gets or sets the text or HTML content of the section.

ContentElement Gets the HTML container element of the section content.

Expanded Gets or sets the expanded state of the section.

Tag Integer property.

261

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebResponsiveGridPanel

Description

Below is a list of the most important properties methods and events for

TWebResponsiveGridPanel. TWebResponsiveGridPanel is grid panel with responsive behavior.

This means that the layout of the grid panel can adapt to the form factor of the web page where

it is used. This layout is controlled by the Layout collection. Like a regular grid panel, controls

can be dropped on the TWebResponsiveGridPanel and these controls are organized in a grid

like structure and represented and accessible via the

TWebResponsiveGridPanel.ControlCollection.

Designtime Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebResponsiveGridPanel

Property Description

ControlCollection Collection of child controls of the TWebResponsiveGridPanel

ElementClassName Optionally sets the CSS classname for the label when styling via CSS is

used

ElementID Optionally sets the HTML element ID for a HTML element in the form HTML

file the label needs to be connected with. When connected, no new label is

262

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

created but the Delphi class is connected with the existing HTML element in

the form HTML file

Layout Collection of layout settings for various form factors. These layout settings

are managed by a TResponsiveLayoutItem class. When a

TWebResponsiveGridPanel is dropped on the form 4 layouts are

automatically added for 4 different form factors: Smartphone with one

column (screen width <= 575pixels), Tablet with two columns (screen width

<= 768pixels), Desktop with three columns (screen width <= 991pixels),

Large Desktop with four columns (screen width <= 1199pixels).

Methods for TWebResponsiveGridPanel

Property Description

AddControl Adds a new control to the TWebResponsiveGridPanel.

RemoveControl Removes a new control from the TWebResponsiveGridPanel.

Events for TWebResponsiveGridPanel

Property Description

OnLayoutChange Event triggered when the form size changes and causes a new layout to be

selected

TResponsiveLayoutItem is the class used in the Layout collection of the

TWebResponsiveGridPanel to manage different desired layout settings per screen

width.

Properties for TResponsiveLayoutItem

Property Description

ColumnGap Gets or sets the column gap in pixels (px) or percentage (%) for the layout.

The column gap is the gap between two successive columns.

Description Text property that can be used to describe the layout. The Description

property is not used at runtime in the control.

Margins Sets the margins of the responsive grid cells in the selected layout.

RowGap Gets or sets the column gap in pixels (px) or percentage (%) for the layout.

The row gap is the gap between two successive rows.

Style Sets the grid cell style. This is a space delimited string that sets for each

row (or column) the specifier for each column in the row. The specifier per

column (or row) can be based on fractions (fr), pixels (px) or percentage

(%). For example, for a grid with 3 equally divided column widths, the style

263

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

could be set to ‘1fr 1fr 1fr’. For a combination of a fixed column width in

pixels of 200 pixels and two columns where the 2nd column has the double

width of the third, the style could be set to ‘200px 2fr 1fr’.

StyleType Sets the grid cells responsive style to be based on columns

(gTemplateColumns) or rows (gTemplateRows).

Tag Integer property.

Width Sets the control width in pixels under which the layout is chosen.

TWebResponsiveManager

Description

This component is capable of designing forms in a responsive way. For those not familiar with

the term "responsive", this means that the layout of the GUI can adapt to the form factor of the

screen where the GUI is used. The component integrates with the form designer in such a way

that you only need a single form for multiple states as they are managed by the component. At

runtime, resizing events will be captured and handled automatically, whilst detecting and loading

the appropriate state. After designing the various responsive states in your application, based

on the width and height of the chosen form or control, simply run (or preview) the application to

see the result.

Getting Started

To design a form and add responsive behavior, drop an instance of TWebResponsiveManager

(further referred to as "responsive manager") on the form. This is a non-visual component.

Right-clicking on the component will provide a set of options to choose from as seen in the

screenshot below. The various options will be explained in different topics.

264

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Select

The select option will show which components or forms are available for responsive design. By

default, the form on which the responsive manager lives is preset. Other controls which have

been added to the form will popup in the select menu. Note that switching between different

controls will prompt to clear existing states. States are tied to the control that is selected in the

responsive manager.

Programmatically, selecting a control can be done with the following code.

ResponsiveManager1.Control := Panel1;

Save

The save option will show an option to create a new state based on the current design of the

form, and additionally show the already created states. To create a new state, click on "Save To

New State".

After creating a new state, changing the design will automatically be saved when switching

between states (see the AutoSave property), or by manually clicking on "Save to [State Name]"

as shown in the context menu.

265

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Programmatically, saving to a new state can be done with

ResponsiveManager1.SaveToNewState;

Saving to an existing state can be done with

ResponsiveManager1.SaveToState([State Name]);

Load

The load option shows the available states. Clicking on "Load Active State" will automatically

detect the state based on the width and height of the control/form that is selected in the

responsive manager.

The load an existing state, click on "Load From [State Name]". Note that when the "AutoSave"

property is true, it will automatically save a state when switching.

Programmatically, loading a state based on the width and height of the active control/form can

be done with

ResponsiveManager1.LoadState;

To load an specific state based on the name, use the following code

ResponsiveManager1.LoadStateByName([State Name]);

Preview

The preview option shows the selected form at designtime as if you would run the application.

Ofcourse, this only creates duplicate components, but doesn't add events or code logic that's

behind the form. When showing the preview, resizing the form will switch between states

defined in designtime. Additionally, a helper state banner is shown to indicate when the state

will be active. As you can see from the screenshot below. State 1 will be active from 0 to a

certain width, then the second state comes after the first state and so on.

266

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Clear States

The "Clear States" option will clear all existing states.

Form Dimensions

When designing your form, you might want to design it based on a specific size. If it's a mobile

application, you want to design it for a phone/tablet size. If it's a desktop application, you want to

design it for specific screen sizes such as HD or 4K. Right-clicking on the responsive manager

and selecting "Form Dimensions", will popup options to select from predefined form sizes.

If the predefined form sizes are not sufficient, you can define your own sizes. click on the

"Edit..." sub menu item to start the custom dimensions editor.

267

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

After defining your own sizes, you can find them in the appropriate size type in the "Form

Dimensions" list.

Optimize

After designing your form, you will notice that the form file will include all related components

and settings for each specific state. Optimizing the states will remove all unnecessary settings

and keep only the difference between states. Optimizing at designtime is optional, and depends

on the number of components and states and can be useful when the form load time is severely

affected. Note that at runtime optimization happens automatically to have more performance

switching between states. Executing an optimization process at designtime will be irreversibly

affect the form. When changes in one or more states are required after optimization, you will

need to re-save all existing states.

Save/Load Settings

This option is available to persist all states to a file in JSON format. Saving the settings can be

important before executing an optimize at designtime, or to have a backup of a specific

configuration.

268

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Constraints

By default, states have a constraint based on width & height. When saving a state, the width

and height of the selected control/form is persisted. The mode property at responsive manager

level determines how the state will be detected.

• mrmWidthOnly: When a state is loaded, checks the width of the selected control/form

and finds the closest matching state with the Constraint.Width property.

• mrmHeightOnly: When a state is loaded, checks the height of the selected control/form

and finds the closest matching state with the Constraint.Height property.

• mrmWidthFirst: When a state is loaded, checks the width of the selected control/form

and finds the closest matching state with the Constraint.Width property. If the algorithm

is finding more than one state, checks the height afterwards.

• mrmHeightFirst: When a state is loaded, checks the height of the selected control/form

and finds the closest matching state with the Constraint.Height property. If the algorithm

is finding more than one state, checks the width afterwards.

When loading a state, the constraint is checked based on the above settings. When the property

AutoLoadOnResize is true, the responsive manager will automatically call LoadState, which will

detect which state is matching the constraints and will then load the contents and apply the

changes to each control found in the state. When a control is not found or no longer available,

the loading of that specific control will be skipped. You can manually call LoadState as well from

any other event by setting the AutoLoadOnResize to false.

Custom Constraints

If you want to move away from width & height constraints, and you want to have state loading

bound to a constraint that you control, it's possible to use one of the following constraints

instead:

• StringValue: Setting the StringValue property will allow you to call

LoadState(AStringValue: string); This is typically done when string matching is required.

Multiple states are possible.

• BooleanValue: Setting the BooleanValue property will allow you to call

LoadState(ABooleanValue: boolean); Only 2 states are possible.

• NumberValue: Setting the NumberValue property will allow you to call

LoadState(ANumberValue: string);

Additionally, if StringValue, BooleanValue or NumberValue is not sufficient, it's possible to call

procedure LoadStateCustom(ACallBack: TWEBStateManagerLoadStateCustomCallback = nil);,

which has a callback parameter. If the callback parameter is nil, the OnLoadStateCustom will be

called. What this method will do is, loop through every state, and will ask to load it. When setting

269

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the ALoad var parameter to true in either the callback or the event, the state will be loaded.

Each state is also capable of holding custom data in one of the following properties:

• DataPointer

• DataBoolean

• DataObject

• DataString

• DataInteger

Properties

ActiveState The current active state. This property can be set at

designtime to switch between states. When the AutoSave

property is true, this action will automatically save the state

at designtime. When set at runtime, it will load the state

based on the index, but will not save or modify states.

AutoLoadOnResize When true, automatically detects the OnResize event of the

selected control/form. The responsive manager uses this

event to automatically load the state when the form resizes.

AutoSave When true, automatically saves the state when switching

between states. Switching states can be done via the

ActiveState property or when loading one of the states via

the context menu. saving states only happens at designtime.

Mode This property is used to determine which constraint will be

used when loading the state. By default the mrmWidthOnly

mode will only check the width when resizing and loading

states, whereas the msmHeightOnly mode will only check

the height. With the mrmWidthFirst & mrmHeightFirst

modes, the first check is the width or height, and when there

are multiple states detected, then it will look at the height or

width respectively.

States The collection of states managed by the responsive

manager.

States->Name The name of the state. Can be used to identify, save & load

a state.

States->Default The default state. Only one state can be default, it

automatically loads this state when there is no other state

detected during the automatic load sequence.

States->Constraint The constraints of the state. By default it uses the width and

height constraint. It's possible to also programmatically load

a state based on a different constraint such as the

270

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

BooleanValue, NumberValue or StringValue. This is

explained in the chapter "Constraints".

States->Content The JSON representation of a state. This property is not

visible at designtime. The Content property will be persisted

in the form file and be reloaded when states are changed.

Events

OnBeforeLoadControlState Event called before loading the state of the control. This

event can be used to potentially block loading the state

content for a specific control, or to prepare the control before

loading the state.

OnBeforeLoadState Event called before loading the state.

OnAfterLoadControlState Event called after loading the state of the control. This event

can be used to apply changes after loading the state content

for a specific control.

OnAfterLoadState Event called after loading the state.

OnLoadStateCustom Event called when loading a state with the

LoadStateCustom. In the callback or event it's possible to

determine if a state can be loaded or not.

Methods

procedure SaveToState(AState:

TWEBStateManagerItem);

Saves the current content of the selected

control/form to an existing state, collection

item based.

procedure SaveToState(AIndex: Integer); Saves the current content of the selected

control/form to an existing state, index based.

procedure SaveToState(AName: string); Saves the current content of the selected

control/form to an existing state, name based.

procedure LoadStateByName(AName: string); Loads the state based on the name.

procedure LoadStateByIndex(AIndex: Integer); Loads the state based on the index.

procedure LoadStateCustom(ACallBack:

TWEBStateManagerLoadStateCustomCallback

= nil);

Loads the state based on a custom callback

or event.

function

FindConflicts(AConflictedControlNames:

TStrings): Boolean;

Finds conflicts in all states. For example: if

Button1 is found in state 1, but not in state 2,

the function will return True, and the

AConflictedControlNames will contain a list of

control names and their states.

271

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

function GetDefaultState:

TWEBStateManagerItem;

Returns the default state.

procedure LoadState(AStringValue: string); Loads the state based on a string value. Note

that the state collection item needs to have

the Constraint.StringValue property set and it

needs to match the value passed as a

parameter. The default constraint loading is

Width/Height based.

procedure LoadState(ABooleanValue:

Boolean);

Loads the state based on a boolean value.

Note that the state collection item needs to

have the Constraint.BooleanValue property

set and it needs to match the value passed as

a parameter. The default constraint loading is

Width/Height based.

procedure LoadState(ANumberValue:

Extended);

Loads the state based on a number value.

Note that the state collection item needs to

have the Constraint.NumberValue property

set and it needs to match the value passed as

a parameter. The default constraint loading is

Width/Height based.

procedure LoadState; Loads the state based on the width/height

constraint matching the selected control/form.

Note that the state collection item needs to

have the Constraint.Width & Constraint.Height

properties set.

function SaveToNewState:

TWEBResponsiveManagerItem;

Saves the content of the selected control/form

to a new state, with the constraint set to width

& height.

function SaveToNewState(AStringValue:

string): TWEBResponsiveManagerItem;

Saves the content of the selected control/form

to a new state, with the constraint set to a

string value.

function SaveToNewState(ABooleanValue:

Boolean): TWEBResponsiveManagerItem;

Saves the content of the selected control/form

to a new state, with the constraint set to a

boolean value.

function SaveToNewState(ANumberValue:

Extended): TWEBResponsiveManagerItem;

Saves the content of the selected control/form

to a new state, with the constraint set to a

number value.

function FindStateByName(AName: string):

TWEBStateManagerItem;

Returns the state with a specific name.

function FindState(AStringValue: string):

TWEBResponsiveManagerItem;

Returns the state with a specific string value

constraint.

272

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

function FindState(ABooleanValue: Boolean):

TWEBResponsiveManagerItem;

Returns the state with a specific boolean

value constraint.

function FindState(ANumberValue: Extended):

TWEBResponsiveManagerItem;

Returns the state with a specific number value

constraint.

function FindState:

TWEBResponsiveManagerItem;

Returns the state based on the selected

control/form width & height constraint

matching the state constraint.

procedure Preview; Launches a preview of the form.

TWebMessageDlg

Description

Below is a list of the most important properties methods and events for TWebMessageDlg. This

component allows to display modal dialogs (simulated by disabling all controls on the page as

the concept of modal dialogs does not exist in web applications).

Result for the following code:

WebMessageDlg1.ShowDialog('Do you like TMS WEB

Core?',WEBLib.Dialogs.mtConfirmation, [mbYes]);

or with an async approach:

var

 mr: TModalResult;

begin

 mr := await(TModalResult, WebMessageDlg1.ShowDialog('Do you like

TMS WEB Core?', WEBLib.Dialogs.mtConfirmation,[mbYes, mbNo]));

 if mr = mrYes then

 ShowMessage(‘We knew you would like it!’);

end;

273

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

Properties for TWebMessageDlg

DialogResult: TModalResult Holds the result of calling the dialog

DialogText: TStringList List of text used in dialog and dialog buttons.

Allows for language customization of the

dialog text

DialogType Selects the type of the dialog:

mtCustom, mtInformation, mtWarning,

mtConfirmation, mtError

ElementButtonClassName Set the CSS classname for the buttons on

the dialog

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementContentClassName Sets the CSS classname for the dialog

content area

ElementDialogClassName Sets the CSS classname for the dialog

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ElementTitleClassName Sets the CSS classname for the dialog title

area

Message Sets the message to display on the dialog

Opacity: single Sets the opacity of the background layer

274

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Title: string Sets the dialog title

Methods for TWebMessageDlg

ShowDialog(Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons;

AProc: TDialogResultProc = nil);

Method to show the message. The last

parameter is a method pointer for a method

that is optionally called when assigned when

the dialog is closed

ShowDialog(Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons):

TJSPromise;

Async version of ShowDialog()

Events for TWebMessageDlg

OnButtonClick Event triggered when a button on the

message dialog is clicked

OnClose Event triggered when the messagebox is

closed

The message dialog functionality is also available as direct function calls. It is available in 2

forms. A first version is a function with an anonymous method parameter from where the

message dialog response can be handled and the alternative is a promise based function.

Example with anonymous method handler:

begin

 MessageDlg('Do you like TMS WEB Core?', mtConfirmation, [mbYes, mbNo],

 procedure(res: TModalResult)

 begin

 if res = mrYes then

 ShowMessage('Fantastic!')

 else

 ShowMessage('What can we do to make your experience better?');

 end);

end;

Example with promise:

275

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure TForm1.WebButton1Click(Sender: TObject);

var

 res: TModalResult;

begin

 res := await(TModalResult, MessageDlgAsync('Do you like TMS WEB Core?',

mtConfirmation, [mbYes, mbNo]));

 if res = mrYes then

 ShowMessage('Fantastic!')

 else

 ShowMessage('What can we do to make your experience better?');

end;

TWebInputMessageDlg

Description

Below is a list of the most important properties methods and events for TWebInputMessageDlg.

This component allows to display modal dialogs (simulated by disabling all controls on the page

as the concept of modal dialogs does not exist in web applications) and capture a user input.

Result for the following code:

WebInputMessageDlg1.ShowDialog('Please enter your

name',WEBLib.Dialogs.mtConfirmation, [mbYes]);

or with an async approach:

var

 mr: TModalResult;

begin

 mr := await(TModalResult, WebInputMessageDlg1.ShowDialog('Please

give your name', WEBLib.Dialogs.mtConfirmation,[mbOK, mbCancel]));

 if mr = mrOK then

 ShowMessage(‘You entered:’+ WebInputMessageDialog1.InputValue);

end;

276

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

Properties for TWebInputMessageDlg

DialogResult: TModalResult Holds the result of calling the dialog

DialogText: TStringList List of text used in dialog and dialog buttons.

Allows for language customization of the

dialog text

DialogType Selects the type of the dialog:

mtCustom, mtInformation, mtWarning,

mtConfirmation, mtError

ElementButtonClassName Set the CSS classname for the buttons on

the dialog

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementContentClassName Sets the CSS classname for the dialog

content area

ElementDialogClassName Sets the CSS classname for the dialog

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ElementTitleClassName Sets the CSS classname for the dialog title

area

Message Sets the message to display on the dialog

277

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

InputType Sets the editor type to capture the value.
The possible values are:
itText: input text entry
itEmail: input email entry
itDate: input date picker
itDateTime: input date/time picker
itFile: input control is a file picker, returing the
local file
itMonth: input control is a date picker
itNumber: input control is numeric input only
(float + integer)
itPassword: password style input
itSearch: input with search & delete button
itTime: input time picker
itURL: input URL picker
itWeek: input week number picker

InputValue Gets or sets the value of the input

Opacity: single Sets the opacity of the background layer

Title: string Sets the dialog title

Methods for TWebInputMessageDlg

ShowDialog(Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons;

AProc: TDialogResultProc = nil);

Method to show the message. The last

parameter is a method pointer for a method

that is optionally called when assigned when

the dialog is closed

ShowDialog(Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons):

TJSPromise;

Async version of ShowDialog()

Events for TWebInputMessageDlg

OnButtonClick Event triggered when a button on the input

message dialog is clicked

OnClose Event triggered when the input messagebox

is closed

The input message dialog functionality is also available as direct function calls. It is available in

278

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

2 forms. A first version is a function with an anonymous method parameter from where the

message dialog response can be handled and the alternative is a promise based function.

Example with anonymous method handler:

begin

 InputMessageDlg('Please give your name',mtInformation, [mbOK, mbCancel],

 procedure(res: TModalResult)

 begin

 ShowMessage('You entered:'+ WebInputMessageDlg1.InputValue);

 end);

end;

Example with promise:

procedure TForm1.WebButton1Click(Sender: TObject);

var

 s: string;

 res: TModalResult;

begin

 res := await(TModalResult, InputMessageDlgAsync('Please give your

name',mtInformation, [mbOK, mbCancel], s, itText));

 if res = mrOK then

 ShowMessage('You entered:'+s);

end;

279

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebWaitMessage

Description

TWebWaitMessage is a non-visual component that enables to show a wait cursor during

lengthy operations. TWebWaitMessage shows by default a running wheel animated GIF in the

center of the browser window with all controls in the window disabled.

Designtime

Runtime

Properties for TWebWaitMessage

Picture: TImage Image that is displayed while the wait

message is active. By default, this is set to

an animated GIF with a running wheel.

Typically this is an animated GIF.

PictureURL: string Optionally sets the picture to be used in the

wait message as image URL

Opacity: double Sets the opacity of the layer shown over the

window while the wait message is active

Showing: boolean Returns true while the wait message is being

displayed

TimeOut: integer Sets the timeout in milliseconds after which

the wait message should auto hide. When

timeout is zero, no auto hiding is happening

280

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TWebWaitMessage

Show Method to show the wait message.

Hide Method to hide the wait message

Events for TWebWaitMessage

OnHide Event triggered when the wait message is

hidden after the set timeout

OnShow Event triggered when the wait message is

shown. This event is triggered every 100ms

281

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebFileUpload

Description

The file upload component allows the user to drag a local file on the web form or select it via a

file open dialog. Either a single file can be uploaded or multiple files.

Properties for TWebFileUpload

Property Description

Caption Sets the text to be displayed in the upload component for the button to open

the file dialog.

DragCaption Sets the text to be displayed under the file drag area.

Files This is a list of files picked. The list consists of objects of the TFile type.

Multifile When true, it is allowed to pick or drag multiple files.

ShowFiles When true, the filenames for the dragged or picked files are shown in the

control.

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <FORM ID=”UniqueID”></FORM>

ElementID UniqueID

Events for TWebFileUpload

Property Description

OnDroppedFiles Event triggered when one or multiple files were dropped or

picked. The filenames are returned via the AFileList stringlist.

OnGetFileAsArrayBuffer Event triggered when the the retrieval or a file as an array

buffer is completed. Retrieval of the file is done

programmatically by calling

WebFileUpload.Files[index].GetFileAsArrayBuffer

OnGetFileAsText Event triggered when the the retrieval or a file as text is

completed. Retrieval of the file is done programmatically by

calling WebFileUpload.Files[index].GetFileAsText

282

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

OnGetFileAsBase64 Event triggered when the the retrieval or a file as base64

encoded text is completed. Retrieval of the file is done

programmatically by calling

WebFileUpload.Files[index].GetFileAsBase64

OnGetFileAsDataURL Event triggered when the the retrieval or a file as Data URL is

completed. Retrieval of the file is done programmatically by

calling WebFileUpload.Files[index].GetFileAsDataURL

OnUploadFileComplete Event triggered when an upload of the file is completed. The

upload is started with

WebFileUpload.Files[index].Upload(AAction);

OnUploadFileResponseComplete Event triggered when an upload of the file is completed. The

upload is started with

WebFileUpload.Files[index].Upload(AAction);

This event returns the JavaScript request object as well as

response as text

OnUploadFileAbort Event triggered when an upload of the file is aborted

OnUploadFileError Event triggered when an error has occurred during a file

upload

OnUploadFileProgress Event triggered to indicate the progress of an upload transfer.

The event returns the number of bytes transferred from the

total number of bytes to transfer

Properties for TFile

TFile is the item in the TWebFileUpload or TWebFilePicker Files collection. After a local file was

picked, the Files collection contains the list of files picked and allows access to the file

information and file data.

Property Description

FileObject:

TJSHTMLFile

Reference to the HTML TJSHTMLFile object giving accesss to the

local file.

Name: string Returns the name of the local file.

MimeType: string Returns the MIME type of the local file.

Modified: TDateTime Returns the file last modified date of the local file.

Size: integer Returns the size of the local file.

OnGetFileAsText Event triggered when the retrieval of the local file as text is ready

OnGetFileAsBase64 Event triggered when the retrieval of the local file as base64 encoded

data is ready

OnGetFileAsDataURL Event triggered when the retrieval of the local file as Data URL is ready

283

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

OnGetFileAsArrayBuffer Event triggered when the retrieval of the local file as array buffer is

ready

Methods for TFile

Property Description

FileAsText: TJSPromise Async method to get file as text file

FileAsText(AEncoding:string):

TJSPromise

Async method to get file as text file with optional file

encoding specified

FileAsBase64: TJSPromise Async method to get binary file as base64 string

FileAsStream: TJSPromise Async method to get file as TMemoryStream

FileAsDataURL: TJSPromise Async method to get file as data URL

FileAsArrayBuffer: TJSPromise Async method to get binary file as TJSArrayBuffer

GetFileAsText Starts to retrieve the content of the file as text. When

ready the OnGetFileAsText event is triggered at

TWebFileUpload or TWebFilePicker level.

GetFileAsText(AEncoding: string) Overload of GetFileAsText where the text file encoding

format can be specified.

GetFileAsText(GetAsString:

TGetAsStringProc);

Overload of GetFileAsText that allows the use of an

anonymous method to handle the download result.

GetFileAsArrayBuffer Starts to retrieve the content of the file as binary data

(JavaScript array buffer). When ready the

OnGetFileAsArrayBuffer event is triggered at

TWebFileUpload or TWebFilePicker level.

GetFileAsArrayBuffer

(GetAsArrayBuffer:

TGetAsArrayBufferProc);

Overload of GetFileAsArrayBuffer that allows the use of

an anonymous method to handle the download result.

GetFileAsBase64 Starts to retrieve the content of the file as base64

encode text. When ready the OnGetFileAsBase64

event is triggered at TWebFileUpload or

TWebFilePicker level.

GetFileAsBase64(GetAsString:

TGetAsStringProc);

Overload of GetFileAsBase64 that allows the use of an

anonymous method to handle the download result.

GetFileAsDataURL Starts to retrieve the content of the file as string that can

be used for a data URL for a HTML IMG element

GetFileAsDataURL(GetAsString:

TGetAsStringProc);

Overload of GetFileAsDataURL that allows the use of

an anonymous method to handle the download result.

GetFileAsStream Starts to retrieve the content of the file as stream

284

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

triggering the event OnGetFileAsStream returning the

stream

GetFileAsStream(GetAsStream:

TGetAsStreamProc)

Overload of GetFileAsStream that allows the use of an

anonymous method to handle the download result.

Upload(AAction: string); Perform an upload of a file to a specific upload handler

URL AAction

AbortUpload: boolean; When an upload request is ongoing, it can be aborted

by calling AbortUpload. Returns true when this was

executed.

Example: uploading a file

To upload a file to a server, from the WebFileUpload.OnChange event or from another event,

call

WebFileUpload1.Files[0].Upload('http://localhost:8088/upload');

to upload the first file picked by the TWebFileUpload to the server (assuming there is server

code listening on port 8088 to handle via the upload action.

285

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebFilePicker

Description

The file picker component allows to pick files from the local file system.

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <INPUT TYPE=”FILE” ID=”UniqueID”>

ElementID UniqueID

Properties for TWebFilePicker

Property Description

Accept Sets an optional file filter. This is a string containing the extensions of files

that can be selected. Note that setting the file filter will not prevent that the

user can pick other filenames.

To select only text files (*.txt), set Accept to ‘.txt’.

To select JPEG, GIF, PNG image files , set Accept to ‘.jpg,.jpeg,.png,.gif’ or

it could also be set to: ‘image/*’.

Files This is a list of files picked. The list consists of objects of the TFile type.

Multifile When true, it is allowed to pick or drag multiple files.

Events for TWebFilePicker

Property Description

OnChange Event triggered when the file(s) picked changed by the user.

OnGetFileAsArrayBuffer Event triggered when the the retrieval or a file as an array

buffer is completed. Retrieval of the file is done

programmatically by calling

WebFilePicker.Files[index].GetFileAsArrayBuffer

OnGetFileAsText Event triggered when the the retrieval or a file as text is

286

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

completed. Retrieval of the file is done programmatically by

calling WebFilePicker.Files[index].GetFileAsText

OnGetFileAsBase64 Event triggered when the the retrieval or a file as base64

encode text is completed. Retrieval of the file is done

programmatically by calling

WebFilePicker.Files[index].GetFileAsBase64

OnGetFileAsDataURL Event triggered when the the retrieval or a file as Data URL is

completed. Retrieval of the file is done programmatically by

calling WebFileUpload.Files[index].GetFileAsDataURL

OnUploadFileComplete Event triggered when an upload of the file is completed. The

upload is started with

WebFileUpload.Files[index].Upload(AAction);

OnUploadFileResponseComplete Event triggered when an upload of the file is completed. The

upload is started with

WebFileUpload.Files[index].Upload(AAction);

This event returns the JavaScript request object as well as

response as text

OnUploadFileAbort Event triggered when an upload of the file is aborted

OnUploadFileError Event triggered when an error has occurred during a file

upload

OnUploadFileProgress Event triggered to indicate the progress of an upload transfer.

The event returns the number of bytes transferred from the

total number of bytes to transfer

Example code

This code snippet shows how a local file can be loaded in TWebMemo after having been picked

by the TWebFilePicker. From the TWebFilePicker.OnChange event, the first picked file is

accessed as text with GetFileAsText and from the event TWebFilePicker.OnGetFileAsText this

text is added to a TWebMemo.

1. procedure TForm2.WebFilePicker1Change(Sender: TObject);
2. begin
3. if WebFilePicker1.Files.Count > 0 then
4. WebFilePicker1.Files[0].GetFileAsText;
5. end;
6.
7. procedure TForm2.WebFilePicker1GetFileAsText(Sender: TObject;
8. AFileIndex: Integer; AText: string);
9. begin
10. WebMemo1.Lines.Text := AText;
11. end;

287

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebShare

Description

The TWebShare non-visual component allows to put text, links and/or files on the share sheet of

a mobile device from a regular web client application or from a PWA. It is a requirement that the

application is hosted on an SSL enabled domain, i.e. accessed via a HTTPS URL.

Methods for TWebShare

Method Description

Share(ATitle, Atext, AURL:

string);

Puts a text on the mobile device share sheet. This can be

accompagnied by an URL. A title can be set to show in

addition to the share dialog on the mobile device.

Share(Atitle, Atext, AURL,

AFiles: TJSHTMLFileArray

Puts a text on the mobile device share sheet. This can be

accompagnied by an URL. A title can be set to show in

addition to the share dialog on the mobile device. In addition

to text, an URL, it can also put files on the share sheet. The

AFiles parameter is an array of JavaScript file types.

CanShareFiles: boolean Function returns true when the mobile device browser can

also put files on the share sheet

288

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebOpenDialog

Description

The TWebOpenDialog non-visual component allows to start a dialog to pick files from the local

file system.

Sample code using a promise to get the selected filename after opening:

var

 fn: string;

begin

 fn := await(string, WebOpenDialog1.Perform);

 ShowMessage(fn);

end;

Properties for TWebOpenDialog

Property Description

Accept Sets an optional file filter. This is a string containing the extensions of files

that can be selected. Note that setting the file filter will not prevent that the

user can pick other filenames.

To select only text files (*.txt), set Accept to ‘.txt’.

To select JPEG, GIF, PNG image files , set Accept to ‘.jpg,.jpeg,.png,.gif’ or

it could also be set to: ‘image/*’.

FileName This returns the name of the local file picked

Files This is a list of files picked. The list consists of objects of the TFile type.

Multifile When true, it is allowed to pick or drag multiple files.

Methods for TWebOpenDialog

Property Description

Execute Starts the dialog for picking a local file. The selected file(s) are

returned via WebOpenDialog.Files collection.

Execute(AProc:

TOpenDialogProc);

Starts the dialog for picking a local file with anonymous handler

called when a file is selected

Perform: TJSPromise Async version to show the open dialog, returns the selected

filename

289

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebOpenDialog

Property Description

OnChange Event triggered when the file(s) picked changed by the user.

OnGetFileAsArrayBuffer Event triggered after call to

WebOpenDialog.Files[x].GetFileAsArrayBuffer is completed

OnGetFileAsBase64 Event triggered after call to

WebOpenDialog.Files[x].GetFileAsBase64 is completed

OnGetFileAsStream Event triggered after call to

WebOpenDialog.Files[x].GetFileAStream is completed

OnGetFileAsText Event triggered after call to WebOpenDialog.Files[x].GetFileAsText

is completed

OnGetFileAsURL Event triggered after call to

WebOpenDialog.Files[x].GetFileAsDataURL is completed

290

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebToast

Description

TWebToast is a non-visual component that enables to show Bootstrap 4.x unobtrusive toast

messages on the browser window. Therefore, to use TWebToast, make sure to add the

Bootstrap 4.x library and jQuery 3.x library.

Designtime

Runtime

Properties for TWebToast

AutoHideDelay Sets the time (in milliseconds) for a toast

message to automatically hide (when

enabled)

Container Sets an optional container control that is

used to control the position where the toast

message will display

Items Collection of toast message items of type

TToastItem

Position Sets the position where the toast messages

will appear on the screen

tpAbsolute : uses the X,Y properties to set

the absolute position

291

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

tpTopLeft : toast messages appear in the top

left corner

tpTopRight : toast messages appear in the

top right corner

tpBottomLeft : toast messages appear in the

bottom left corner

tpBottomRight : toast messages appear in

the bottom right corner

tpContainer : toast messages appear within

the specified container control

Events for TWebToast

OnHide Event triggered when the toast message

hides.

Properties for TToastItem

AutoHide When true, the item will automatically hide

after a delay set via

TWebToast.AutoHideDelay

Body Sets the body text for the toast item

CloseButton When true, a close button will appear in the

top right corner of the toast message

Header Sets the header text for the toast item

Time Sets the type of the time displayed in the

toast message:

ttNone: no time is displayed

ttShow: shows the absolute time when the

toast message is displayed

ttDeltaShow: shows the time difference

between the current time and the time at

which the toast message was displayed

Methods for TToastItem

Show Shows the toast message on the screen

Hide Hides the toast message from the screen

292

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Update When properties change for an existing

TWebToastItem that is already displayed,

call WebToastItem.Update

TWebToggleButton

Description

Below is a list of the most important properties methods and events for TWebToggleButton.

Designtime

Runtime

Properties for TWebToggleButton

Checked Sets or gets the state of the toggle button

Style Style of the toggle button can be

tsRectangular or tsRounded

Events for TWebToggleButton

OnClick Event triggered the toggle button is clicked

293

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebBitBtn

Description

Below is a list of the most important properties methods and events for TWebBitBtn.

Note that TWebBitBtn uses the Google Material Icons. Make sure to include this library in your

project. (Select the Manage JavaScript Library from the project context menu)

Designtime

Runtime

HTML template tag

294

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <BUTTON ID=”UniqueID”></BUTTON>

ElementID UniqueID

Properties for TWebBitBtn

Caption Sets the caption for the button

Flat When true, the button is displayed in flat

style

Glyph Sets the optional image for the button

Layout Sets the position of the button image versus

the button caption

blGlyphLeft: glyph left from caption

blGlyphRight: glyph right from caption

blGlyphTop: glyph on top of caption

blGlyphBottom: glyph under caption

MaterialGlyph Allows to pick an icon from the Google

material icon set

MaterialGlyphColor Sets the color of the material glyph icon

MaterialGlyphSize Sets the size of the material glyph

MaterialGlyphType Sets the material glyph type (mgNormal,

mgOutlined, mgRound, mgSharp,

mgTwoTone)

295

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebBitBtn

OnClick Event triggered when the button is clicked

296

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebGroupBox

Description

Below is a list of the most important properties methods and events for TWebGroupBox. The

TWebGroupBox is a container control with a caption

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag

ElementID UniqueID

Properties for TWebGroupBox

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

297

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebGroupBox

OnClick Event triggered when the groupbox is clicked

OnDblClick Event triggered when the groupbox is

double-clicked

298

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebStretchPanel

Description

Below is a list of the most important properties methods and events for TWebStretchPanel. The

TWebStretchPanel is a container control with a top and bottom area. The height of the bottom

area has a fixed height while the top area height can adapt itself to the height of controls (when

controls are relatively positioned in the top area).

When a control is put in the upper area at design-time, it will belong at runtime in the upper

stretching area of the TWebStretchPanel. When a control is put in the lower area, it will belong

to the lower fixed height area and will as such automatically appear lower when the upper panel

area is stretched to fit the controls in the upper area.

Designtime

Runtime

Example:

A TWebListBox and TWebButton is placed on the TWebStretchPanel. The button is on the

lower part, the listbox on the upper part. From the button, items are added to the listbox and the

height of the listbox is increased. This causes the upper part to stretch to the height of the

listbox and the button remains below the stretched upper area in the fixed height area of the

lower part:

299

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure TSampleForm.WebButton1Click(Sender: TObject);

var

 i: integer;

begin

 for i := 0 to 20 do

 begin

 WebListbox1.Items.Add('item '+inttostr(i));

 end;

 WebListbox1.Height := 300;

end;

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

300

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebStretchPanel

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

FixedHeight Sets the fixed height of the bottom area in

the panel.

Events for TWebStretchPanel

OnClick Event triggered when the groupbox is clicked

OnDblClick Event triggered when the groupbox is

double-clicked

OnMouseDown Event triggered when the mouse is down on

the panel

OnMouseMove Event triggered when the mouse moves over

the panel

OnMouseUp Event triggered when the mouse goes up on

the panel

301

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebStringGrid

Description

Below is a list of the most important properties methods and events for TWebStringGrid.

TWebStringGrid is similar to a VCL TStringGrid.

Designtime

Runtime

Set or get the content of grid cells via:

Grid.Cells[col,row]: string;

Set or get the column width in the grid via

Grid.ColWidths[col]: integer;

Set or get the row height in the grid via

Grid.RowHeights[row]: integer;

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

302

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag <SPAN

ID=”UniqueID”><TABLE></TABLE>

ElementID UniqueID

Properties for TWebStringGrid

BorderColor Selects the outer border color of the grid

BorderStyle Selects the border style of the grid

CellsArray: TJSArray Allows access of grid cells as TJSArray

CheckState[ACol,ARow: integer): boolean Gets or sets the state of the checkbox in cell

ACol,ARow

ColCount Sets the number of columns in the grid

ColAlignments[ACol: integer]: TAlign;

(public)

Public property to get and set the column

alignment. Default alignment is taLeftJustify.

ColWidths[ACol: integer]: integer; (public) Public property to get and set the column

width in pixels

ComboBoxItems: TStrings Gives access to the items used by a

combobox inplace editor

DefaultColWidth Sets the default column width

DefaultRowHeight Sets the default row height

EditAdvance: boolean When true, the next cell in the grid goes

automatically in edit mode when the editor is

closed with the return key

EditMask Sets the mask for cells with a mask editor as

inplace editor (geMask editor type)

ElementTableClassName Sets the CSS class for the TABLE element

used to build up the grid

FixedColor Sets the color of fixed cells

FixedCols Sets the number of fixed columns in the grid

FixedRows Sets the number of fixed rows in the grid

GridLineColor Sets the color of grid lines

LeftCol Gets or sets the index of the first normal grid

column displaying. Use this property to get

or set the horizontal scroll position

Options The settings that are supported are:

goEditing: enables editing in the grid

goHorzLine: enables horizontal grid lines

303

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

goVertLine: enables vertical grid lines

goRowSelect: enables row selection

RangeEdit Holds the settings for the cell editor when it

is of the type geRange. It allows to set range

minimum, maximum, step.

RowCount Sets the number of rows in the grid

RowHeights[ARow: integer): integer; public Public property to get and set the individual

row heights

Selection Gets or selects the range of selected cells in

the grid. Selection is of the type TGridRect

SelectionColor Sets the background color of selected cells

SelectionTextColor Sets the text color of selected cells

TopRow Gets or sets the index of the first normal grid

row displaying. Use this property to get or

set the vertical scroll position

WordWrap: boolean When true, text in cells is displayed as

wordwrapped text, otherwise, it is shown as

single line text with possible use of ellipsis

when the text is too long

Methods for TWebStringGrid

AddButton(ACol,ARow: integer; AText:

string; AStyle: string = ‘’);

Adds a button to cell ACol,ARow with

caption text AText. Optionally sets a CSS

class AStyle to the button.

AddCheckBox(ACol,ARow: integer); Adds a checkbox to cell ACol, ARow

AddProgress(ACol,ARow: integer; APosition:

integer; AStyle: string = ‘’);

Adds a progress bar to cell ACol,ARow with

position set to APosition,. Optionally sets a

CSS class AStyle to the progress bar.

AddSortIndicator(ACol,ARow: integer;

AIndicator: TGridSortIndicator);

Adds a sort indicator to a column header.

From the sort indicator click, the sorting of

the grid is triggered.

HasButton(ACol,ARow: integer): boolean Returns true when cell ACol,ARow has a

button

HasCheckBox(ACol,ARow: integer): boolean Returns true when cell ACol,ARow has a

checkbox

HasProgress(ACol,ARow: integer): boolean Returns true when cell ACol,ARow has a

progressbar

HasSortIndicator(ACol,ARow: integer):

boolean

Returns true when cell ACol,ARow has a

sort indicator

InsertColumn(const Index: integer); Inserts a new column in the grid at Index

304

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

InsertRow(const Index: integer); Inserts a new row in the grid at Index

IsMergedCell(ACol,ARow: integer): boolean Returns true when the cell ACol,ARow is

part of a merged cell.

LoadFromJSON(const AURL: string;

ADataNode: string);

Load JSON formatted data found a AURL

via a HTTP GET in the string grid. The

expected data is a JSON array. When the

ADataNode parameter is different from

empty, it tries to fetch the JSON array from

the ADataNode JSON node.

function LoadFromJSONAsync(const AURL:

string; ADataNode: string): TJSPromise;

Async variant of LoadFromJSON.

Await result is TJSXMLHttpRequest

LoadFromJSON(AJSON: TJSObject;

ADataNode: string);

Load data from a JSON object. The

expected data is a JSON array. When the

ADataNode parameter is different from

empty, it tries to fetch the JSON array from

the ADataNode JSON node.

LoadFromCSV(const AURL: string;

Delimiter: char = ‘;’; LoadFixed: Boolean =

false)

Load CSV formatted data found a AURL via

a HTTP GET in the string grid. Optional

parameters are the delimiter to use to parse

the CSV file and when the LoadFixed

parameter is true, the CSV data is also

loaded in the fixed cells of the grid.

function LoadFromCSVAsync(const AURL:

string; Delimiter: char = ‘;’; LoadFixed:

Boolean = false): TJSPromise;

Async variant of LoadFromCSV.

Await result is TJSXMLHttpRequest

LoadFromStrings(AStrings: TStrings;

Delimiter: char = ‘;’; LoadFixed: Boolean =

false);

Loads grid cells from a stringlist holding CSV

structured data

MergeCells(ACol,ARow: integer; NumCol,

NumRow: integer);

Merges NumCol and NumRow cells from cell

ACol, ARow

MouseToCell(X,Y: integer; var ACol,ARow:

integer);

Returns the column/row index of the cell

found at client coordinates X,Y of the grid

RemoveButton(ACol,ARow:integer); Removes the button from cell ACol, ARow

RemoveCheckBox(ACol,ARow:integer); Removes the checkbox from cell ACol,

ARow

RemoveColumn(const Index: integer); Removes column Index from the grid

RemoveProgress(ACol,ARow:integer); Removes the progressbar from cell ACol,

ARow

RemoveRow(const Index: integer); Removes row Index from the grid

RemoveSortIndicator(ACol,ARow:integer); Removes the sort indicator from cell ACol,

ARow

305

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

SaveToCSV(AFileName string; Delimiter:

char = ‘;’; SaveFixed: boolean = false)

Save grid contents to CSV file for download

SaveToString(AStrings: TStrings; Delimiter:

char = ‘;’; SaveFixed: boolean = false

Save grid contents to CSV structured data in

a stringlist

SplitCells(ACol,ARow: integer); Splits merged cells from cell ACol,ARow

Events for TWebStringGrid

OnButtonClick Event triggered when a cell button is clicked

OnCanEditCell Event triggered just before editing starts

(when goEditing = true in grid.Options) with

a var parameter CanEdit to control whether

the cell can be edited or not

OnCheckClick Event triggered when a cell checkbox is

clicked

OnClick Event triggered when grid is clicked

OnClickCell Event triggered when a cell is clicked

OnDblClick Event triggered when grid is double-clicked

OnFixedCellClick Event triggered when a fixed cell is clicked

OnGetCellChildren Event triggered when a new cell is rendered

during loading date from CSV or JSON in

the grid. Passes the HTML element for the

grid cell allowing to insert dynamically HTML

child elements in the cell

OnGetCellClass Event triggered when a new cell is rendered

during loading date from CSV or JSON in

the grid. Allows to set the CSS class name

for an individual cell allowing customization

this way.

OnGetCellData Event triggered when a new cell is rendered

during loading date from CSV or JSON in

the grid. Allows to dynamically override or

customize the values retrieved from the CSV

or JSON (or dataset in case of a

TWebDBGrid)

OnGetCellEditor Event triggered just before the inplace

editing starts to get the cell editor type.

The cell editor can be:

306

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

geText: normal edit

geNumber: spin edit

geDate: datepicker

geTime: timepicker

geRange: range selector

geColor: color picker

geWeek: week selector

geMonth: month selector

geURL: URL editor

geEmail: Email editor

geTel: Telephone editor

geMask: masked edit control

geCombo: combobox editor

geMemo: memo editor

geNone: read-only cell

OnGetEditText Event triggered when a cell goes to edit

mode requesting the value to be edited

OnHttpRequestError Event triggered when an error occurred with

the HTTP GET request used to get data via

methods LoadFromJSON()/LoadFromCSV()

OnHttpRequestSuccess Event triggered when the HTTP GET request

used to get data via methods

LoadFromJSON()/LoadFromCSV()

successfully returned

OnValidateEdit Event triggered when editing of a cell ends,

allowing to check the new edited value and

optionally modify it before it is being saved to

the cell.

OnSetEditText Event triggered when a cell goes out of edit

mode returned the edited value

307

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebListControl

Description

Below is a list of the most important properties methods and events for TWebListControl.

TWebListControl represents a HTML list structure. The TWebListControl is also especially

designed to be able to use Bootstrap CSS styles for effects like banding, hovering,… and much

more. Find more information about Bootstrap list styles at:

https://getbootstrap.com/docs/4.0/components/list-group

In this example, the ElementListClassName was set to: "list-group” and the item’s property

ItemClassName was set to: “list-group-item d-flex justify-content-between align-items-center list-

group-item-action”

Designtime

Runtime

Items are added to the list via the Items collection. The TListItem class is defined as:

https://getbootstrap.com/docs/4.0/components/list-group

308

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TListItem

Active When true, the item is shown as active item

in the list (when the CSS defines the Active

style)

AutoCollaps When true, the item click will collapse /

uncollapse the sub items (when the CSS

defines the Collapse style)

Enabled When true, the item is enabled and can be

clicked and will trigger the OnItemClick event

ItemClassName Optionally sets the CSS classname for the

item when styling via CSS is used

Items Collection of sub items for an item. The sub

items collection is exactly the same as the

main items collection. Note that items in sub

items can also have sub items etc..

Link Sets the optional URL for the item text when

it needs to be clickable with an URL

reference

LinkClassName Optionally sets the CSS classname for the

item link when styling via CSS is used

Tag Integer tag property associated with the item

Text Text of the item

Methods for TListItem

Expand When the item has subitems, expands the

subitems

Collapse When the item has subitems, collapses the

subitems

IsCollapsed When true, the subitems of the item are in

collapsed state

RemoveFilter Removes any active filter and undoes

filtering on the list

SetFilter(Condition: string; CaseSensitive:

Boolean = true)

Applies the Condition as filter for the items in

the list, effectively only showing the items in

the list that match the filter. Optionally can

make the filter case sensitive or not. Note

that for the filter, wildcards such as ‘*’ and

309

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

‘%’ can be used.

Properties for TWebListControl

DefaultItemClassName Sets the CSS class that is automatically

applied to an item ItemClassName when a

new item is created. The

DefaultItemClassName is only used upon

creation of new TLinkItem instances

DefaultItemLinkClassName Sets the CSS class that is automatically

applied to an item LinkClassName when a

new item is created. The

DefaultLinkClassName is only used upon

creation of new TLinkItem instances

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ElementListClassName Optionally sets the CSS classname for the

list when styling via CSS is used

Items Collection of TListItem instances and

possibly sub items making up the list

Style When Style is set, this presets the CSS

DefaultItemClassName,

DefaultItemLinkClassName,

ElementListClassName to match popular

Bootstrap list styles.

Sets the style of the list to:

lsBreadCrumb: list of items makes up a

breadcrumb

lsListGroup: vertical list of items

lsPagination: list makes up items of a paging

control, like a control to select a page of

rows to show in a grid

310

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

lsTabs: list makes up items of tab group

Events for TWebListControl

OnGetItemChildren Event triggered when the list item is

rendered allowing to insert child HTML

elements in the list element

OnGetItemClass Event triggered when the list item is

rendered allowing to customize the CSS

class of the list element

OnItemClick Event triggered when a list item is clicked

OnItemDblClick Event triggered when a list item is double-

clicked

TWebTableControl

Description

Below is a list of the most important properties methods and events for TWebTableControl.

TWebTableControl represents a HTML table. The HTML table can have a header row and/or

header column. The TWebTableControl is also especially designed to be able to use Bootstrap

CSS styles for effects like banding, hovering,… Find more information about Bootstrap table

styles at: https://getbootstrap.com/docs/4.0/content/tables/

In this example, the ElementHeaderClassName was set to: "table thead-dark” and the

ElementTableClassName was set to: “table table-hover table-bordered table-striped table-sm”

Designtime

https://getbootstrap.com/docs/4.0/content/tables/

311

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

Set or get the content of table cells via:

TableControl.Cells[col,row]: string;

Set or get the HTML table cell elements in the grid via:

TableControl.CellElements[col,row]: TJSElement

Set or get the CSS class name for a row in the table via:

TableControl.RowClassName[row]: string;

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebTableControl

ColCount Sets the number of columns in the table

ColHeader When true, a row header column is shown

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

312

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementHeaderClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

ElementRowSelClassName Optionally sets the CSS classname for the

selected row in the table

ElementSelectionClassName Optionally sets the CSS classname for the

selected cells in the table

ElementTableClassName Optionally sets the CSS classname for the

label when styling via CSS is used

Enabled: boolean When true, a click on a row in the table will

set it in selected state. The property

RowIndex gets or sets the selected row

Footer: TTableControlHeader Holds settings for the optional table control

footer

Header: TTableControlHeader Holds settings for the optional table control

header

Options: TTableControlOptions Holds option settings

Paging: TTableControlPaging Holds settings for optional built-in paging in

the TWebTableControl

RowCount Sets the number of rows in the table

RowHeader When true, a column header row is shown

RowIndex Gets or sets the selected row in the table

SelectionColor: TColor Gets or sets the background color of the

selected row in the table

SelectionTextColor: TColor Gets or sets the font color of the selected

row in the table

Methods for TWebTableControl

AddButton(ACol, ARow; integer; AText:

string; AStyle: string = ‘’);

Adds a button to cell Acol,ARow with button

caption text AText. Optionally includes the

CSS classname of the button

AddButtonColumn(ACol; integer; AText:

string; AStyle: string = ‘’);

Adds a column of buttons to the table control

in column ACol

AddCheckBox(ACol, ARow; integer; AState: Adds a checkbox to cell Acol,ARow with

313

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Boolean = false); checkbox state set by AState

AddCheckBoxColumn(ACol; integer;

Checked: Boolean = false);

Adds a column of checkboxes to the table

control in column ACol. Optionally set via

Checked the default checked state

AddProgress(Acol,ARow: integer; APosition:

integer; AStyle: string);

Adds a progressbar to cell Acol,ARow with

progressbar position APosition. Optionally

includes the CSS classname of the

progressbar.

AddSortIndicator(ACol, ARow; integer;

AIndicator: TGridSortIndicator);

Adds a sort indicator to a column header

cell. The AIndicator value can be: siNone,

siAscending, siDescending

FindCell(Condition: string; CaseSensitive:

Boolean: AllCells: boolean): TGridCoord;

Searches the table for a cell matching the

condition and selects the cell. AllCells

determines whether to search in all cells or

only the normal cells (not row or column

header cells)

FindNext: TGridCoord; Continues search from last cell

HasButton(ACol, ARow: integer): Boolean Returns true when the cell has a button

HasCheckBox(ACol, ARow: integer):

Boolean

Returns true when the cell has a checkbox

HasProgress(ACol, ARow: integer): Boolean Returns true when the cell has a progress

bar

HasSortIndicator(ACol, ARow: integer):

Boolean

Returns true when the cell has a sort

indicator

HideCol(ACol: integer); Hides column ACol

HideRow(ARow: integer); Hides row Arow

InsertRow(ARow: integer); Inserts a new row after ARow

LoadFromJSON(const AURL: string;

ADataNode: string);

Load JSON formatted data found a AURL

via a HTTP GET in the string grid. The

expected data is a JSON array. When the

ADataNode parameter is different from

empty, it tries to fetch the JSON array from

the ADataNode JSON node.

function LoadFromJSONAsync(const AURL:

string; ADataNode: string): TJSPromise;

Async variant of LoadFromJSON.

Await result is TJSXMLHttpRequest

LoadPageFromJSON(const AURL: string;

ADataNode: string);

Loads only the visible page cells of the

TWebTableControl with JSON data when

paging is enabled.

function LoadPageFromJSON(const AURL:

string; ADataNode: string): TJSPromise;

Async variant of LoadPageFromJSON.

Await result is TJSXMLHttpRequest

LoadFromCSV(const AURL: string; Load CSV formatted data found a AURL via

314

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Delimiter: char = ‘;’; LoadFixed: Boolean =

false)

a HTTP GET in the table contro. Optional

parameters are the delimiter to use to parse

the CSV file and when the LoadFixed

parameter is true, the CSV data is also

loaded in the fixed cells of the table control.

function LoadFromCSVAsync(const AURL:

string; Delimiter: char = ‘;’; LoadFixed:

Boolean = false)

Async variant of LoadFromCSV

Await result is TJSXMLHttpRequest

RemoveButton(ACol, ARow: integer):

Boolean

Removes a button that was added to a cell

ACol, ARow

RemoveCheckBox(ACol, ARow: integer):

Boolean

Removes a checkbox that was added to a

cell ACol, ARow

RemoveProgress(ACol, ARow: integer):

Boolean

Removes a progress bar that was added to

a cell ACol, ARow

RemoveSortIndicator(ACol, ARow: integer):

Boolean

Removes a sort indicator that was added to

a cell ACol, ARow

RemoveFilter; Removes a previously set filter condition

RemoveRow(ARow: integer): Removes row ARow from the table

ScrollRowInView(ARow: integer); Scroll the table to bring row ARow in view

SelectCell(ACol,ARow: integer); Selects content of the table cell

SetFilter(Column: integer; Condition: string;

CaseSensitive: Boolean = true);

Sets a filter condition for the table for a

specific column, optionally case sensitive

UnHideCol(ACol: integer); Unhides column ACol

UnHideRow(ARow: integer); Unhides row ARow

Events for TWebTableControl

OnButtonClick Event triggered when a button added to a

cell is clicked

OnCheckClick Event triggered when a checkbox added to a

cell is clicked

OnClick Event triggered when the table is clicked

OnClickCell Event triggered when a table cell is clicked

OnDblClick Event triggered when the table is double-

clicked

OnDblClickCell Event triggered when a table cell is double-

clicked

OnGetCellChildren Event triggered when a new cell is rendered

315

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

during loading date from CSV or JSON in

the grid. Passes the HTML element for the

grid cell allowing to insert dynamically HTML

child elements in the cell

OnGetCellClass Event triggered when a new cell is rendered

during loading date from CSV or JSON in

the grid. Allows to set the CSS class name

for an individual cell allowing customization

this way.

OnGetCellData Event triggered when a new cell is rendered

during loading date from CSV or JSON in

the grid. Allows to dynamically override or

customize the values retrieved from the CSV

or JSON (or dataset in case of a

TWebDBGrid)

OnHttpRequestError Event triggered when an error occurred with

the HTTP GET request used to get data via

methods LoadFromJSON()/LoadFromCSV()

OnHttpRequestSuccess Event triggered when the HTTP GET request

used to get data via methods

LoadFromJSON()/LoadFromCSV()

successfully returned

Properties for TTableControlHeader

ButtonActiveElementClassName Sets the CSS classname the active paging

button in the header area

ButtonElementClassName Sets the CSS classname for paging buttons

in the header area

Caption: string Sets the header caption text

DropDownElementClassName Sets the CSS classname for optional paging

dropdown control

Filter: Boolean When true, filtering can be performed from

an input in the header

FilterColumn Sets the column index to perform the filtering

on

InputElementClassName Sets the CSS classname for the filter input

control in the header

LinkActiveElementClassName Sets the CSS classname for the active

316

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

paging link in the header area

LinkElementClassName Sets the CSS classname for paging links in

the header area

ListElementClassName Sets the CSS classname for paging list

container in the header area

ListItemElementClassName Sets the CSS classname for paging list items

in the header area

ListLinkElementClassName Sets the CSS classname for paging list item

link in the header area

Pager: TPagerType Selects the pager type to be displayed in the

header

Search: Boolean When true, search in the table is possible

from a header input

Visible: Boolean When true, the header (or footer) becomes

visible

Properties for TTableControlPaging

Enabled: Boolean When true, paging is enabled in the

TWebTableControl

Index: integer Sets the index of the visible page

Size: integer Sets the page size in number of rows

Properties for TTableControlOptions

AutoCellEmail: Boolean When true, when the cell contains an email

address, it is automatically rendered as a

hyperlink

AutoCellURL: Boolean When true, when the cell contains an URL it

is automatically rendered as a hyperlink

AutoCellImage: Boolean When true, when the cell contains an URL

that represents an image, it is automatically

rendered as an image element

AutoNumAlign: Boolean When true, when the cell contains a number,

it is automatically rendered right-aligned

CellBorderColor: TColor Sets the color of cell borders

CellBorders: Boolean When true, the borders in the table are

visible

317

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ImageAlign: TTextAlign Sets the default alignment for images in

table cells

ImageWidth: integer When different from zero, this image width is

applied to images automatically rendered in

the table

ResizeColumns: Boolean When true, it is possible to resize columns at

runtime by dragging from the row headers

ScrollVertical: Boolean When true, a vertical scrollbar is displayed

when the number of rows exceed the

available table height

TWebEditDropDownTableControl

Description

TWebEditDropDownTableControl is an edit control with an attached dropdown

TWebTableControl. It allows from picking a value from a dropdown table.

Designtime

Runtime

Properties for TWebEditDropDownTableControl

318

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

These are the properties specific for TWebEditDropDownTableControl. For all properties on the

control, see also the base class TWebEditDropDown.

EditColumn: integer Sets the column in the table control linked to

the value in the edit control

TableOptions: TTableOptions Holds all table specific settings in the

dropdown

Properties for TTableOptions

This class property holds settings for the table control in the dropdown. Note that the table

control is also accessible via public property WebEditDropDownTableControl.Table:

TWebTableControl.

AutoCellEmail: Boolean When true, when the cell contains an email

address, it is automatically rendered as a

hyperlink

AutoCellURL: Boolean When true, when the cell contains an URL it

is automatically rendered as a hyperlink

AutoCellImage: Boolean When true, when the cell contains an URL

that represents an image, it is automatically

rendered as an image element

AutoNumAlign: Boolean When true, when the cell contains a number,

it is automatically rendered right-aligned

CellBorderColor: TColor Sets the color of cell borders

CellBorders: Boolean When true, the borders in the table are

visible

ColHeader: Boolean When true, the first column in the table is a

header column

ElementClassName: string Sets the CSS class for the outer HTML

element of the table control

ElementFont: TElementFont Sets whether the table adopts the

control.Font property or uses the browser

document or CSS based font

ElementHeaderClassName Sets the CSS class for the table header

ElementRowSelectClassName Sets the CSS class for a row in the table in

selected state

ElementSelectionClassName Sets the CSS class for cells in the table in

selected state

319

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementTableClassName Sets the CSS for the HTML TABLE element

Footer: TTableControlHeader Holds the footer settings for the table. See

TTableControlHeader settings under

TWebTableControl

Header: TTableControlHeader Holds the header settings for the table. See

TTableControlHeader settings under

TWebTableControl

ImageAlign: TTextAlign Sets the default alignment for images in

table cells

ImageWidth: integer When different from zero, this image width is

applied to images automatically rendered in

the table

Paging: TTableControlPaging Holds the paging settings for the table. See

TTableControlPaging settings under

TWebTableControl

ResizeColumns: Boolean When true, it is possible to resize columns at

runtime by dragging from the row headers

RowHeader: Boolean When true, the first row in the table is a

header row

ScrollVertical: Boolean When true, a vertical scrollbar is displayed

when the number of rows exceed the

available table height

TWebDBEditDropDownTableControl

Description

TWebDBEditDropDownTableControl is a DB-aware edit control with an attached dropdown DB-

aware TWebDBTableControl. It allows from picking a value from a dropdown table connected to

a dataset via TableSource and the editable value is bound to a dataset via

DataField/DataSource settings.

The additional settings compared to the non DB-aware version

TWebEditDropDownTableControl are:

DataField: string Sets the datafield for the edit value

DataSource: TWebDataSource Sets the datasource for the edit value

320

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TableSource: TWebDataSource Sets the datasource for the dropdown

TWebDBTableControl

321

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

322

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebResponsiveGrid

Description

Below is a list of the most important properties methods and events for TWebResponsiveGrid.

TWebResponsiveGrid represents a HTML table structure with a responsive behavior of

configuration of columns and rows in relationship to the screen size the control is rendered on.

Designtime

Runtime

The TWebResponsiveGrid renders items from its Items collection in columns and rows. The

number of columns and rows can dynamically adapt to the size of the screen on which the

control is rendered.

To add items to TWebResponsiveGrid, use the Items collection and set the HTML content for

each item via WebResponsiveGrid.Items[index].HTML: string;

For each item, there is also a Tag: integer property and ItemObject: TObject property for setting

information associated with the item.

The HTML element in the grid via which the item is rendered is also accessible via public

property WebResponsiveGrid.Items[index].ElementHandle: TJSHTMLElement.

HTML template tag

323

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebResponsiveGrid

Configuration of the responsive behavior of the control is set via the Options property.

ItemBorderColor Sets the border color of an item in normal

state

ItemClassName Sets the CSS class name for an item

ItemColor Sets the background color of an item in

normal state

ItemGap Sets the gap (horizontally and vertically) in

pixels between items in the grid

ItemHeight Sets the height of an item in pixels

ItemHoverBorderColor Sets the border color of an item in hovered

state

ItemHoverColor Sets the background color of an item in

hovered state

ItemPadding Sets the padding internally in an item in

pixels

ItemSelectedBorderColor Sets the border color of an item in selected

state

ItemSelectedColor Sets the background color of an item in

selected state

ItemSelectedTextColor Sets the text color of an item in selected

state

ItemTemplate Sets an optional HTML template to be used

when data for the responsive grid is

dynamically loaded from CSV or JSON. Use

(%FIELDNAME%) place-holders in the

HTML template to define which data should

be used in what parts of the HTML for the

item.

In addition, the placeholder

(%ITEMINDEX%) can be used to generate

324

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the index of the item in the item collection in

the resulting HTML.

ItemMinWidth Sets the minimum width of an item in pixels.

This will determine the number of columns

that can be rendered in the grid.

MultiSelect: boolean When true, multiple grid items can be set in

selected state by clicking. Otherwise, one

item can be selected and is reflected in the

ItemIndex property

ScrollVertical When true, a vertical scrollbar will be used

when the number of items exceeds the

height of the control. Otherwise, the height

will automatically increase to enable to

display of all items in the list.

Methods for TWebResponsiveGrid

LoadFromJSON(const AURL: string;

ADataNode: string);

Load JSON formatted data found a AURL

via a HTTP GET in the string grid. The

expected data is a JSON array. When the

ADataNode parameter is different from

empty, it tries to fetch the JSON array from

the ADataNode JSON node.

LoadFromCSV(const AURL: string;

Delimiter: char = ‘;’; LoadFixed: Boolean =

false)

Load CSV formatted data found a AURL via

a HTTP GET in the table contro. Optional

parameters are the delimiter to use to parse

the CSV file and when the LoadFixed

parameter is true, the CSV data is also

loaded in the fixed cells of the table control.

ItemByTag(ATag: integer):

TResponsiveGridItem

Returns the item with the specified tag value

when it exists or nil when not

ListElementHandle: TJSElement Returns the DIV HTML element that is the

container element of the responsive grid

HTML elements

Events for TWebResponsiveGrid

325

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnClick Event triggered when the grid is clicked

OnDblClick Event triggered when the grid is double-clicked

OnHttpRequestError Event triggered when there is a HTTP error

related to loading data from CSV or JSON.

OnHttpRequestSuccess Event triggered when the HTTP get request to get

data from CSV or JSON was successful.

OnGetCellChildren Event triggered when a new cell is rendered

during loading date from CSV or JSON in the grid.

Passes the HTML element for the grid cell

allowing to insert dynamically HTML child

elements in the cell

OnGetCellClass Event triggered when a new cell is rendered

during loading date from CSV or JSON in the grid.

Allows to set the CSS class name for an individual

cell allowing customization this way.

OnGetCellData Event triggered when a new cell is rendered

during loading date from CSV or JSON in the grid.

Allows to dynamically override or customize the

values retrieved from the CSV or JSON (or

dataset in case of a TWebDBGrid)

OnHttpRequestError Event triggered when an error occurred with the

HTTP GET request used to get data via methods

LoadFromJSON()/LoadFromCSV()

OnHttpRequestSuccess Event triggered when the HTTP GET request

used to get data via methods

LoadFromJSON()/LoadFromCSV() successfully

returned

OnItemClick Event triggered when an item in the grid is clicked

OnItemCreated Event triggered when an item in the grid is

created as a result of loading data from a CSV file

or JSON file. The Item can be accessed via

WebResponsiveGrid.Items[index] and the HTML

element in which the item is rendered via

WebResponsiveGrid.Items[index].ElementHandle:

TJSHTMLElement

OnItemDblClick Event triggered when an item in the grid is

double-clicked

OnItemGetFieldValue Event triggered when a value from a CSV column

or JSON field is going to be replaced in the HTML

template and via this event, the data can be

dynamically customized.

326

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnItemGetTemplate

Event triggered for each JSON object or row in

CSV file added allow customization of the item

template per item in the grid

Properties for TWebResponsiveGridItem

Public properties

ElementHandle: TJSHTMLElement Access to the HTML DIV container element

of the item

JSONElement: JSValue JSON object associated with the item in

case items were loaded from a JSON array

JSONElementValue[‘name’]: string Gets the JSON object ‘name’ attribute value

as string

Selected: boolean When Options.MultiSelect is set to true, this

holds the selection state of a single item

Published properties

HTML HTML content of the item

Tag Integer property

Visible Sets whether the item is visible or not in the

responsive grid

327

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebImageSlider

Description

In many scenarios, people want to show various pictures of things for specific items. Think

about a product on Amazon that might have different pictures taken from different angles, think

about an online real-estate broker presenting different houses with picture sets of the house on

sale or a car dealer showing cars for sale accompanied by pictures of the car in various

positions.

If you have such a use-case in your application, TWebImageSlider is the shortcut to achieve

this. Basicaly this is a container control where you add the links to the images to be displayed

and the control does everything else. It shows the picture thumbnails, a left / right slider button

and you can click on thumbnails to see the large version of a specific picture.

Properties for TWebImageSlider

Appearance.Bullets.Color Sets the color of the bullet indicating the

328

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

inactive image

Appearance.Bullets.ColorActive Sets the color of the bullet indicating the

active image

Appearance.Bullets.Opacity Sets the opacity (between 0 and 1) of the

bullets to perform the navigation between

images in the slider

Appearance.Bullets.Size Sets the size (in pixels) of the bullets

Appearance.Bullets.SpaceBetween Sets the space (in pixels) between bullets

Appearance.Bullets.SpaceEdge Sets the rounding (in pixels) of the bullets for

thumbnail navigation

Appearance.Buttons.Color Sets the color of the next / preview arrows

Appearance.Buttons.Visible When true, the navigation next / navigate

previous buton is visible

Appearance.NavigationStyle Sets the type of navigation in the image

slider as bullets, thumbnails or none

Appearance.Thumbnails.ColorActiveBorder Sets the border color around the active

thumbnail item

Appearance.Thumbnails.NumDisplayed Sets how many thumbnail images are

displayed under the active image

Appearance.Thumbnails.Opacity Sets the opacity of the thumbnail items

Appearance.Thumbnails.OpacityActive Sets the opacity of the active thumbnail item

Appearance.Thumbnails.SizePercent Sets how much % of the original image size

the thumbnails have

Appearance.Thumbnails.SpaceBetween Sets the horizontal space between

thumbnails in pixels

Appearance.Thumbnails.WidthActiveBorder Sets the border width around the active

thumbnail in the list

ImageURLs: TStringList String list holding the URLs for all images in

the TWebImageSlider

Public properties for TWebImageSlider

ActiveImageIndex Index of the selected (active) image in the

TWebImageSlider

PreviousActiveImageIndex Index of the previously selected image

LastClickedImageIndex Index of the image clicked

Methods for TWebImageSlider

329

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

RefreshImages Call when one or more images in the

ImageURLs string list was changed

Events for TWebImageSlider

OnImageChange Event triggered when the selected (active)

image is changed

Example code

This code snippet shows how to load new images in the TWebImageSlider and display tese:

var

 i: Integer;

begin

 for i := 1 to 8 do

 ImageSlider.ImageURLs.add(Format('./images/nature-%d.jpg', [i]));

 ImageSlider.RefreshImages;

end;

330

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebContinuousScroll

Description

The TWebContinuousScroll control offers the often used functionality in modern web client

applications to show lists of items filling the viewing area of the browser only and after this, only

load additional items when the user decides to scroll down. The reasoning behind such UI

control is simple. By loading only the items in view, the initial display of the page is very fast and

only when the user wants to see additional items, extra items are loaded asynchronously in the

list.

The TWebContinuousScroll works by requesting page per page of items for the list from the

server. The server is expected to return the items as an array of JSON objects. Each JSON

object is then rendered as an item in the list.

The request URL per page is set via an event. The component will perform the HTTP request

and will then trigger an event for each JSON object in the array to render it as an item.

Additional events are offered in case the server responds in a different way than returning an

array of JSON objects.

331

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebContinuousScroll

ButtonText When the LoadType is ltButton, then a button is displayed at

the bottom of the list from where a click will load extra items.

ButtonText sets the caption of this button

ElementButtonClassName Optionally sets the CSS classname for the load button when

styling via CSS is used

ElementListEndClassName Optionally sets the CSS classname for the information

displayed at the end of the list when no more items can be

loaded when styling via CSS is used

ElementLoadClassName Optionally sets the CSS classname for the label when styling

332

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

via CSS is used

ItemTemplate Sets the HTML template for filling the item content when it

gets loaded. Data placeholders are added in the HTML

template as (%placeholdername%)

ListEndText Sets the text displayed when the last item is retrieved

indicating to the users no more items are on the server

LoadScrollPercent Sets the value in percent of the scroll range from where

automatic loading of extra items should happen when the

user is scrolling (when LoadType is set to ltScroll)

LoadType Sets the way extra items are loaded:

ltButton: extra items are loaded when the button at the bottom

of the list is clicked

ltScroll: extra items are loaded when the user scrolled beyond

LoadScrollPercent of the scroll range

ltNone: no built-in loading of extra items is happening, extra

items are only loaded programmatically

PageNumber Sets the page number for items to load

PageSize Sets the number of items per page to load

PostData Sets the data that is posted along with the page number and

item count when a next page of data is requested in mode

rmPOST

RequestMode Sets the HTTP request type to use for fetching a next page of

items for the list. This can be a HTTP(s) GET request

(rmGET) or a HTTP(s) POST request (rmPOST)

ShowEnd When true, it is indicated that the end of the list of items is

reached

ShowLoading When true, a progress indicator is shown during the loading of

extra items

Methods for TWebContinuousScroll

FetchNextPage Method will load the next page of extra items in the list

Events for TWebContinuousScroll

OnFetchNextPage Event triggered when a new page of items needs to be

fetched from the server.

The URL for the fetch is expected to be returned via the

parameter AURL of the event. The event also returns the

index of page for which to request items as well as the page

333

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

size. This should be sufficient to create the URL for most

servers to fetch the next list of items.

OnGetData This event is triggered when the AURL string parameter from

OnFetchNextPage remains empty. A TJSArray can be passed

as an object array that contains the data to be displayed. If

there’s no more data to be displayed, set the ALoadMoreData

parameter to False.

OnGetListItem This event isi triggered for each JSON object returned from

the server after requesting a new page. It enables to

dynamically render the content per iitem. The event returns

the index of the item, the JSON object for the item and the

HTML container element for the item in the list. This way,

code can be added to the event handler to configure the

HTML element childs for the item.

Note that when the ItemTemplate contains a data container

placeholder identification, i.e. (%placeholdername%), this

placeholder data will be set to the value found in the JSON

object having the attribute name equal to this placeholder

name.

OnGetListItemFieldValue This event is triggered for each placeholder ID found in the

ItemTemplate. This allows not only to transform the value to a

display value for the item in the list but also to add

placeholders that are dynamically mapped to other values.

The placeholder name is returned as AFieldName parameter

and the value that will be set as placeholder data is expected

to be returned via the AValue var parameter.

OnJSONToItem This event permits to provide the custom conversion of a

JSON object to the HTML to be used for the item in the list.

Return this HTML via the var parameter AHTML for the

AObject parameter TJSONObject.

OnObjectToArray In case the JSON returned by the server is not a JSON array

but maybe a JSON object with a node containing the array,

this event can be used to return the proper node from the

returned JSON from the server. The parameter

AObject.jsobject is the JSON object returned from the server

and the event handler should return the JSON array from this

object via the AArray parameter.

OnPageLoaded This event is triggered when the page has been rendered

after data was retrieved from the serer.

OnResponseToArray This event is triggered returning the raw text data for the

server response. In case this data is not formatted as JSON

334

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

data, it permits to parse the data and return it as a JSON

array to the control for rendering.

335

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSignatureCapture

Description

Below is a list of the most important properties and methos for TWebSignatureCapture. This

component allows capturing a signature from the user in an application.

Designtime

Runtime

Properties for TWebSignatureCapture

ClearButton Various settings for the clear button.

Empty Public property that returns if the canvas is

empty.

Pen Settings for the pen.

TextPosition Various settings for the text.

Text Optional text to be shown. Default is “Sign

here”.

Methods for TWebSignatureCapture

GetAsBase64Image Returns the signature as a base64

encoded image.

336

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebCalendar

Below is a list of the most important properties, methods and events for TWebCalendar.

Designtime

Runtime

Properties for TWebCalendar

Day Sets/gets the selected day.

ElementBackgroundClassName Optionally sets the CSS classname for the

background

ElementCurrentDateClassName Optionally sets the CSS classname for the

current date

ElementDayNamesClassName Optionally sets the CSS classname for the day

names

ElementHeaderClassName Optionally sets the CSS classname for the

header

ElementSelectedDateClassName Optionally sets the CSS classname for the

selected date

EnablePastDates Disable or enable the selection of past

337

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

dates.

FirstDay Sets the first day of the week.

HintNext Sets a hint for the next button.

HintPrev Sets a hint for the previous button.

InactiveDays Sets the inactive days (for example:

InactiveDays.Monday := True sets all

mondays as inactive).

MaxDate Sets the maximum date.

MinDate Sets the minimum date.

Month Sets/gets the selected month.

MultiSelect Enable/disable selection of multiple dates.

NameOfDays Change the displayed names of the days.

NameOfMonths Change the displayed names of the

months.

SelectedDate Sets/gets the selected date.

ShowToday If enabled then today’s date is highlighted.

Year Sets/gets the selected year.

Methods for TWebCalendar

SelectedDates Returns a set of selected dates.

Events for TWebCalendar

OnDateSelected Event triggered when a date is selected.

OnDateUnselected Event triggered when a date is unselected.

338

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebGoogleReCaptcha

Description

The TWebGoogleReCaptcha implements v3 of the Google ReCaptcha API.

Below is a list of the most important properties methods and events for

TWebGoogleReCaptcha.

Please note that the Google ReCaptcha also requires server-side logic.

Information about the backend functionality can be found here:

https://developers.google.com/recaptcha/docs/verify?hl=en#token_restrictions

Designtime

Runtime

Properties for TWebGoogleReCaptcha

APIKey A valid Google API Key is required

APIUrl Sets the URLfor the backend API

Methods for TWebGoogleReCaptcha

Verify(Action) Start the ReCaptcha verification process. An

optional Action string value can be provided

which is returned with the OnVerified event.

Events for TWebGoogleReCaptcha

OnVerified Event triggered when the ReCaptcha

verification process has finished.

Returns the verification results in the Args

https://developers.google.com/recaptcha/docs/verify?hl=en#token_restrictions

339

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

parameter values: Action, Score,

TimeStamp, HostName

TWebGoogleDrive

Description

Below is a list of the most important properties methods and events for TWebGoogleDrive.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <IFRAME ID=”UniqueID”></IFRAME>

340

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementID UniqueID

Properties for TWebGoogleDrive

ElementClassName Optionally sets the CSS classname for the

map when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

component needs to be connected with.

When connected, no new object is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

FolderID Sets the ID of the Google Drive Folder to

display

View Sets if the files are displayed in a list (dvList)

or in a grid (dvGrid)

TWebGoogleMaps

Description

Below is a list of the most important properties, methods and events for TWebGoogleMaps.

341

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebGoogleMaps

APIkey Sets the Google Maps JavaScript API key

ElementClassName Optionally sets the CSS classname for the

map when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new map is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

MapID: string Sets the ID of the map to the Google Map ID

when a map style was generated in the

Google Developer Console. The MapID is

also needed when choosing the vector map

type

MapRender Selects the rendering type of the map. This

can be mrRaster (default) and mrVector.

Note that the mrVector rendering type needs

to be selected for allowing to change the

map heading and tilt. Also, vector rendering

needs to be enabled for a created mapID in

the Google Developer Console. It is not

enabled by default.

Options

MapStyle Sets the style used to display the map.

342

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Options are mstDefault, mstNightMode,

mstCustom. If set to mstCustom the style

specified in CusomStyle is used.

Custom styles can be generated at:

https://mapstyle.withgoogle.com/

CustomStyle Sets the custom style that is used when

MapStyle is set to mstCustom

DefaultLatitude Sets the default latitude position of the map

DefaultLongitude Sets the default longitude position of the

map

DefaultZoomLevel Sets the default zoom level of the map

Markers[AIndex: Integer] : TJSObject Array of markers currently displayed on the

map

Polygons[AIndex: Integer] : TJSObject Array of polygons currently displayed on the

map

Polylines[AIndex: Integer] : TJSObject Array of polylines currently displayed on the

map

Circles[AIndex: Integer] : TJSObject Array of circles currently displayed on the

map

Rectangles[AIndex: Integer] : TJSObject Array of rectangles currently displayed on

the map

Methods for TWebGoogleMaps

SetCenter(Lat, Lon: Double); Centers the map around geocoordinate

Lat/Lon

SetZoom(Zoom: Integer); Controls the map zoom level (between 1 and

21 for US & Europe, other areas the

maximum zoom level might be lower)

AddMarker(Lat, Lon: Double; Title: string =

'');

Adds a marker with optional title at

geocoordiate Lat/Lon

AddMarker(Lat, Lon: Double; PinIcon:

string;Title: string = '');

Adds a marker with image URL PinIcon and

with optional title at geocoordiate Lat/Lon

AddMarker(Lat, Lon: Double; Color: TColor:

PinLetter: string;Title: string = '');

Adds a marker with specified color and letter

in the pin and with optional title at

geocoordinate Lat/Lon

AddMarker(Lat, Lon: Double; Color: Adds a default Google marker with specified

https://mapstyle.withgoogle.com/

343

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TGoogleMarkerColor;Title: string = ''); color and with optional title at geocoordinate

Lat/Lon

The default Google colors can be:

mcDefault, mcRed, mcBlue, mcGreen,

mcPurple, mcYellow

AddMarker(Lat, Lon: Double; Shape:

TGoogleMarkerShape; Color: TColor;

BorderColor: TColor; Scale: Double;

CustomShape = string = ‘’;Title: string = '');

Adds a marker with specified shape, color,

bordercolor, scale and with optional title at

geocoordinate Lat/Lon

The shape can be:

msPin, msPinDot, msFlag, msBookmark,

msFlagSmall, msHome, msFavorite, msStar,

msCustom

If msCustom is selected a CustomShape

value can be provided.

AddMarker(Lat,Lon: Double; PinIcon: string;

Title: string; XOffset: integer = 0; YOffset:

integer = 0);

Adds a marker with specified image URL

and hint at geocoordinate Lat/Lon.

Optionally, an X,Y offset of the image versus

the Lat/Lon position can be specified

AddPolyline(Points: TJSArray; AColor:

TColor = clRed; AWidth: Integer = 2;

AOpacity: Double = 1)

Adds a polyline with the specified coordinate

Points and with optional color, width and

opacity

AddPolygon(Points: TJSArray; AFillColor:

TColor = clRed; AStrokeColor: TColor =

clBlack; AWidth: Integer = 2; AOpacity:

Double = 1)

Adds a polygon with specified coordinate

Points and with optional fill color, stroke

color, width and opacity

AddCircle(Lat, Lon: Double; Radius: Integer;

AFillColor: TColor = clRed; AStrokeColor:

TColor = clBlack; AWidth: Integer = 2;

AOpacity: double = 1)

Adds a circle with specified center

coordinates, radius and optional fill color,

stroke color, width and opacity

AddRectangle(NorthEastLat, NorthEastLon,

SouthWestLat, SouthWestLon: Double;

AFillColor: TColor = clRed; AStrokeColor:

TColor = clBlack; AWidth: Integer = 2;

AOpacity: Double = 1)

Adds a rectangle with specified coordinates,

radius and optional fill color, stroke color,

width and opacity

AddGPX(AGPX: string; AColor; TColor;

AWidth: Integer; AOpacity: Double);

Adds a GPX layer with optional Color, Width

and Opacity to the map

AddKML(Url: string; ZoomToBounds:

Boolean = true)

Adds a KML layer with specified Url to the

map and optionally zoom to the KML layer

bounds

ClearMarkers Removes all markers from the map

ClearPolylines Removes all polylines from the map

344

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ClearPolygons Removes all polygons from the map

ClearCircles Removes all circle from the map

ClearRectangles Removes all rectangles from the map

ClearKMLs Removes all KMLs from the map

MoveMarker(AIndex: integer; NewLat,

NewLon: double)

Moves the marker with index AIndex to the

new coordinates NewLat/NewLon.

ShowDirections(Source, Destination: string;

ATravelMode: TGoogleTravelMode =

tmDriving; WayPoints: TStringList = nil;

OptimizeWayPoints: Boolean = False;

AvoidHighways: Boolean = False;

AvoidTolls: Boolean = False);

Show the calculated route between Source

and Destination expressed as addresses.

Optionally set TravelMode, add WayPoints,

OptimizeWayPoints, AvoidHighways,

AvoidTolls

ShowDirections(SourceLon, SourceLat,

DestLon, DestLat: Double; ATravelMode:

TGoogleTravelMode = tmDriving;

WayPoints: TStringList = nil;

OptimizeWayPoints: Boolean = False;

AvoidHighways: Boolean = False;

AvoidTolls: Boolean = False);

Show the calculated route between Source

and Destination expressed as coordinates.

Optionally set TravelMode, add WayPoints,

OptimizeWayPoints, AvoidHighways,

AvoidTolls

RemoveDirections Removes the display of a route on the map

GeoCode(const Address: string); Converts the address to the geocoordinate

Lat/Lon. The result of the conversion is

retrieved via the event OnGeoCoded

PanTo(Lat, Lon: Double) Pan the center of the map to the provided

coordinates

SetHeading(AHeading: Double) Sets the heading of the map. Note that this

feature is only available when MapRender is

set to mrVector

SetTilt(ATilt: Double) Sets the tilting of the map. Note that this

feature is only available when MapRender is

set to mrVector

SetZoom(Zoom: Integer) Zoom the map to the provided zoom level

Distance(Lon1,Lat1,Lon2,Lat2: double):

double;

Calculates the straight-line distances in

kilometers between two coordinates

FitBounds(LatMin, LonMin, LatMax, LonMax:

Double)

Pan and zoom the map to the bounds of the

provided coordinates

GetCenter(var Lat, Lon: Double): Boolean Returns the current center coordinate of the

map

GetCoord(Lon,Lat: Double): JSValue Returns a Google maps coordinate object

from a given longitude and latitude

GetBBox(Lon1,Lat1,Lon2,Lat2: double): Returns a Google bounding box object from

345

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

JSValue; two coordinates

GetBounds(var NorthEastLat, NorthEastLon,

SouthWestLat, SouthWestLon: Double):

Boolean;

Returns the current bounds of the map

SetDoubleClickZoom(AValue: Boolean) Sets if the map is zoomed when a double

click occurs

SetScrollWheel(AValue: Boolean) Sets if the map is zoomed when the mouse

wheel is used

SetDraggable(AValue: Boolean) Sets if the map can be dragged to a new

position

SetMapType(AMapType: TGoogleMapType

= mtDefault)

Sets the map type to display. Options are

mtDefault, mtSatellite, mtHybrid, mtTerrain

SetMarkerTitle(AIndex: Integer; ATitle:

string)

Sets the title of the marker with index AIndex

SetMarkerLocation(AIndex: Integer; Lat,

Lon: Double);

Sets the location of the marker with index

AIndex

SetMarkerIcon(AIndex: Integer; Url: string); Sets the icon of the marker with index

AIndex

SetCircleCenter(AIndex: Integer; Lat, Lon:

Double);

Sets the center of the circle with index

AIndex

SetCircleRadius(AIndex, Radius: Integer); Sets the radius of the circle with index

AIndex

SetCircleColors(AIndex: Integer; AFillColor,

AStrokeColor: TColor);

Sets the colors of the circle with index

AIndex

SetRectangleLocation(AIndex: Integer;

NorthEastLat, NorthEastLon, SouthWestLat,

SouthWestLon: Double);

Sets the location of the rectangle with index

AIndex

SetRectangleColors(AIndex: Integer;

AFillColor, AStrokeColor: TColor);

Sets the colors of the rectangle with index

AIndex

SetPolylineColor(AIndex: Integer; AColor:

TColor);

Sets the color of the polyline with index

AIndex

SetPolylinePoints(AIndex: Integer; Points:

TJSArray);

Sets the points of the polyline with index

AIndex

SetPolygonColors(AIndex: Integer;

AFillColor, AStrokeColor: TColor);

Sets the colors of the polygon with index

AIndex

SetPolygonPoints(AIndex: Integer; Points:

TJSArray);

Sets the points of the polygon with index

AIndex

ShowStreetView(Lat, Lon: Double; Heading:

Integer = 0; Zoom: Integer = 0; Pitch: Integer

= 0)

Display streetview mode for the provided

coordinates. Optionally set the heading

direction, zoom level and pitch value

HideStreetView Hide streetview mode

346

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

RemoveMarker(AIndex: Integer); Remove the marker with index AIndex from

the map

RemovePolygon(AIndex: Integer) Remove the polygon with index AIndex from

the map

RemovePolyline(AIndex: Integer); Remove the polyline with index AIndex from

the map

RemoveCircle(AIndex: Integer); Remove the circle with index AIndex from

the map

RemoveRectangle(AIndex: Integer); Remove the rectangle with index AIndex

from the map

Events for TWebGoogleMaps

OnCircleClick Event triggered when a Circle is clicked

OnGeoCoded Event triggered when the geocoding started

with WebGoogleMaps.GeoCode() was

successful

OnKMLClick Event triggered when a KML is clicked

OnMarkerClick Event triggered when a marker is clicked

OnMapClick Event triggered when the map is clicked

OnMapDblClick Event triggered when the map is double-

clicked

OnMapIdle Event triggered when map interaction has

ended

OnMapLoaded Event triggered when the map has finished

loading.

Note that Properties/Methods that interact

with the map should only be used after this

event was triggered.

OnMapPan Event triggered when the map is panned

OnMapZoom Event triggered when the map is zoomed

OnPolylineClick Event triggered when a Polyline is clicked

OnPolygonClick Event triggered when a Polygon is clicked

OnRectangleClick Event triggered when a Rectangle is clicked

347

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLeafletMaps

Description

TWebLeafMaps is a component similar to TwebGoogleMaps but using the free Leaflet

JavaScript library with the free OpenStreetMaps service. Detailed information on properties,

methods and events can be found in the online documentation.

TWebGoogleChart

Description

Below is a list of the most important properties methods and events for TWebGoogleChart.

Note: To use Google Charts, it is important to activate the needed Google Charts JavaScript

library for this. Do this from the “Manage JavaScript Libraries” item from the project context

menu in the IDE project manager.

348

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

349

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

Properties for TWebGoogleChart

Appearance

Animation.Duration Duration of the chart animation

Animation.Easing Sets the type of animation easing.

Animation.Startup Sets if the chart is animated on startup

Background.BorderColor Sets the border color

Background.BorderWidth Sets the border width

Background.Color Sets the background color

HAxis.AutoMaxMinValue Automatically set the Max and Min values

of the HAxis based on the point values. If

true the MaxValue and MinValue properties

are ignored

HAxis.MaxValue Sets a custom Max value for the HAxis

HAxis.MinValue Sets a custom Min value for the HAxis

Legend.Alignment Sets the alignment of the legend

Legend.Position Sets the position of the legend

LineChart.CurveType Sets the curve of the line. Set to None to

350

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

disable line curve or Function to enable

PieChart.Enable3D Sets if a chart of type Pie is displayed in 3D

PieChart.PieHole Displays the Pie chart as a Donut chart.

The value configures the size of the donut

hole. Ignored if Enable3D is true

PieChart.PieSliceText Sets which data is displayed on each pie

slice. Options are Label, None, Percentage

or Value

ReverseCategories Sets the order in which the categories are

added to the chart. 1 for default order, 0 for

reversed order

Stacked Sets if data in a Bar, Column or Area chart

is displayed stacked or not

Tooltip Configures when the tooltip is displayed

VAxis.AutoMaxMinValue Automatically set the Max and Min values

of the VAxis based on the point values. If

true the MaxValue and MinValue properties

are ignored

VAxis.MaxValue Sets a custom Max value for the VAxis

VAxis.MinValue Sets a custom Min value for the VAxis

Chart Returns the chart as a TJSObject. Allows

customizing the chart via JavaScript calls

after the initial rendering. (See Example 3)

Data Returns the chart data as TJSObject. Allows

customizing the chart data via JavaScript

calls after the initial rendering. (See Example

3)

Series

AnnotationText Sets custom annotation text. Displayed if

AnnotationType is set to gcatText.

AnnotationType Sets the type of annotation to display.

Available types: gcatNone hides the

annotation, gcatData uses the datapoint

value and gcatText uses the

AnnotationText value.

Annotations are only supported for

ChartType Bar, Column, Area, Line, and

351

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Scattered.

ChartType Sets the type of chart to display. Only

series with ChartType Bar, Column, Area or

Line can be combined on a single Chart.

Color Sets the color of the datapoints

Line.LineWidth Sets line width for Series of ChartType

Area, Line or Scatter. Set to 0 to hide the

line and only display points.

Line.PointShape Sets the shape of the datapoints for Series

of ChartType Area, Line or Scatter.

Line.PointSize Sets the size of the datapoints for Series of

ChartType Area, Line or Scatter. Set to 0 to

hide the points and only display lines.

Title Sets the title of the Series

Title Sets the title of the chart

Methods for TWebGoogleChart

SetOption(AOption: string; AValue:

Boolean);

SetOption(AOption: string; AValue:

TJSObject);

SetOption(AOption: string; AValue: string);

Changes a chart option after the chart is

rendered. (See Example 4)

Series[].Values.AddSinglePoint(AValue:

Double; ALabel: string = ‘’);

Adds a point to a chart of type Area, Bar,

Column, Line.

Series[].Values.AddPiePoint(AValue:

Double; ALabel: string = ‘’; Offset: Double =

0; Color: TColor = clNone);

Adds a point to a chart of type Pie. The

Offset parameter sets the distance of the pie

slice from the main pie. The Color sets the

backgroundcolor of the slice, set to clNone

to use default colors.

Series[].Values.AddXYPoint(X, Y: Double); Adds a point to a chart of type Scatter.

Series[].Values.AddCandlestickPoint(X, Y,

Minimum, Maximum: Double; ALabel: string

= ‘’);

Adds a point to a chart of type Candlestick.

Series[].Values.AddTimelinePoint(StartTime,

EndTime: TDateTime: ALabel: string = ‘’);

Adds a point to a chart of type Timeline.

Series[].Values.AddBubblePoint(X, Y:

Double; Series: string; Size: Double; ALabel:

Adds a point to a chart of type Bubble.

352

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

string = ‘’);

Series[].Values.AddBubbleColorPoint(X, Y:

Double; Value: Double; ALabel: string = ‘’);

Adds a point to a chart of type BubbleColor.

The Value parameter determines the color of

the bubble.

Events for TWebGoogleChart

OnLoaded(Sender: TObject); Event triggered when the has finished

loading

OnSelect(Sender: TObject; Event:

TGoogleChartSelectEventArgs);

Event triggered when a datapoint on the

chart is selected. The Event parameter

contains the SeriesIndex and the PointIndex

OnCustomizeChart(Sender: TObject; var

Options: TGoogleChartOptions);

Event triggered before the chart rendering

starts. Allows configuration of selected

extended chart properties via the Options

parameter values. (See Example 2)

OnCustomizeChartJSON(Sender: TObject;

var Options: string);

Event triggered when the chart configuration

JSON data is ready. Allows to fully

customize the configuration of the chart via

the Options parameter.

Examples

Example 1: Configuring a BarChart

Demonstrates how to display a chart with just a few lines of code.

var

 it: TGoogleChartSeriesItem;

begin

 it := WebGoogleChart1.Series.Add;

 it.ChartType := gctPie;

 it.Values.AddPiePoint(80, 'Label A');

 it.Values.AddPiePoint(20, 'Label B');

end;

353

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Example 2: Customization options

Demonstrates how to customize a chart with extended options.

procedure TForm1.WebGoogleChart1CustomizeChart(Sender: TObject;

 var Options: TGoogleChartOptions);

begin

 Options.HAxis.ViewWindow.Min := '0';

 Options.HAxis.ViewWindow.Max := '100';

end;

Note: Options data must contain valid JSON data.

Full documentation of available configuration options can be found at:

https://developers.google.com/chart/interactive/docs/

(Select Chart Type from the list on the left, then select “Configuration Options” from the

“Content” items on the right)

Example 3: Adding and updating datapoints on the fly

Demonstrates how to dynamically add and update datapoints in an existing chart.

procedure TForm1.WebButton1Click(Sender: TObject);

var

 data: TJSObject;

 chart: TJSObject;

begin

 data := WebGoogleChart1.Data;

 chart := WebGoogleChart1.Chart;

 asm

 data.setValue(0, 1, 20); //rowIndex, columnIndex, value

 data.addColumn('number', 'Label'); //datatype, label

 data.addRow(['Row', 10, 20, 30, 40]); //rowTitle, Column values

 chart.draw(); //update chart

 end;

end;

Note: The Google Charts API reference can be found here:

https://developers.google.com/chart/interactive/docs/reference#methods

Example 4: Setting options on the fly

Demonstrates how to dynamically update options in an existing chart.

https://developers.google.com/chart/interactive/docs/
https://developers.google.com/chart/interactive/docs/reference%23methods

354

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 WebGoogleChart1.SetOption('vAxis.title', 'Y axis title');

end;

Note: Options data must contain valid JSON data.

Full documentation of available configuration options can be found at:

https://developers.google.com/chart/interactive/docs/

(Select Chart Type from the list on the left, then select “Configuration Options” from the

“Content” items on the right)

https://developers.google.com/chart/interactive/docs/

355

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSentry

Sentry.io is a cloud-based error monitoring service that can log errors from your Web App even

when it is being used by the customers.

Each error is logged as an issue and you can see the Stack Trace for each issue that can help

diagnose the problem.

Once the issues are logged, the Sentry dashboard has convenient features to manaage these

issues, for example, to assign them to other users who can see their issues and so on.

TMS Web Core provides a component “TWebSentry” that integrates Sentry.io with your web

core application. It encapsulates all the logic of sending errors to Sentry so that they are logged

as Issues. Also, the issues logged by TWebSentry in Sentry contain a Stack Trace that

conveniently shows the Delphi Pascal code.

Steps to set up
Sign up with Sentry.io

You can get started for Free.

Please go to https://sentry.io/auth/login/ and sign in with Google. It will ask you to sign up as a

New Organization.

Select an organization name and proceed to set up the account.

Perform these steps in the Dashboard

Create a project.

Select JavaScript as the platform.

Enter a project name.

On adding the project, it will display a screen of instructions. Please ignore them as the Sentry

web core component will be doing all that for you. Scroll to the bottom and you will see a button

“Take me to the Issue Stream.”

Click the button and it will show the Issues screen saying “Waiting for verification event.”

356

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Note that later you will be reaching the same Issues screen often from the “Issues” menu on the

left.

The event will complete when you follow the steps given below to set up your Delphi Web Core

App so that its errors end up as Issues on this screen.

Open DemoSentry project in Delphi

For the purpose of Demonstrating TWebSenty, there is a DemoSentry project in TMS Web

Core. In the following discussion, we give steps to use this Demo to see various features.

Copy required parameters from the Dashboard to Paste in Sentry Demo

The dashboard screens below use an organization name as “tms-software” and the project

name as “demo-sentry”. But you can select any other names and it will still work with

DemoSenty as long as the following steps are completed properly.

First bring up Project Settings

To do that, click on the drop down next to project name at the top.

357

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Click on the Gear icon next to the project as shown above.

Select “Client Keys (DSN)” on the Settings menu under SDK SETUP.

Copy the value of the DSN box by using hte button next to it.

Paste the DSN in the DemoSentry project as given below

Open the source code of the unit USentry.pas.

Paste the DSN value for the DSN property of the component in WebFormCreate.

Now Build the project and Run it. You will see the following screen in the browser.

358

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The purpose of this Demo is to create a variety of error types to see how they appear in Sentry

Dashboard as issues. You can always look at the Form code to see the actual sample code.

Let’s raise a Delphi Exception, catch it and send to Sentry

We will force a Delphi error in code, catch it in an Exception block and then send it to Sentry by

a CaptureException call.

To do that, click on the button “Catch Delphi Error and Send to Sentry” that executes the

following code.

359

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

As you can see, the exception is sent by calling method CaptureException of WebSentry1

component. The second parameter is an optional remark that we can fill up and send.

Now switch to the Sentry dashboard in the browser

We want to see if an Issue is recorded for the Delphi exception.

If you see the Issues screen that was waiting for an event, you should see an Issue now.

The second line above shows the error message that we raised the Delphi Exception with in

earlier code.

This is great because you will be able to see the errors from your TMS Web Core App in

Sentry as issues

360

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Further, you will be able to see the errors no matter where the customer is using the App.

What is even more useful is that you will be able to see the Stack Trace at the time of

error

Click on the above Issue to see the details. Scroll down a little and you should see the Stack

Trace.

But you will notice that this Stack Trace shows the JS code. That’s not so useful. Why

don’t we see the Pascal code?

The reason is that the demo is running on localhost which Sentry can not access. If you copy

the files of this demo to a web site and then follow the same steps as above to produce an

issue, you will see the Delphi code with Pascal Stack Trace.

361

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Let’s get the proper Pascal Stack Trace by running this demo from a web location

Go to the htdocs directory on your computer where the Web App is created by the build. From

there, copy the output files to a web host. Now run the same Demo from there and produce the

same issue. If you see the stack trace for that issue, you should see the proper Pascal stack

trace as in the following screenshot.

See how the correct source line that raises Delphi exception is shown from the Pascal unit

USentry.pas.

More on the Source Map file

If you see the htdocs folder for DemoSentry project where a build operation creates the output

files for the Web App, you will 2 JS files.

DemoSentry.js

DemoSentry.js.map

362

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The map file is the source map file that is needed to show the proper stack trace in Pascal.

When you uploaded the Web App to a web host above and ran the Web App from there, Sentry

could access the map file and could log the proper Pascal stack trace with the issue.

Note that currently the map file is only created when the project is built in Debug configuration.

An option to create the map file should be there for Release configuration too so that Web Apps

in production also get this feature to send Pascal stack trace.

Security Problem with the hosted Map file

Putting the source map file on the web host is a security risk because then it can be accessed

publicly and seen with all the code for the App!

The solution is to upload the source map file to Sentry and remove it from the web host so that it

is not publicly available and is only available to Sentry when logging its issues.

This is an advanced operation and requires you to install a command line tool called Sentry-cli

on your system. Please refer to the Sentry documentation to see how to download and install

Sentry-cli.

Using Sentry-cli to upload MAP file to Sentry

Let’s assume that you hosted the DemoSentry files from C:to the following web location:

https://mytest.com/DemoSentry

If so, the command line to upload the map file to Sentry is:

sentry-cli releases --org tms-software --project demo-sentry files

"DemoSentry@1.0" upload-sourcemaps C:\htdocs\DemoSentry --url-prefix

https://mytest.com/DemoSentry --rewrite

Where tms-software is the organization from the dashboard, demo-sentry is the project name

from the dashboard and “DemoSentry@1.0” is the Release from the Delphi source file. Release

is explained in the next section.

The above command uploads both the JS and JS Map file to Sentry. Then you can remove only

the Map file from the hosted web app and the stack trace will still appear properly with the

issues logged after that.

What is a release

You will notice a property Release set up for the WebSentry1 component in the Delphi USentry

unit source along with the DSN.

In Sentry, the issues are always under a release. This is quite logical because once you do bug

fixes for errors, you are creating another release of your app. In that case, you should change

the Release value in the Delphi source file. That way the errors (issues) related to a different

releases are kept separate.

For the same reason, the source maps are also associated with a Release. So when you have

another Release, you will need to upload your new Source Map files under the new release.

363

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Continuing with the rest of the Demo

1. Catch Delphi Error and Send to Sentry

We have already seen this case of sending a “caught” Delphi error to Sentry and inspecting the

logged issue along with the stack trace in Sentry dashbaord.

There are 3 other error conditions demonstrated in the Sentry Demo.

2. Catch JS Error and Send to Sentry

To see this in action, click on the button “Catch HS Error and Send to Sentry.”

You can try this, look at the code sample and see how the issue and stack trace appears in

Sentry.

364

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

As you can see, the call stack is correct, pointing to the proper line in the source that throws the

error.

How to log an additional remark along with the Exception

If you see the code that calls CaptureException in the unit, you will see a second parameter that

can send an optional Remark string to be logged in the issue.

365

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

To see this in action, enter some text in the Remark text box before you click on the Catch

Delphi Error button. Then if you see the details of the newly logged issue in the Sentry

Dashboard, you will see the Remark in the Additional Data section further down the page as

shown in the following screenshot.

What happens if Unexpected Errors occur in the Web App?

The cases that we saw earlier are anticipated errors that we catch and send to Sentry by calling

CaptureException.

What happens when unexpected errors occur either in your Web App or in Web Core? They are

automatically sent to Sentry to be logged as issues.

This feature is demonstrated with the second group of buttons in the Demo under “Simulate

unexpected (Uncaught) errors.”

366

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

3. Raise Delphi Exception Uncaught

Just click on the button “Raise Delphi Exception Uncaught.” The code just raises a Delphi

exception to simulate this condition. It doesn’t catch it or call any Sentry method.

Still, the error is reported to Sentry properly.

See the corresponding issue and the call stack in Sentry dashboard.

367

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

As you can see, the call stack is correct, pointing to the proper line that raised the Delphi

Exception in the USentry unit.

Isn’t this wonderful? This means you don’t even need to modify your Web App. Just use the

WebSentry component as described above and you get this feature out-of-the-box. Any Delphi

exceptions occurring in your code or in Web Core on the Customer locations will be reported as

issues in the Sentry dashboard.

4. Throw JS Error Uncaught

Similarly if you click on the second button, it throws a JS Error that is automatically sent to

Sentry and logged as an issue with the following stack trace.

368

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

5. How to log a message to Sentry?

Sometimes, even without errors, you may want to log an informational message in Sentry log.

369

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This can be done by calling CaptureMessage function of the WebSentry component. In the

Demo, click on the button “Send Log Message to Sentry” to do that.

It will appear in Sentry issues like the following screenshot.

Even the stack trace will be there if you look into the issue details.

370

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

More features in Sentry
These are not used in the Demo but methods exist in TWebSentry component to use these

features.

Set User

Sentry logs issues from all the customers using your Web App. In that case, how can you

disinguish an issue coming from a particular user? By default, Sentry logs the ip address as

user at the top of the issue.

But you can do better and set a user yourself by calling SetUser method of TWebSentry as

soon as you can identify the user, for example, after Login. For example,
WebSentry1.setUser('john@example.com');

It can be even a user name or id and is entirely upto your app on how you identify the user.

Once that is done, all the issues logged will be under this user.

In Sentry dashboard when you click on an issue, at the top right, you will see how many users

are facing this issue. Click on it and you will see the list as shown below.

Breadcrumbs

Sentry supports a concept called Breadcrumbs, which is a trail of events which happened prior

to an issue.

For any of the exceptions described above, a breadcrumb appears. When you log a message to

console, it also appears as breadcrumb.

In addition, you can call TWebSentry’s method AddBreadcrumb to add a breadcrumb with a

category and a message. Here is a a sample screenshot of breadcrumbs.

371

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The first breadcrumb was added by calling AddBreadcrumb with category “auth” and a message

to show that a user logged in. Even the user’s identity could have been logged here. Similarly,

the second breadcrumb has a category “data” and a message. The third breadcrumb is

automatic from the exception that occurred. So the breadcrumbs give us a quick summary that

user logged in, data was obtained and then the exception occurred.

Tags

Sentry automatically sets many tags for more details on an issue, for example, browser, os,

release, etc. Moreover, the issues can be searched by tags quickly. For example, you can

quickly search for issues occurring on OS Windows 7.

You can set custom tags too by calling SetTag method of TWebSentry. Once you set a tag, it

appears on all issues logged after that. Here is an example,

WebSentry1.SetTag('ReleaseNote', 'Grid problem fixed.');

Here is how the tag appears in the dashboard.

372

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

In this case, the tag appears first in the tag cloud.

Properties for TWebSentry

Enabled When True sends information to Sentry. Set

it to False to disable sending it.

DSN Required. Obtained from Project Settings in

Sentry dashboard

Release Set it to a String that identifies the Release

and groups issues under that release. Can

be any String, recommended name@version

format.

Methods for TWebSentry

Init If you set DSN and Release property values

at design time in Object Inspector then you

don’t need to call Init explicitly. It’s

automatically called on loading the form.

But if you set DSN and Release property

values in code, you must call Init after setting

them.

373

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

CaptureException procedure CaptureException(anObj:

 TJSObject; remark:

string='');

The component automatically sends

Exceptions and Errors to Sentry as long as

they are Uncaught.

But if you are catching certain Delphi

Exceptions or JS Errors in your code, they

won’t be sent to Sentry for logging unless

you explicitly send them by calling

CaptureException. Just pass the Delphi

Exception object or a JS Error object that

you caught as the first parameter to above

function. Note that these objects already

contain an error message. But if you want to

send some additional information, you can

send it as a string in the second parameter

to CaptureException.

CaptureMessage procedure CaptureMessage(aMsg:

string);

To send and log an informational message

in Sentry log, call CaptureMessage with a

string.

SetUser To better identify issues, set a user soon

after you can identify if in the web app, for

example, after login. Pass anything for

aName that you can identify in the log. For

example, it can even be an email address or

an id.

procedure SetUser(aName: string);

AddBreadCrumb Adds a breadcrumb to be listed in Sentry

log.

procedure

AddBreadcrumb(aCategory: string;

aMessage: string);

Choice of category string is arbitrary. Use

anything that makes sense in the logs.

374

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

SetTag Sets a custom tag with a key, value paid that

is listed in the issue Tags. The issue also

becomes searchable by the tag.

procedure setTag(aKey: string;

aValue: string);

TWebBrowserControl

Description

Below is a list of the most important properties methods and events for TWebBrowserControl.

Designtime

Runtime

HTML template tag

375

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <IFRAME ID=”UniqueID”></IFRAME>

ElementID UniqueID

Properties for TWebBrowserControl

ElementClassName Optionally sets the CSS classname for the

map when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

component needs to be connected with.

When connected, no new object is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

ReferrerPolicy Sets the preferred referrer policy. Available

options are: rfNone, rfNoReferrer,

rfNoReferrerWhenDowngrade, rfOrigin,

rfOriginWhenCrossOrigin, rfUnsafeUrl

Sandbox Sets which browse features are allowed.

Available options are: stAllowForms,

stAllowModals, stAllowOrientationLock,

stAllowPointerLock, stAllowPopups,

stAllowPopupsToEscapeSandbox,

stAllowPresentation, stAllowSameOrigin,

stAllowScripts, stAllowTopNavigation,

stAllowTopNavigationByUserActivation

URL Sets the URL to display

Methods for TWebBrowserControl

function CurrentURL: string; Retrieves the actual URL the browser

navigated to

376

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebMultimediaPlayer

Description

Below is a list of the most important properties methods and events for TWebMultimediaPlayer.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <VIDEO ID=”UniqueID”></VIDEO>

ElementID UniqueID

Properties for TWebMultimediaPlayer

AutoPlay Sets if the content will starts playing as soon

as it is ready

Controls Sets if the playback controls are displayed

ContextMenu Enable the context menu on the control or

not

377

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Optionally sets the CSS classname for the

map when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

component needs to be connected with.

When connected, no new object is created

but the Delphi class is connected with the

existing HTML element in the form HTML file

Loop Sets if the content is played in a continuous

loop

MultimediaType Sets if the content is Audio (mtAudio) or

Video (mtVideo)

Muted Sets if the audio output should be muted

PlaybackRate Sets the content playback speed

URL Sets the location of the media file

Volume Sets the volume of the audio output

378

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebMediaCapture

Description

TWebMediaCapture is a non-visual component to capture data from a device microphone or

camara. It allows to directly access the captured sound or video as binary data.

TWebMediaCapture is ideal to measure audio levels for example. Below is a list of the most

important properties methods and events for TWebMediaCapture.

Designtime

Runtime

Properties for TWebMediaCapture

Camera Sets the TWebCamera component from

where video capture will done

Capture Specifies what source to capture:

mctBoth: both video and audio

mctAudio: capture only audio

mctVideo: capture only video

FFTSize Sets the size (in sample points) of the data

used for an FFT (Fast Fourier Transform) for

audio level calculation.

RecordingMode Selects between manual or automatic

recording mode

mrmManual: record after programmatically

start & stop

mrmAutomatic: start recording automatically

after a critical audio level is reached

379

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Sensitivity Sets if the audio level sensitivity that triggers

an automatic recording

SmoothTimeConstant Constant used in calculation of the audio

level over time

Methods for TWebMediaCapture

Start Start the media recording

Stop Stop the media recording

Events for TWebMediaCapture

OnStartCapture Event triggered when media capture has

started

OnStopCapture Event triggered when media capture has

stopped returning the captured media data

as binary data or an encoded string

380

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebYoutube

Description

Below is a list of the most important properties methods and events for TWebYoutube.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <IFRAME ID=”UniqueID”></IFRAME>

ElementID UniqueID

Properties for TWebYoutube

AllowFullScreen When true, the button to show the video in

full screen is displayed

381

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

AutoPlay When true, the video starts playing as soon

as the page opens

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

VideoID Sets the Youtube ID of the video

382

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebTwitterFeed

Description

Below is a list of the most important properties methods and events for TWebTwitterFeed.

TWebTwitterFeed is an easy way to display a Twitter feed in a page. The Twitter feed displays

as soon as the Feed (Twitter ID) is set.

Designtime

Runtime

383

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebTwitterFeed

ElementClassName Optionally sets the CSS classname for the

label when styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new label is created but the

Delphi class is connected with the existing

HTML element in the form HTML file

Feed Sets the id of the Twitter feed to display

FeedLinkText Sets additional text displayed together with

the feed items

TWebCSSClass

Description

TWebCSSClass is a non-visual component that allows to set at design-time (but also in run-time

via code), properties of a CSS class. You can select the CSS classname for this component and

then use this CSS class to style controls on the form. When changing properties of

TWebCSSClass at run-time, either use this in a block WebCSSClass.BeginUpdate /

WebCSSClass.EndUpdate or call WebCSSClass.UpdateCSS to have it updated at run-time and

applied in the browser.

Note that when many property values or 0, clNone, empty string, … these CSS style properties

are not generated. The TWebCSSClass tries to generate the minimum CSS properties of the

CSS class.

384

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Runtime

Properties for TWebCSSClass

BackgroundColor: TColor Sets the HTML element background color

Border: TCSSBorder Holds the settings for the entire element border

BorderBottom: TCSSBorder Sets the characteristics of the bottom border of the

HTML element when used

BorderLeft: TCSSBorder Sets the characteristics of the left border of the HTML

element when used

BorderRight: TCSSBorder Sets the characteristics of the right border of the HTML

element when used

BorderTop: TCSSBorder Sets the characteristics of the bottom border of the

HTML element when used

BorderBottomLeftRadius Sets the rounding radius of the bottom left corner

BorderBottomRightRadius Sets the rounding radius of the bottom right corner

BorderTopLeftRadius Sets the rounding radius of the top left corner

BorderTopRightRadius Sets the rounding radius of the top right corner

BorderRadius Sets the rounding radius of the HTML element 4

corners

BoxShadow: TCSSBoxShadow Sets the characteristics of the shadow for the HTML

element

Color: TColor Sets the text color in the HTML element

CSSClassName: string Sets the name of the CSS class that will be generated

in the DOM

Cursor: TCSSCursor Sets the cursor to be used when the mouse is over the

HTML element. Possible values are: cuDefault,

385

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

cuCrosshair, cuPointer, cuMove, cuEResize,

cuNEResize, cuNWResize, cuNResize, cuSEResize,

cuSWResize, cuSResize, cuWResize, cuText, cuWait,

cuHelp

Reference:

https://www.w3schools.com/cssref/pr_class_cursor.asp

Display: TCSSDisplay Sets the CSS display property. Possible values are:

cdNone, cdInline, cdBlock, cdInlineBlock, cdListItem,

cdRunIn, cdCompact, cdTable, cdInlineTable

Reference:

https://www.w3schools.com/cssref/pr_class_display.asp

Font: TCCSFont Sets the CSS characteristics of the font used in the

HTML element

Height: TCSSSize Sets the element height CSS characteristics

Margin: TCSSSize Sets the element margin CSS characteristics

MarginBottom: TCSSSize Sets the element bottom margin CSS characteristics

MarginLeft: TCSSSize Sets the element left margin CSS characteristics

MarginRight: TCSSSize Sets the element right margin CSS characteristics

MarginTop: TCSSSize Sets the element top margin CSS characteristics

Opacity: single Sets the HTML element opacity

Overflow: TCSSOverflow Sets the CSS overflow property. Possible values are:

ofNone, ofVisible, ofHidden, ofScroll, ofAuto,

ofNoDisplay, ofNoContent

Reference:

https://www.w3schools.com/cssref/pr_pos_overflow.asp

OverflowX: TCSSOverflow Sets the CSS width overflow property

OverflowY: TCSSOverflow Sets the CSS height overflow property

Padding: TCSSPadding Sets the element padding CSS characteristics

PaddingBottom: TCSSPadding Sets the element bottom padding CSS characteristics

PaddingLeft: TCSSPadding Sets the element left padding CSS characteristics

PaddingRight: TCSSPadding Sets the element right padding CSS characteristics

PaddingTop: TCSSPadding Sets the element top padding CSS characteristics

Text: TCSSText Sets the CSS text formatting properties

Width: TCSSSize Sets the element width CSS characteristics

Properties for TCSSBorder

https://www.w3schools.com/cssref/pr_class_cursor.asp
https://www.w3schools.com/cssref/pr_class_display.asp
https://www.w3schools.com/cssref/pr_pos_overflow.asp

386

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Color: TColor Sets the border color

Style: TBorderStyle Sets the border style. Possible values are:

bsnone, bshidden, bsdotted, bsdashed,

bssolid, bsdouble, bsgroove, bsridge,

bsinset, bsoutset, bsinitial, bsinherit

Width: TBorderWidth Sets the border width. Possible values are:

bwnone, bwthin, bwmedium, bwthick, px1,

px2, px3, px4, px5, px6, px7, px8, px9, px10

Properties for TCSSBoxShadow

HOffset: integer Depth of the shadow in the horizontal

direction

VOffiset: integer Depth of the shadow in the vertical direction

Blur: integer Blur of the shadow

Color: TColor Color of the shadow

Spread: integer Spread of the shadow

Properties for TCSSFont

Style: TCSSFontStyle Font style. Possible values are: fssNormal,

fssItalic, fssOblique, fssInherit

Variant: TCSSFontVariant Font variant characteristics. Possible values

are: fvNormal, fvSmallCaps, fvInherit

Weight: TCSSFontWeight Font weight. Possible values are: fwNormal,

fwBold, fwBolder, fwLighter, fw100, fw200,

fw300, fw400, fw500, fw600, fw700, fw800,

fw900, fwinherit

Size: TCSSFontSize Font size. Possible values are: fszxxsmall,

fszxsmall, fszsmall, fszmedium, fszlarge,

fszxlarge, fszxxlarge, fszsmaller, fszlarger,

fszInherit

Family: string Font family name

Stretch: TCSSFontStretch Font stretching characteristics. Possible

values are: fsUltraCondensed,

fsExtraCondensed, fsCondensed,

fsSemiCondensed, fsNormal,

fsSemiExpanded, fsExpanded,

387

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

fsUltraExpanded, fsExtraExpanded, fsInherit

SizePx: double Font size in pixels

SizePct: integer Font size in percent

Properties for TCSSText

Align: TCSSTextAlign Sets the horizontal alignment of text in the

HTML element. Possible values are: taStart,

taEnd, taLeft, taRight, taCenter, taJustify

Decoration: TCSSTextDecoration Sets optional text decoration. Possible

values are: tdNone, tdUnderline, tdOverline,

tdLineThrough, tdBlink

Direction: TCSSTextDirection Sets the text direction CSS property.

Possible values are: tdltr, tdrtl, tdinherit

Justify: TCSSTextJustify Sets the text justification CSS property.

Possible values are: tjAuto, tjInterword,

tjInterIdeoGraph, tjInterCluster, tjDistribute,

tjKashida, tjTibetan

LineHeightPx: double Sets the text line height in pixels

Shadow: TCSSTextShadow Sets the optional shadow for rendered text

Wrap: TCSSTextWrap Font size in pixels

Properties for TCSSPadding

Type: TCSSPaddingType Sets the type of padding to apply. Possible

values are: ptLength, ptPercent

Value: double Sets the value of padding in pixels

Properties for TCSSSize

Type: TCSSSizeType Sets the type of size to apply. Possible

values are: stAuto, stLength, stPercent

Value: double Sets the value of size in pixels

388

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebCamera

Description

Below is a list of the most important properties methods and events for the

TWebCamera. TWebCamera is using the MediaDevices.getUserMedia() API. Because of

this, two mayor limitations are:

• The TWebCamera won’t work in any browser that does not support the getUserMedia

API.

• It is not yet supported in iOS PWA.

Designtime Runtime

Selecting a device

The initialization of the available camera devices is an async process. The setup requires a few

steps but with the provided properties and events you can create a list for the user to pick their

preferred camera to use.

Suppose a TWebCamera is already available on the form. Set the CameraType property to

ctSelected. In this example we will use a TWebComboBox to create a list of devices.

In the OnCameraDevicesInitialized event we can fill the TWebComboBox:

view plain text

1. procedure TForm1.WebCamera1CameraDevicesInitialized(Sender: TObject);
2. var
3. I: Integer;
4. d: TCameraDevice;
5. begin
6. for I := 0 to WebCamera1.CameraDevices.Count - 1 do

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
markdown/webcore.html

389

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

7. WebComboBox1.Items.Add(WebCamera1.CameraDevices.Items[I].Name);
8.
9. //If you want to select the first available device in the TWebComboBox, then:
10. if WebComboBox1.Items.Count <> 0 then
11. begin
12. WebComboBox1.ItemIndex := 0;
13.
14. //If you want to start the camera stream immediately
15. //with the first selected device, then:
16. d := WebCamera1.CameraDevices.GetDeviceByName(WebComboBox1.Items[0]);
17. WebCamera1.SetSelectedCameraDevice(d);
18. WebCamera1.Start;
19. end;
20. end;

And to handle the selection of the device from the user, we can use the OnChange event of the

TWebComboBox:

view plain text

1. procedure TForm1.WebComboBox1Change(Sender: TObject);
2. var
3. d: TCameraDevice;
4. begin
5. d := WebCamera1.CameraDevices.GetDeviceByName(WebComboBox1.Items[WebComboBox1.ItemInd

ex]);
6. WebCamera1.SetSelectedCameraDevice(d);
7. end;

Now you can call WebCamera1.Start when the camera stream needs to be started.

Starting the camera stream automatically

If the component would start the camera streaming itself if the selected devices has changed,

then it might lead to undesirable behavior in some applications. Therefore, this is something the

developer have to take care of themself. If you want to start the camera as soon as the selected

device has changed, then you can do so by using the OnSwitchCamera event:

view plain text

1. procedure TForm1.WebCamera1SwitchCamera(Sender: TObject;
2. ACamera: TCameraDevice);
3. begin
4. WebCamera1.Start;
5. end;

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

markdown/webcore.html
markdown/webcore.html

390

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML tag <VIDEO ID=”UniqueID”></VIDEO>

ElementID UniqueID

Properties for TWebCamera

Property Description

BrowserSupportedConstraints:

TStringList

Public property for settings for camera constraints

See:

https://developer.mozilla.org/en-

US/docs/Web/API/Media_Streams_API/Constraints

CameraDevices:

TCameraDevices

A read-only property to retrieve a collection of camera devices

that are available.

CameraType: TCameraType Set or retrieve the camera type. Available values are: ctFront,

ctRear, ctSelected. In case of ctFront and ctRear the component

will try to use the preferred camera. ctSelected is used in

combintation with the CameraType property, where a selected

camera must be set based on the available devices.

Paused: Boolean A read-only property to retrieve if the camera is in a paused

state.

SnapShotAsBase64: string A read-only property to retrieve a snapshot from the camera as

a Base64 encoded string.

SnapShotAsImageData:

TJSImageData

A read-only property to retrieve a snapshot from the camera as

a TJSImageData.

Methods for TWebCamera

Method Description

Pause Method to pause the camera stream.

Resume Method to return to the paused camera stream.

SetSelectedCameraDevice(aDevice:

TCameraDevice)

Method to set the selected camera device.

Start Method to start the camera stream.

Stop Method to stop the camera stream completely.

Events for TWebCamera

Event Description

https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API/Constraints
https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API/Constraints

391

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnBeforeStart Event triggered before the camera starts recording

OnCameraDevicesInitialized Event triggered when the camera devices are initialized and

available.

OnCameraPause Event triggered when the camera gets paused.

OnCameraResume Event triggered when the camera resumes.

OnCameraStreamPlay Event triggered when the camera stream starts playing.

OnCameraStop Event triggered when the camera stream stops.

OnClick Event triggered when the control is clicked.

OnDblClick Event triggered when the control is double clicked.

OnMouseDown Event triggered when the mouse is down on the control.

OnMouseEnter Event triggered when the mouse enters the control.

OnMouseLeave Event triggered when the mouse leaves the control.

OnMouseUp Event triggered when the mouse goes up on the control.

OnMouseMove Event triggered when the mouse moves on the control.

OnSwitchCamera Event triggered when the selected camera device changes.

TWebXLSX

Description

TWebXLSX is a component that allows to do import and export of XLSX files from a web

client application. This non-visual component can be hooked directly to a

TWebStringGrid component to import plain data from the XLSX file into the grid or vice

versa. In addition, the XLSX file can also be access through this non-visual component.

Properties for TWebXLSX

Property Description

Grid Possible assigned TWebStringGrid instance for which sheet data can

be imported or exported

GridStartCol: integer Sets the column in the connected grid from where to start the import

or export of cells to XLSX

GridStartRow: integer Sets the row in the connected grid from where to start the import or

392

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

export of cells to XLSX

XlsxStartCol: integer Sets the column in the XLSX sheet from where to start the import or

export of cells to the grid

XlsxStartRow: integer Sets the row in the XLSX sheet from where to start the import or

export of cells to the grid

ColumnCount: integer Readonly public property holding the number of columns in a sheet

RowCount: integer Readonly public property holding the number of rows in a sheet

ActiveSheet: string Public property allowing to get or set the name of the active sheet in

the workbook

SheetNameCount: integer Readonly public property returning the number of sheets in the

workbook

Creator: string Public property allowing to get or set the workbook creator

information in the XLSX file

LastModifiedBy: string Public property allowing to get or set the last modifed information in

the XLSX file

CellAsString[ACol,ARow]:

string;

Readonly function returning the valuel of a cell as string

CellAsObject[ACol,ARow]:

TXLSXCell;

Readonly function returning the valuel of a cell as TXLSXCell object

Methods for TWebXLSX

Method Description

AddNewSheet(AsheetName:

string)

Creates and adds a new sheet in the XLSX workbook

RemoveSheet(AsheetName:

string);

Removes a sheet from the XLSX workbook

IsEmptySheet(AsheetName:

string);

Returns true if a sheet in the XLSX workbook does not contain any

data

ExportToCSV: TJSPromise Async promise method exporting an XLSX file to CSV file

 Event triggered when an XLSX workbook was completely loaded

GetCellObjects(AFromCol,

AFromRow, AToCol,

AToRow: Integer):

TXLSXCellArray;

Retrieves cells specified from the active sheet in an array of cells

object

393

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Method Description

Load(AArray:

TJSArrayBufferRecord);

Load an array of values into the active sheet of the XLSX

workbook

Save(AFileName: string) Save the workbook to file

Events for TWebXLSX

Event Description

OnLoadCell Possible assigned TWebStringGrid instance for which sheet data can

be imported or exported

OnNewSheetAdded Sets the column in the connected grid from where to start the import

or export of cells to XLSX

OnSaveCell Event triggered just before the cell is added to the XLSX file, allowing

dynamic customization of what is persisted in XLSX.

OnSheetLoaded Event triggered when a sheet of the XLSX workbook was completely

loaded

OnWorkbookLoaded Event triggered when an XLSX workbook was completely loaded

In the TWebXLSX workbook sheet, the information of cells is available as object of the type

TXLSXCell. Through this object, various properties of the cell can be set or retrieved.

Properties for TXLSXCell

Property Description

Text: string Value of the cell as string

Value: JSValue Value of the cell as JavaScript object

CellType Returns the type of the cell

Names Sets the column in the XLSX sheet from where to start the import or

export of cells to the grid

NumericFormat: string Holds the number formatting rule for the cell

Font: TXLSXStyleFont Holds the information about the cell font as TXLSXStyleFont object

Alignment:

TXLSXStyleAlignment

Holds the information about the cell alignment as

TXLSXStyleAlignment object

394

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Border:

TXLSXStyleBorder

Holds the information about the cell border as TXLSXStyleBorder

object

Protection:

TXLSXStyleProtection

Holds the information about the cell border as TXLSXStyleProtection

object

Fill: TColor Gets or sets the background color of the cell

Properties for TXLSXStyleFont

Property Description

Theme: integer Holds the theme identifer

Name: string Holds the font-family name

Size: integer Holds the font size

Color: Tcolor Holds the font color

Style:

TXLSXStyleFontStyles

Holds the font style: xfsBold, xfsItalic, xfsStrike, xfsOutline

Charset: integer Holds the charset identifer

VerticalAlign:

TXLSXStyleFontAlign

Holds the vertical align setting: xfaDefault, xfaSuperscript,

xfaSubscript

Underline:

TXLSXStyleFontUnderline

Holds the underline setting: xfuNone, xfuSingle, xfuDouble,

xfuSingleAccounting, xfuDoubleAccounting

Properties for TXLSXStyleAlignment

Property Description

Vertical:

TXLSXStyleVerticalAlignment

Holds the vertical alignment setting: xvaTop, xvaMiddle,

xvaBottom, xvaDistributed, xvaJustify

Horizontal:

TXLSXStyleHorizontalAlignment

Holds the horizontal alignment setting: xhaLeft, xhaCenter,

xhaRight, xhaFill, xhaJustify, xhaCenterCont, xhaDistributed

WrapText: boolean When true, text is wordwrapped in the cell

ShrinkToFit: boolean When true, text size is adapted to fit in the cell

Indent: integer Holds the text indent

ReadingOrder: Holds the reading order setting: xroRTL, xroLTR

395

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TXLSXStyleReadingOrder

TextRotationAngle: integer Angle of rotation

VerticalText: boolean True when the text is vertically oriented

Properties for TXLSXStyleBorder

Property Description

Top: TXLSXStyleBorderBase Holds the top border setting

Left: TXLSXStyleBorderBase Holds the left border setting

Bottom:

TXLSXStyleBorderBase

Holds the bottom border setting

Right: TXLSXStyleBorderBase Holds the right border setting

Diagonal:

TXLSXStyleBorderDiagonal

Holds the diagonal border setting

Properties for TXLSXStyleBorderBase

Property Description

Style: TXLSXStyleBorderStyle Style of the border: xbsNone, xbsThin, xbsDotted,

xbsDashDot, xbsHair, xbsDashDotDot,

 xbsSlantDashDot, xbsMediumDashed,

xbsMediumDashDotDot, xbsMediumDashDot,

 xbsMedium, xbsDouble, xbsThick

Color: Tcolor Color of the border

Theme: integer XLSX theme identifier

Properties for TXLSXStyleBorderDiagonal

Property Description

396

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Up: boolean, Diagonal border is up

Down: boolean Diagonal border is down

397

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

398

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

DB-aware components

TMS WEB Core offers the concept of a dataset and datasource. Via a dataset and a

datasource, UI controls can be directly connected to a dataset, avoiding to write any code to

show data and update data.

Databinding works similar as in VCL application. A DB-aware control has a DataSource property

that is connected to a non-visual datasource component (TWebDataSource). The

TWebDataSource is in turn connected to a dataset, for example the TWebClientDataSet. Other

than the DataSource property, the DB-aware control uses the FieldName property to select the

DB field with which to connect the DB-aware control.

The non-visual datasource and dataset components can be placed directly on the form, or even

better, on a TWebDataModule.

TWebDataSource

Description

TWebDataSource provides an interface between a dataset component and data-aware controls

on a form. Use TWebDataSource to provide a conduit between a dataset and data-aware

controls on a form that enable display, navigation, and editing of the data underlying the

dataset. All datasets must be associated with a data source component if their data is to be

displayed and manipulated in data-aware controls. Similarly, each data-aware control needs to

399

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

be associated with a data source component in order for the control to receive and manipulate

data.

Properties for TWebDataSource

AutoEdit Determines if a data source component

automatically calls a dataset's Edit method

when a data-aware control associated with

the data source receives focus.

DataSet Specifies the dataset for which the data

source component serves as a conduit to

data-aware controls or other datasets.

Enabled Determines if the data-aware controls

associated with the data source component

display data.

TWebClientDataSet

Description

TWebClientDataSet is the class for an in browser memory dataset. Client datasets can work

with data retrieved from a REST request or by directly assigning JSON arrays. They cache that

data in memory, maintain a record of any changes in a change log, and apply cached updates

at a later point back to the source of the data.

Properties for TWebClientDataSet

Active Specifies whether or not a dataset is open.

Connection Sets the TWebClientConnection component

that can take care of performing the REST

requests to load the data in the

TWebClientDataSet.

DataSource Represents the data source of another

dataset that supplies values to the dataset.

Fields Use Fields to access field components. If

fields are generated dynamically at runtime,

the order of field components in Fields

400

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

corresponds directly to the order of columns

in the table or tables underlying a dataset. If

a dataset uses persistent fields, then the

order of field components corresponds to the

ordering of fields specified in the Fields

editor at design time.

FieldDefs Points to the list of field definitions for the

dataset.

Params Use Params to specify parameter values that

the provider should pass to a source dataset

RecNo Indicates the active record in the dataset.

RecordCount Returns the number of records in the dataset

Rows: TJSArray JSON array property allow to set the dataset

data from a JSON array

Methods for TWebClientDataSet

ApplyUpdates Sends all updated, inserted, and deleted

records from the client dataset to the

provider for writing to the database.

Cancel Cancels unposted changes to the current

record.

ClearFields Removes all fields from the fields collection

Close Closes the dataset. Equivalent to setting

Active = false

Delete Deletes the active record and positions the

dataset on the next record.

Edit Sets the dataset in edit mode

EmptyDataSet Removes all data (records) from the dataset

First Moves to the first record in the dataset.

Insert Puts the dataset in insert state

Last Moves to the last record in the dataset.

Next Moves to the next record in the dataset.

Open Opens the dataset. Equivalent to setting

Active = true

Post Writes a modified record to the Data property

or the change log.

Prior Moves to the previous record in the dataset.

401

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebClientDataSet

AfterCancel Event triggered after a cancel operation on

the dataset

AfterClose Event triggered after a dataset close

AfterDelete Event triggered after a delete operation on

the dataset

AfterEdit Event triggered after the dataset was set in

edit mode

AfterInsert Event triggered after the dataset was set in

insert mode

AfterOpen Event triggered after a dataset open

AfterPost Event triggered after a post operation on the

dataset

AfterScroll Event triggered after a scroll

BeforeCancel Event triggered just before a cancel

operation will be performed on the dataset

BeforeClose Event triggered just before the dataset will

be effectively closed

BeforeDelete Event triggered just before a delete

operation will be performed on the dataset

BeforeEdit Event triggered just before the dataset is set

into edit mode

BeforeInsert Event triggered just before an insert

operation will be performed on the dataset

BeforeOpen Event triggered just before the dataset will

be effectively opened

BeforePost Event triggered just before a post operation

will be performed on the dataset

BeforeScroll Event triggered just before a scroll will

happen in the dataset

OnCalcFields Occurs when an application recalculates

calculated fields.

OnDeleteError Occurs when an application attempts to

delete a record and an exception is raised.

OnEditError Occurs when an application attempts to

modify or insert a record and an exception is

raised.

OnFilterRecord Occurs each time a different record in the

dataset becomes the active record and

filtering is enabled.

402

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnNewRecord Occurs when an application inserts or

appends a new dataset record.

OnPostError Occurs when an application attempts to

modify or insert a record and an exception is

raised.

OnUpdateRecord Occurs when cached updates are applied to

a record.

TWebClientConnection

Description

TWebClientConnection is a non-visual component that can take of the loading of

TWebClientDataSet data via a HTTP request returning a JSON array.

Properties for TWebClientConnection

Active Property to set the connection to active.

Setting Active = true means the

TWebClientConnection will try to fetch the

data from the URL that is set with the URI

property

AutoOpenDataSet When true, the dataset using the

TWebClientConnection will be automatically

set to Active = true after the JSON array

response of the HTTP request is loaded

Command Sets the HTTP command to use for

retrieving the dataset information. The

default command is httpGET.

httpCUSTOM : a custom HTTP command

set with WebHttpRequest.CustomCommand

httpDELETE : a HTTP DELETE command

httpGET : a HTTP GET command (default)

httpHEAD : a HTTP HEAD command

403

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

httpPOST : a HTTP POST command

httpPUT : a HTTP PUT command

CustomCommand Specifies the HTTP custom command to use

when Command is set to httpCustom.

DataNode Sets an optional JSON node name under

which the JSON array of data can be found.

Note that for nodes hierarchically multiple

lebels deep, DataNode can be specified with

backslash to separate hierarchical nodes.

Example: ‘NodeTopLevel\NodeSubLevel’

Headers Can contain optional HTML headers to be

sent to the server when making the HTTP(s)

request to retrieve the data

Password Sets the password to be used in case the

HTTP(s) request needs authentication

PostData Data that is posted to the server when

needed for the HTTP request

URI Sets the URL

User Sets the user name to be used in case the

HTTP(s) request needs authentication

Events for TWebClientConnection

AfterConnect Event triggered after the connection was

successful

BeforeConnect Event triggered before the HTTP(s) request

will be performed

OnConnectError Event triggered when the HTTP(s) request

was unsuccessful

OnDataReceived Event triggered when data from the server

was returned.

404

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBLabel

Description

This is a DB-aware label. The label connects typically to a DB string field and shows the content

of the DB string field as label on the form.

The TWebDBLabel is connected via DataSource and DataField properties to a dataset.

TWebDBEdit

Description

This is a DB-aware edit control. The edit control connects typically to a DB string field and

allows to edit the content of the DB string field via an edit control on the form.

The TWebDBEdit is connected via DataSource and DataField properties to a dataset.

TWebDBEditBtn

Description

This is a DB-aware edit control with attached button. The edit control connects typically to a DB

string field and allows to edit the content of the DB string field via an edit control on the form.

The TWebDBEditBtn is connected via DataSource and DataField properties to a dataset.

405

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBEditAutoComplete

Description

This is a DB-aware edit control with auto completion based on a preset list of strings. The edit

control connects typically to a DB string field and allows to edit the content of the DB string field

via an edit control on the form.

The TWebDBEditAutoComplete is connected via DataSource and DataField properties to a

dataset.

TWebDBCheckBox

Description

This is a DB-aware checkbox control. The checkbox control connects typically to a DB boolean

field and allows to edit the content of the DB Boolean field via a checkbox control on the form.

The TWebDBCheckBox is connected via DataSource and DataField properties to a dataset.

TWebDBSpinEdit

Description

This is a DB-aware spin edit control. The spin edit control connects typically to a DB numeric

field and allows to edit the content of the DB numeric field via a spin edit control on the form.

The TWebDBSpinEdit is connected via DataSource and DataField properties to a dataset.

406

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBMaskEdit

Description

This is a DB-aware mask edit control. The mask edit control connects typically to a DB field

(numeric / date / text) and allows to edit the content of the DB field via a mask edit control on

the form.

The TWebDBMaskEdit is connected via DataSource and DataField properties to a dataset.

TWebDBComboBox

Description

This is a DB-aware combobox control. The combobox control connects typically to a DB string

field and allows to edit the content of the DB string field via an edit control on the form.

The TWebDBComboBox is connected via DataSource and DataField properties to a dataset.

Optionally, the list of items can be loaded from a dataset connected via the ListSource and

ListField properties. When ListSync = true, changing the selected list item will move the active

record in the ListSource dataset to the selected item.

TWebDBLookupComboBox

Description

This is a DB-aware lookup combobox control. The combobox control connects typically to a DB

string field and allows to edit the content of the DB string field via an edit control on the form.

The value stored in the DB is the Value part of the Value/DisplayText pair while the text

displayed in the combobox maps to the DisplayText value.

407

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The TWebDBLookupComboBox is connected via DataSource and DataField properties to a

dataset.

TWebDBListControl

Description

This is a DB-aware list control. The list control connects typically to a DB string field set by

TWebDBListControl.DataField. The TWebDBListControl is connected via DataSource and

DataField properties to a dataset. The items in the list itself are loaded from

ListSource/ListField.

In addition, the content of the item can be driven by additional fields in the ListSource connected

dataset using the ItemTemplate. Fields can be referenced in the ItemTemplate by using the

syntax (%FiELDNAME%). Default, the dataset field value is retrieved from Field.DisplayText but

using the event OnItemGetFieldValue() it can be overridden to dynamically set it.

TWebDBMemo

Description

This is a DB-aware memo control. The memo control connects typically to a DB text blob field

and allows to edit the content of the DB text blob field via a memo control on the form.

The TWebDBMemo is connected via DataSource and DataField properties to a dataset.

TWebDBDateTimePicker

Description

408

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This is a DB-aware date or time picker control. The date or time picker control connects typically

to a DB date or time field and allows to edit the content of the DB date or time field via a date or

time picker control on the form.

The TWebDBDatePicker is connected via DataSource and DataField properties to a dataset.

TWebDBRadioGroup

Description

This is a DB-aware radiogroup control. The radiogroup control connects typically to a DB integer

field and allows to edit the content of the DB integer field via a group box control on the form.

The TWebDBRadioGroup is connected via DataSource and DataField properties to a dataset.

TWebDBLinkLabel

Description

This is a DB-aware link label control. The link label control connects typically to a DB string field

and allows to show the content of the DB string field via a label with link on the form.

The TWebDBLinkLabel is connected via DataSource and DataField properties to a dataset.

TWebDBImageControl

Description

This is a DB-aware image control. The image control connects typically to a DB string field and

409

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

allows to show the content of the DB string field as an image referring to the URL in the DB

string field value.

The TWebDBImageControl is connected via DataSource and DataField properties to a dataset.

For setting generating the proper image URL from the DB field value, two additional capabilities

are offered.

BaseURL Sets the optional URL prefix. In case the DB

field only contains the image filename,

BaseURL can be set to the full HTTP(S) URL

specifier

OnSetURL This event is triggered with a var parameter

AURL that can be used to transform the DB

field value to the required full HTTP(S) URL

410

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBTableControl

Description

This is a DB-aware table control. A table control column connects typically to a DB field and

allows to show the content of the DB field in a column of the table.

The column in the TWebDBTableControl.Columns collection has following properties:

DataField Sets the DB field that should be displayed in

the column

DataType Defines whether the DB field connected to the

column should be displayed as text, an image

or a hyperlink

Title Sets the column header text

TWebDBResponsiveGrid

Description

This is a DB-aware responsive list control. A responsive list control column connects typically to

a DB field and allows to show the content of the DB fields in a list item via a template.

The template configures the HTML to be displayed in a responsive list item. The template is set

via TWebDBResponsiveGrid.Options.ItemTemplate.

To include a DB field value in the item, specify in the template the DB field as:

(%FIELDNAME%)

Example:

When connecting the FishFact JSON dataset to the responsive list and setting the template in

the following way:

411

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBResponsiveGrid.Options.ItemTemplate :=

‘(%_Common_Name%)
(%_Species_Name%)
<IMG

width="96px" src="(%_Graphic%)">’;

The result is that from the dataset, the _Common_Name, _Species_Name field are shown and

the _Graphic field image URL is used to show the image with a width of 96 pixels:

412

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDBGrid

Description

This is a DB-aware grid. A grid column connects typically to a DB field and allows to show the

content of the DB field in a column of the grid.

It inherits all properties, methods & events of the non DB-aware TWebStringGrid.

The column in the TWebDBGrid.Columns collection has following properties:

Alignement Sets the content alignment in cells in this

column

ComboBoxItems Stringlist holding the items for the combobox

used as cell inplace editor for the column

DataField Sets the DB field that should be displayed in

the column

DataType Defines whether the DB field connected to the

column should be displayed as text, an image

or a hyperlink

EditMask Sets the mask used by the cell editor when it

is of the type geMask

Editor Sets the cell editor type for the column. The

supported editor types are:

geText: normal edit

geNumber: spin edit

geDate: datepicker

geTime: timepicker

geRange: range selector

geColor: color picker

geWeek: week selector

geMonth: month selector

geURL: URL editor

geEmail: Email editor

geTel: telephone editor

geMask: masked edit control

413

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

geCombo: combobox

geMemo: memo inplace editor

geNone: read-only column

ElementClassName Sets an optional CSS class name for the cells

of the column

ImageWidth Sets the width images should be restricted to

when images are added in the column. When

ImageWidth is zero, the image width restriction

is not applied.

Title Sets the column header text

TitleElementClassName Sets an optional CSS class name for the

header cell of the column

Width Sets the width of the column (in pixels)

TWebDBNavigator

Description

This is a DB-aware navigator, allowing to scroll in the connected dataset and perform operations

as Edit, Post, Cancel on the dataset.

To use the TWebDBNavigator, drop it on the form and connect the datasource.

With the property VisibleButtons, set what buttons in the navigator need to be visible. The

VisibleButtons property is a set property consisting of the following possible values:

nbFirst, nbPrior, nbNext, nbLast, nbInsert, nbDelete, nbEdit, nbPost, nbCancel

To customize the hint setting for each of the controls in the navigator, the

TWebDBNavigator.Hints: TStringList property can be used.

It is also possible to set custom images for the navigator buttons. Do this by setting the URL of

the images via the property TWebDBNavigator.Images: TStringList

414

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Non-visual components and classes

TWebTimer

TWebTimer is the direct equivalent of a VCL TTimer. It features an interval property with which

the interval between two subsequent OnTimer events can be set in milliseconds. With the

Enabled property the timer can be stopped or started. When the timer is enabled, it triggers the

OnItem event every ‘interval’ milliseconds

TWebClipboard

TWebClipboard is a non-visual control that manages paste from the clipboard at window level in

the browser. When the user performs paste either from the browser menu or via the keyboard

shortcut Ctrl-V, the TWebClipboard.OnTextData or TWebClipboard.OnImageData is triggered.

When the user pasted text, OnTextData is triggered returning the text. When the user pasted an

image, the event OnImageData is triggered returning the image as base64 encoded data URL.

The TWebClipboard component also allows to programmatically put text on the clipboard. This

can be done via:

TWebClipboard.CopyToClipboard(const AValue: string);

TWebBluetooth

TWebBluetooth is a component wrapping the web Bluetooth API for communicating from the

browser with Bluetooth devices.

Bluetooth communications are setup via a Bluetooth device using a Bluetooth service that can

read/write values via Bluetooth Characteristics.

Therefore, the TWebBluetooth class permits to make a connection to a device that can be

accessed via the class TBluetoothDevice. Via the TBluetoothDevice, access to a service, made

available via the TBluetoothService class, can be obtained. Values can be read or written using

a characteristic, exposed via the class TBluetoothCharacteristic.

415

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebBluetooth class

Public methods

function HasBluetooth: boolean Returning whether the browser supports or

does not support Bluetooth

function GetDevice: boolean Try to establish a connection to a device and

return an instance

function GetDevice(proc: TBTRefProc):

boolean;

Function with anonymous method to establish

a connection to a device

property Device: TBluetoothDevice Access to the last connected device object

Published properties / events

DeviceName Sets the name of the Bluetooth device when

connection to only a specific device is wanted.

Leave empty when a connection to just any

Bluetooth device can be made

FilterService Stringlist holding one or more services a

Bluetooth device must offer before a

connection to it can be made

OnDeviceObject Event triggered when a device is connected,

returing the device object

OnDeviceError Event triggered when an error in the

communication with the device is encountered.

TWebBluetoothDevice class

Public methods

function HasBluetooth: boolean Returning whether the browser supports or

does not support Bluetooth

function GetService: boolean Try to obtain a service object reference from

the device. The service is returned via the

OnService event

function GetService(proc: TBTRefProc):

boolean;

Function with anonymous method to get a

service object

function GetServices; Try to query for all services the device

exposes. Services are returned via the

416

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnServices event.

procedure Connect Make a connection to the device. When

successful, the OnConnect event is triggered.

procedure Connect(proc: TBTRefProc) Make a connection to the device using an

anonymous

procedure DisconnectDevice Disconnect from the device

procedure ReConnectDevice Try to establish a new connection to the

device

function Connected: boolean Returns true when a connection to the device

could be established

Property Service: TBluetoothService Reference to the last retrieved service object

Published properties / events

OnConnect Event triggered when a connection to the

device could be established

OnDisconnect Event triggered upon disconnect

OnService Event triggered when a device service is

retrieved

OnServices Event triggered when the list of supported

services by the device is returned

Example:

This code snippet shows how a service can be obtained from a device

WebBluetooth.Device.GetService(tempservice,

 procedure(AService: TBluetoothService)

 begin

 myservice := AService;

 end

);

TWebBluetoothService class

Public methods

procedure GetCharacteristic(uuid: string); Retrieve a characteristic with ID UUID from a

service. When available, the characteristic is

returned via the OnCharacteristic event.

procedure GetCharacteristic(uuid: string; proc: Retrieve a characteristic with ID UUID from a

417

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TBTCharacteristicProc); service. When available, the characteristic is

returned via an anonymous method.

procedure GetCharacteristics; Query all characteristics offered by the

service. The list of available services is

returned via the event OnCharacteristics

Published properties / events

UUID The UUID of the service

OnCharacteristic Event triggered when a characteristic is

requested

OnCharacteristics Event triggered when the list of characteristics

is requested

Example:

This code snippet shows how a characteristic is retrieved from a service:

AService.GetCharacteristic(tempcharval,

 procedure(AChar: TBluetoothCharacteristic)

 begin

 btchartempvalue := AChar;

 end

);

TWebBluetoothCharacteristic class

Public methods

procedure StartNotify Method to start the notify mechanism. When

started, the Bluetooth device will send a

message (and trigger the OnNotifyXXX) event

when a value of a characteristic changes.

procedure StopNotify Stops the notify mechanism of the Bluetooth

device

procedure ReadXXX Read a value from the Bluetooth

characteristic.

The default Read performs a read on an

integer value.

For other types, XXX stands for different

types:

418

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Byte

Int

SmallInt

Single

Double

String

Array

The result of the read is returned via the

matching OnReadXXX event.

procedure ReadXXX(proc:

TBTReadValueProc)

Read a value from the Bluetooth characteristic

and the result is returned via an anonymous

method.

XXX stands for different types:

Byte

Int

SmallInt

Single

Double

String

Array

Procedure WriteXXX() Write a value to a Bluetooth characteristic.

XXX stands for different types:

Byte

Int

SmallInt

Single

Double

String

Array

Published properties / events

UUID The UUID of the characteristic

OnReadXXX Event triggered returning the result of a read

operation.

There are different variants of the read event

for different data types

OnNotifyXXX Event triggered when a new characteristic

value is available when the notification

mechanism was enabled.

There are different variants of the notify event

for different data types

419

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Example

This example shows how to read an

 btchartempvalue.Read(

 procedure(AValue: integer)

 begin

 ReadCharacteristic(Self, AValue);

 end

);

TWebUSBHID

Below is a list of the most important properties methods and events for the TWebUSBHID.

TWebUSBHID is using the WebHID API. This API currently is available in Chromium based

browsers from version 89.

Select a device/interface
A HID can have multiple interfaces that can be accessed as a HIDDevice object. For each

object a ProductName property is available that can be used to differentiate between them. If

you want to handle automatic connection to a device that had been given access before, you

can loop through the Devices collection and connect to your device/interface.

procedure TForm2.WebHID1DevicesInitialized(Sender: TObject);

var

 I: Integer;

begin

 if WebHID1.DeviceCount = 0 then

 begin

 //no devices are available, request access from user here

 end

 else

 begin

 for I := 0 to WebHID1.DeviceCount do

 begin

 if WebHID1.Devices.Items[I].ProductName = 'IOW28-ADC' then

https://wicg.github.io/webhid/

420

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 begin

 WebHID1.SelectedDevice := WebHID1.Devices.Items[I];

 Break;

 end;

 end;

 end;

end;

Properties for TWebUSBHID

Property Description

AutoInitializeDevices Automatically calls InitDevices when the

application starts.

AutoOpenSelection Connect to the device/interface automatically

after selecting it.

AutoCloseSelection Close the current connection automatically

when selecting another device/interface.

Devices A collection of available devices and interfaces

that had been granted access to by the user.

DeviceCount The count of the available devices and

interfaces in the Devices collection.

Filters A collection of options to filter the device

selection

Methods for TWebUSBHID

Method Description

CloseDevice Closes the connection of the selected

device/interface. This is an asynchronous

method.

HasID Returns if the browser supports the WebHID

API.

InitDevices Initializes a list of devices that has already

been granted access by the user previously.

This is an asynchronous method.

OpenDevice Opens connection to the selected

device/interface. This is an asynchronous

method.

421

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

RequestDevices Requests access from the user to an available

HID. This is an asynchronous method.

SendReport(AReportId: Integer; AData:

TJSArrayBufferRecord)

Sends a report to the selected and connected

device/interface.

SetSelectedDevice(ADevice: THIDDevice) Sets the selected device/interface

Events for TWebUSBHID

Event Description

OnCloseDevice Event triggered when a device/interface

connection is closed.

OnConnected Event triggered when a device is connected to

computer and it is deceted by the browser.

OnDevicesInitialized Event triggered when the list of devices is

initialized

OnDisconnected Event triggered when a device is removed

from the computer.

OnError Event triggered when there is an error.

OnInputReport Event triggered when a report arrives from the

connected device/interface

OnOpenDevice Event triggered when a device/interface

connection is opened

TWebUSBSerial

Below is a list of the most important properties methods and events for the TWebUSBSerial.

TWebUSBSerial is using the Web Serial API. This API currently is available in Chromium based

browsers from version 89.

Properties for TWebUSBSerial

Property Description

AutoInitializePorts Automatically calls InitPorts when the

application starts.

AutoOpenSelection Connect to the port automatically after

selecting it.

AutoCloseSelection Close the current connection automatically

https://reillyeon.github.io/serial

422

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

when selecting another port.

Filters A collection of options to filter the serial port

selection

Ports A collection of available ports that had been

granted access to by the user.

SelectedPort The currently selected port.

SerialOptions A set of options that is used to connect to a

port

Methods for TWebUSBSerial

Method Description

ClosePort(AForceClose: Boolean = False) Closes the connection of the selected port.

This is an asynchronous method.

HasSerial Returns if the browser supports the Web Serial

API.

InitPorts Initializes a list of ports that has already been

granted access by the user previously. This is

an asynchronous method.

OpenPort Opens connection to the selected port. This is

an asynchronous method.

Read Read data from the serial port. This is an

asynchronous method.

RequestPorts Requests access from the user to an available

serial port. This is an asynchronous method.

Write(AData: TJSUint8Array) Sends a data array to the selected and

connected serial port.

Events for TWebUSBSerial

Event Description

OnClosePort Event triggered when a port connection is

closed

OnConnected Event triggered when a serial device is

connected to computer and it is deceted by the

browser.

OnDisconnected Event triggered when a serial device is

removed from the computer.

OnError Event triggered when there is an error.

OnOpenPort Event triggered when a serial port connection

423

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

is opened.

OnPortsInitialized Event triggered when the list of ports is

initialized.

OnReadData Event triggered when data arrives from the

serial port.

OnWriteData Event triggered when data is written to the

serial port.

TWebElementActionList

Description

A TWebElementActionList should not be confused with a Delphi TActionList. The purpose of a

TWebElementActionList is to easily hookup events to HTML elements typically available in a

form template but not limited to these. Binding to event handlers of HTML elements is based on

the HTML element ID, a query selector or a Pascal control class. TWebElementActionList is a

list of TWebElementAction items where each such item represents the bridge between HTML

elements and the action perform when an event occurs on these HTML elements.

424

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

If there is for example a HTML BUTTON element in the HTML template with ID “btn”, it is

possible to define the UI logic that should be executed when the button is clicked by adding a

TWebElementAction item, setting the ID for the button, the event to heClick and then write the

OnExecute event for the TWebElementAction. This OnExecute event will be triggered when the

button is clicked.

Note that multiple TWebElementAction items can be bound for different events to the same

HTML element or elements.

Properties for TWebElementActionList

Actions Collection of actions that specifiy for what HTML element event an

action OnExecute or actionlist OnExecute needs to be triggered

Events for TWebElementActionList

OnExecute Event triggered when the HTML element or elements event

specified by the TWebElementAction happens. The event passes

425

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the action, the HTML element triggering the action and the

JavaScript event object.

OnUpdate Event triggered for each HTML element(s) set by TargetControl or

TargetID or TargetSelector. The event passes the action, the HTML

element triggerting the action, the JavaScript event object and the

HTML element that is the target of the action.

Properties for TWebElementAction

Control Sets the Pascal control to bind a specific event to

CustomEvent Sets the event type as string to bind to in case the event type is not in

the list of standard events.

Enabled When true, the OnExecute event will be triggered when the bound

event on the element is happening.

Event Specifies what specific HTML event will trigger the action OnExecute

event.

The predefined event types are:

heClick: click on the HTML element

heDblClick: double-click on the HTML element

heKeypress: keypress on HTML element

heKeydown: key down on HTML element

heKeyup: key up on HTML element

heMouseDown: mouse down on HTML element

heMouseMove: mouse move on HTML element

heMouseUp: mouse up on HTML element

heMouseEnter: mouse enter on HTML element

heMouseLeave: mouse leave on HTML element

heBlur: focus leave from HTML element

heFocus: focus enter on HTML element

heChange: value change on HTML element

heSelect: selection on OPTION HTML element

heInvalid: invalid input on HTML element

heCustom: custom event (set by CustomEvent property)

heNone: no element event is bound

heTouchStart: touch start event on HTML element

heTouchMove: touch move event on HTML element

heTouchEnd: touch end event on HTML element

heTouchCancel: touch cancel event on HTML element

426

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

heWheel: mouse wheel event on HTML element

ID Sets the HTML element ID for the element to bind the action to

Name Name of the item instance

PreventDefault When true, the default HTML event handler for the element will not be

executed. For example, a key event will not have effect on the element.

Selector Sets the query selector for possibly multiple HTML elements to bind

with the TWebElementAction.

For example, specifying ‘INPUT’ will select all HTML INPUT elements

in the document to bind the action to.

How selectors can be used to do sophisticated selection of HTML

elements can be found here:

https://www.w3schools.com/cssref/css_selectors.asp

StopPropagation When true, the event on the HTML element doesn’t propagate to its

container element. For example, a mouse down event is propagated to

the container element when not handled by the first HTML element that

gets it.

Tag Integer value

TargetAction Action to perform when the event is happening on the target elements.

actNone: no action performed on target elements

actSetHidden: set target elements display attribute as hidden

actRemoveHidden: remove target elements display attribute as hidden

actToggleHidden: toggle target elements display attribute

actSetReadOnly: set target elements readonly attribute

actRemoveReadOnly: remove target elements readonly attribute

actToggleReadOnly: toggle target elements readonly attribute

actSetDisabled: set target elements disabled attribute

actRemoveDisabled: remove target elements disabled attribute

actToggleDisabled: toggle target elements disabled attribute

actClear: clears the value of the target elements

actAddClass: adds the CSS class TargetClassAdd to the target

element

actAddRemoveClass: adds the CSS class TargetClassAdd to the target

element and removes the TargetClassRemove class

actRemoveClass: removes the CSS class TargetClassRemove from

the target element

TargetClassAdd CSS class to add to the target element

TargetClassRemove CSS class to remove from the target element

TargetControl The Pascal control affected by the TWebElementAction when its event

occurs

TargetID ID of the HTML event affected by the TWebElementAction when its

event occurs

https://www.w3schools.com/cssref/css_selectors.asp

427

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TargetSelector Sets the query selector for possibly multiple HTML elements that an

action will have effect on.

Methods for TWebElementAction

Bind Binds the action class to the HTML element(s) specified by Control

or ID or Selector.

The TWebElementActionList will already implicitly perform binding

upon creation of the class. Bind only needs to be called in case a

TWebElementAction is created at runtime

UnBind Unbinds the action class from the HTML element(s) specified by

Control and/or ID and/or Selector. This normally implicitely happens

when the TWebElementActionList is destroyed

Events for TWebElementAction

OnExecute Event triggered when the HTML element or elements event

specified by the TWebElementAction happens

OnUpdate Event triggered for each HTML element(s) set by TargetControl or

TargetID or TargetSelector

Example

For a HTML template that contains an entry form, we can easily add a TWebElementAction to

clear the entered fields when the Clear button is clicked. The Clear button has the ID “btnclear”,

so a new TWebElementAction object is added to the list and the event is set to heClick.

As the button click should result in clearing HTML input elements, set

WebElementAction.TargetAction to actClear. Finally set TargetSelector to ‘input.forminput,

textarea.forminput, select.forminput’ to get all elements in a form, i.e. that have class set to

forminput.

Code

var

 wa: TWebElementAction;

428

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

begin

 wa := TWebElementActionList.Actions.Add;

 wa.ID := ‘btnclear’;

 wa.Event := heClick;

 wa.TargetAction := actClear;

 wa.TargetSelector := ‘Input.forminput, textarea.forminput,

select.forminput’;

end;

429

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLocalStorage

TWebLocalStorage is a component that can be used to access local browser storage. The

storage is handled by the browser and coupled to the specific URL of the web application. From

another URL, this local storage is not accessible. The TWebLocalStorage can be considered as

a key/string value pair storage. With the class TWebLocalStorage it is easy to use.

Example:

var

 LLocalStorage: TWebLocalStorage

 LLocalStorage := TWebLocalStorage.Create;

 LLocalStorage.Values[‘mykeyname’] := ‘myvalue’;

 LLocalStorage.Free;

Or alternatively, you can also use the static method that reduces this code to:

 TWebLocalStorage.Values[‘mykeyname’] := ‘myvalue’;

When the same URL is visited by the browser, the values stored from the last session can be

retrieved.

The TWebLocalStorage has an event OnChange. This event is triggered when the local storage

of the app is modified in another browser document instance.

TWebSessionStorage

TWebSessionStorage is similar to TWebLocalStorage except that values are only persisted in

the browser for the lifetime of the session. Just like for TWebLocalStorage, it consists of a

key/value pair storage.

Example:

var

430

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 LSessionStorage: TWebSessionStorage

 LSessionStorage:= TWebSessionStorage.Create;

 LSessionStorage.Keys[‘mykeyname’] := ‘myvalue’;

 LSessionStorage.Free;

The TWebSessionStorage has an event OnChange. This event is triggered when the session

storage of the app is modified in an IFRAME in the current document where the

TWebSessionStorage is used.

TWebDeviceOrientation

TWebDeviceOrientation is a non-visual component that can be used on devices that have a

sensor to determine the physical orientation of a device. This is the case on any modern

smartphone or tablet. It allows to adapt what is rendered on the GUI to the direction/orientation

of the device.

Use the property WebDeviceOrientation.Enabled: Boolean to verify if the browser is running on

a device with an orientation sensor.

When it is detected, start capturing this sensor information via the method

WebDeviceOrientation.Start

After calling this, it starts triggering the event

WebDeviceOrientation.OnDeviceOrientationChange that passes the orientation as a value

between 0 and 360 degrees. 0 degrees meaning north orientation.

With the property WebDeviceOrientation.Started: Boolean, it can be determined whether the

sensor capturing was started or not.

TWebSpeechSynthesis

TWebSpeechSynthesis is a non-visual component that allows to take advantage of the web

speech synthesis API available in all modern browsers. It allows to generate spoken text from a

string value.

431

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods

Method Description

procedure Speak(AText: string); Generate spoken text for string AText

procedure Cancel; Stop playing the generated spoken text

function GetVoices: TStrings Retrieve the supported voices by the device

for the speech synthesis

function IsSpeaking: boolean Returns true when the component is still

playing a generated spoken text

Function Supported: boolean Returns true when the device the browser is

running on supports speech synthesis

Properties

Property Description

property Pitch: single Sets the pitch of the voice

property Rate: single Sets the rate of the voice

property Voice: string Sets the voice to be used for generating the

spoken text

property Voices: TStrings Read-only property returning the available

voices on the device

property Volume: single Sets the volume for the spoken text

Events

Event Description

property OnVoicesReady Event triggered when the list of available

voices is ready. Retrieval of available voices

on the device is an asynchronous process

432

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSpeechRecognition

TWebSpeachRecognition is a non-visual component that uses the browser API to do real-time

speech recognition. The component can return the spoken text as well as setup a series of

commands the component can respond to. Note that it depends on the browser where the app

is running whether speech recognition will work offline or will need a connection to the server.

Also, speech recognition happens on the microphone input, so permission to access the

microphone from the web application is a prerequisite.

These commands can have extra variables which you can re.

One word variable ‘:variablename’

Sentences ‘*tag’

Optional words ‘(optional)’

Methods

Method Description

procedure Start; Starts speechrecognition and enables mic

procedure Abort; Stops SpeechRecognition and turns off mic

procedure Pause; Stops listening but speechrecognition and mic

are still enabled

procedure Resume; Resumes SpeechRecognition, always use this

after initial start

Properties

Property Description

property Language: String Sets the language of the speechrecognition:

‘en-US’

property Commands: TCommands Collection of available commands

The commands collection consists of TCommand instances with following properties:

433

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Value: string The command as text to detect

Tag Generic useable identifier

OnCommand Event triggered when this spoken command matching value was

detected.

Following rules apply for the specification of commands:

Add between round brackets () optional parts of the command.

Example: close (window)

This command will be triggered if either ‘close’ or ‘close window’ is heard.

Use the asterix of part of the spoken text that should be returned as a parameter via the

OnCommand event handler.

Example: close :object

This command will be triggered when ‘close xxxx’ is spoken en it will return what was

recognized as word after ‘close’ via the parameter list with key value ‘object’. This parameter is

a single word.

Example: close *object

This command will be triggered when ‘close xxxx yyyy’ is spoken en it will return what was

recognized as words after ‘close’ via the parameter list with key value ‘object’. This parameter

can contain multiple words.

Events

Event Description

property OnStart Event triggered when the speechrecognition

has been started

Property OnEnd Event triggerd when the speechrecognition

has ended

Property OnSoundStart Event triggered when the speechrecognition

has received sound

Property OnError Event triggered when there is a generic error

434

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property OnNetworkError Event triggered when there is a network error

Property OnPermissionBlockedError Event triggered when the Speech Recognition

has been blocked

Property OnPermissionDeniedError Event triggered when the Speech Recognition

has been denied

Property OnResult Event triggered when the Speech Recognition

has a result. Return the spoken text

Property OnNoResultMatch Event triggered when the component can’t

match the spoken text to a command. Returns

the spoken text.

Property OnResultMatch Event triggers when the component matched

a command. Returns the spoken text, the

optional parameters the user might have said,

the executed command and a list of

alternatives.

TCommand

Property Name Sets the sentence the user has to speak to

trigger this command.

Property OnCommand Triggers when the user says the command.

Returns a list of parameters from the

command.

435

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

436

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebURLValidator

TWebURLValidator is a non-visual component that allows to perform a check whether an URL

exists and works or not. Set the URL to test via TWebURLValidator.URL and call the Validate

method. This will trigger the OnValidated event where the IsValid parameter will return whether

the URL is valid or not.

Example:

procedure TForm1.WebFormCreate(Sender: TObject);

begin

 WebURLValidator1.URL := 'http://myurltotest.com';

 WebURLValidator1.Validate;

end;

procedure TForm1.WebURLValidator1Validated(Sender: TObject; IsValid:

Boolean);

begin

 if IsValid then

 ShowMessage('The URL ' + WebURLValidator1.URL + ' works!');

end;

Properties for TWebURLValidator

URL Sets the URL to check if it exists

Events for TWebURLValidator

OnValidated Event triggered when the URL has been validated and returning

whether it was a valid URL or not.

437

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLocalTextFile

TWebLocalTextFile is a non-visual component that allows to read/write text files on the local file

system. Note that this uses the web standards local file system access APIs not yet

implemented on all browsers. Any browser based on the Google Chromium engine supports it.

Local file access is performed asynchronously. TWebLocalTextFile offers 3 variations of

methods to open and save files. There are async methods that can use await() for sequentially

written code, there are methods that perform the local file operation and trigger an event when

finished and there are methods using an anonymous method parameter and calling this

anonymouse method when finished.

Example:

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 ATextFile.Filter.Add('All files','application/octet-stream','*.*');

 ATextFile.Filter.Add('Text files','text/plain','*.txt');

 WebMemo1.Lines.Text := await(string, ATextFile.Open());end;

Properties for TWebLocalTextFile

Filter: TFileFilter Sets the filter for selecting the local file system

FileName: string Gets the filename of the opened local file

Text: string Gets or sets the content of the text file as string

Methods for TWebLocalTextFile

Open: TJSPromise Async method to open a text file

Save: TJSPromise Async method to save a text file

SaveAs: TJSPromise Async method to save a text file under a new name

OpenFile Method opening a text file. Triggers the OnFileOpen event when the

file is asynchronously opened

OpenFile(AOpenFile:

TOpenTextFileProc)

Method opening a text file with anonymous method parameter.

438

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

SaveFile Method saving a text file. Triggers the OnFileSave event when the file

is asynchronously saved

SaveFile(ASaveFile:

TSaveFileProc

Method saving a text file with anonymous method parameter.

SaveAsFile Method saving a text file under a different name. Triggers the

OnFileSave event when the file is asynchronously saved

SaveFileAs(ASaveFile:

TSaveFileProc

Method saving a text file under a different name with anonymous

method parameter.

Events for TWebLocalTextFile

OnFileOpen Event triggered when the browser retrieved the data from the text

file to be opened

OnFileSave Event triggered when the browser performed the saving of the text

file on the local file system

439

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLocalBinaryFile

TWebLocalBinaryFile is a non-visual component that allows to read/write text files on the local

file system. Note that this uses the web standards local file system access APIs not yet

implemented on all browsers. Any browser based on the Google Chromium engine supports it.

Local file access is performed asynchronously. TWebLocalBinaryFile offers 3 variations of

methods to open and save files. There are async methods that can use await() for sequentially

written code, there are methods that perform the local file operation and trigger an event when

finished and there are methods using an anonymous method parameter and calling this

anonymouse method when finished.

Example:

// loading an image as binary file with an anonymous method

procedure TForm1.WebButton11Click(Sender: TObject);

var

 base64String: string;

begin

 ABinaryFile.Filter.Add('Text files','image/jpeg','*.jpg');

 ABinaryFile.OpenFile(procedure(AValue: TJSArrayBuffer)

 begin

 base64string := ArrayBufferToBase64(AValue);

 base64string := 'data:image/jpeg;base64,'+base64String;

 WebImageControl1.URL := base64string;

 end);

end;

Properties for TWebLocalBinaryFile

Filter: TFileFilter Sets the filter for selecting the local file system

FileName: string Gets the filename of the opened local file

Data: TJSArrayBuffer Gets or sets the content of the binary file as array buffer

440

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TWebLocalBinaryFile

Open: TJSPromise Async method to open a binary file

Save: TJSPromise Async method to save a binary file

SaveAs: TJSPromise Async method to save a binary file under a new name

OpenFile Method opening a binary file. Triggers the OnFileOpen event when the

file is asynchronously opened

OpenFile(AOpenFile:

TOpenTextFileProc)

Method opening a binary file with anonymous method parameter.

SaveFile Method saving a binary file. Triggers the OnFileSave event when the

file is asynchronously saved

SaveFile(ASaveFile:

TSaveFileProc

Method saving a binary file with anonymous method parameter.

SaveAsFile Method saving a binary file under a different name. Triggers the

OnFileSave event when the file is asynchronously saved

SaveFileAs(ASaveFile:

TSaveFileProc

Method saving a binary file under a different name with anonymous

method parameter.

Events for TWebLocalBinaryFile

OnFileOpen Event triggered when the browser retrieved the data from the binary

file to be opened

OnFileSave Event triggered when the browser performed the saving of the

binary file on the local file system

441

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebLocalFolder

TWebLocalFolder is a non-visual component that allows to retrieve folder information on the

local file system. Note that this uses the web standards local file system access APIs not yet

implemented on all browsers. Any browser based on the Google Chromium engine supports it.

Example:

// querying the list of files in a folder

procedure TForm1.WebButton1Click(Sender: TObject);

var

 Files: TfileSystemFileHandleArray;

 i :integer;

begin

 Files := await(TFileSystemFileHandleArray, AFolder.OpenFolder());

 for i := 0 to Length(Files) - 1 do

 begin

 WebListBox1.Items.Add(Files[i].Name);

 end;

end;

Properties for TWebLocalFolder

Files Collection of files in the folder

FolderHandle Handle to the currently opened folder

Methods for TWebLocalFolder

OpenFolder: TJSPromise Async method to open a folder. Returns the array of

files in the folder.

Open Method that opens a folder and triggers the event

OnFolderOpen when the files have been

asynchronously retrieved

Open(AOpenFolder:

TOpenFolderProc)

Method that opens a folder and calls the anonymous

method parameter when files have been

asynchronously retrieved

442

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

CreateFolder(const AName: string):

TJSPromise

Async function creating a folder on the local file system

and returning the folder handle

CreateFile(const AName: string):

TJSPromise

Async function creating a file on the local file system

and returning the folder handle

FileHandle(const AName: string):

TJSPromise

Async function returning the file handle of named file on

the local file system

FileObject(const AName: string):

TJSPromise

Async function returning the file object of named file on

the local file system

Folder(const AName: string):

TJSPromise

Adync function returning the folder handle of named

folder on the local file system

GetFile(AName: string: GetFile:

GetFileProc)

Method that gets the file object of a file in the folder.

When the file handle is retrieved, the anonymouse

GetFile method is called

GetFileHandle(AName: string:

GetFile: GetFileProc)

Method that gets the file handle of a file in the folder.

When the file handle is retrieved, the anonymouse

GetFile method is called

GetFolder(AName: string; GetFolder:

TGetFolderProc)

Method that retrieves the subfolder of the current active

folder and calls the anonymouse GetFolder method

asynchronously when ready

Events for TWebLocalFolder

OnFolderOpen Event triggered when a folder was opened and the list of files is

ready and accessible via the Files array

443

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebGeoLocation

TWebGeoLocation wraps the browser capability to determine the geolocation of the device on

which the browser runs. For privacy reasons, when an attempt to retrieve the geo location is

performed, it will trigger a popup dialog requesting the authorization from the user to do so.

With the method TWebGeoLocation.GetGeoLocation the request to get the geo location is

started. When the geo location is retrieved, the OnGeoLocation event is triggered returning the

longitude, latitude and altitude of the location.

procedure TForm1.WebGeoLocation1Geolocation(Sender: TObject; Lat, Lon,

 Alt: Double);

begin

 WebLabel1.Caption := Format('Device is at [%.4f:%.4f]', [Lon,Lat]);

end;

Note: use of TWebGeoLocation requires for privacy & security SSL (i.e. app needs to be hosted

on a HTTPS enabled domain).

Methods for TWebGEOLocation

GetGeolocation Start the asynchronous retrieval of the geolocation of the device

where the browser is running.

Events for TWebGEOLocation

OnGeoLocation Event triggered when the geolocation was retrieved. This returns

via the event parameters the longitude, latitude and altitude.

444

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSocketClient

The TWebSocketClient is a non-visual component enabling to perform web socket

communication with a websocket server.

Set the hostname and port of the websocket server via WebSocketClient.HostName and Port.

Start connecting to the websocket server via calling the method WebSocketClient1.Connect.

When a successful connection is made, the WebSocketClient.OnConnect is triggered. Call

WebSocketClient.Disconnect to disconnect form the server. When a disconnect is called

programmatically or for another reason the connection to the websocket server is lost, the

OnDisconnect event is triggered.

Sending & retrieving data

Data is sent as a string and retrieved as JavaScript object.

To send a command call:

WebSocketClient.Send(AMessage: string); overload;

WebSocketClient.Send(ABuffer: TJSArrayBuffer); overload;

When data is received from the websocket server, the event OnDataReceived is triggered. This

returns the data as a JavaScript object. When the data is a string, the JavaScript obejct can be

converted easily to a string by calling TJSObject.toString;

procedure TForm1.WebSocketClient1DataReceived(Sender: TObject; Origin:

string;

 Data: TJSObject);

begin

 WebListBox1.Items.Add(Data.toString);

end;

Properties for TWebSocketClient

HostName Sets the name of the web socket server

PathName Sets the (optional) path name for the socket server

445

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Port TCP/IP port to use for the web socket communication

Methods for TWebSocketClient

Send(AMessage:

string);

Sends data to the socket server as string

Send(ABuffer:

TJSArrayBuffer)

Sends data to the socket server as JavaScript byte array buffer

Events for TWebSocketClient

OnConnect Event triggered when the web socket client could successfully

connect to the server

OnDataReceived Event triggered when data is received from tlhe web socket server

OnDisconnect Event triggered when the web socket client was disconnected from

the web socket server

TWebHttpRequest

The TWebHttpRequest is a component to perform HTTP(s) requests to a server. The HTTP

requests command can be:

httpCUSTOM : a custom HTTP command set with WebHttpRequest.CustomCommand

httpDELETE : a HTTP DELETE command

httpGET : a HTTP GET command (default)

httpHEAD : a HTTP HEAD command

httpPOST : a HTTP POST command

httpPUT : a HTTP PUT command

Optionally, HTTP request headers can be set. The HTTP request headers are set via

WebHttpRequest.Headers. This is a value/pair list of HTTP options. For example, if you wan to

446

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

disable caching, set the option Cache-Control to ‘no cache’

When a HTTP POST command is execute, the POST data can be set via the

WebHttpRequest.PostData property.

By default WebHttpRequest.TimeOut is zero, which means there is no time-out value. When

wanting to set a time-out value, WebHttpRequest.TimeOut sets the time-out in milliseconds.

Finally, the URL for performing the HTTP request is set via WebHttpRequest.URL: string;

When the HTTP request is successful, the OnResponse event is triggered. When it fails, the

event OnAbort is triggered.

447

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

When the request is successful, the request response is returned as event parameter of the

OnResponse event.

procedure TForm1.WebHttpRequest1Response(Sender: TObject; AResponse:

string);

begin

 ShowMessage('server response:' + AResponse);

end;

When the response comes as JSON, the JSON parser with a similar interface as the standard

Delphi JSON parser can be used:

The following example shows how the response can be parsed as a JSON array:

procedure TForm1.WebHttpRequest1Response(Sender: TObject; AResponse:

string);

var

 JS: TJSON;

 JA: TJSONArray;

 JO: TJSONObject;

 i: integer;

begin

 JS := TJSON.Create;

 JA := TJSONArray(JS.Parse(AResponse));

 for i := 0 to JA.Count - 1 do

 begin

 JO := TJSONObject(JA.Items[i]);

 WebListBox1.Items.Add(JO.GetJSONValue('prop'));

 end;

end;

An alternative way to handle the response is via an anonymous method. The signature of this

anonymous method is declared as:

procedure(AResponse: string; ARequest: TJSXMLHttpRequest);

The same example handled via an anonymous method as such becomes:

begin

448

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 WebHttpRequest1.URL :=

'http://www.tmssoftware.biz/tmsweb/music.json';

 WebHttpRequest1.Execute(

 procedure(AResponse: string; AReq: TJSXMLHttpRequest)

 var

 js: TJSON;

 ja: TJSONArray;

 jo: TJSONObject;

 i: integer;

 begin

 js := TJSON.Create;

 try

 ja := TJSONArray(js.Parse(AResponse));

 ShowMessage('Retrieved items:' +inttostr(ja.Count));

 for i := 0 to ja.Count - 1 do

 begin

 jo := TJSONObject(ja.Items[i]);

 WebListBox1.Items.Add(jo.GetJSONValue('title'));

 end;

 finally

 js.Free;

 end;

 end

);

end;

And finally, there is also the promise/await based approach that permits writing code as if it is

sequential but still, underlying it is asynchronously executed.

procedure TForm1.WebButton1Click(Sender: TObject);

var

 req: TJSXMLHttpRequest;

begin

 WebHttpRequest1.URL := 'data.json';

 try

 req := await(TJSXMLHttpRequest, WebHttpRequest1.Perform());

449

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 showmessage(string(req.response));

 except

 // handle failure to execute request here

 end;

end;

Note: do not forget to mark the method WebButton1Click() in the form declaration as async:

 TForm1 = class(TWebForm)

 [async]

 procedure WebButton1Click(Sender: TObject);

 end;

The same promise based approach can also be used to determine the size of a resource at a

specified URL.

This code shows how to get the size first and then use the OnProgress to track the progress of

a HTTP request.

procedure TForm1.WebButton1Click(Sender: TObject);

var

 sz: int64;

begin

 WebHttpRequest1.URL := 'http://myserver/largeresource.zip';

 sz := await(integer, WebHttpRequest1.GetSize);

 WebProgressBar1.Max := sz;

 await(string, WebHttpRequest1.Perform);

end;

procedure TForm1.WebHttpRequest1Progress(Sender: TObject; Position,

 Total: Int64);

begin

 WebProgressBar1.Position := Position;

end;

Properties for TWebHttpRequest

Command Sets the HTTP command type to execute. This can be

httpCUSTOM, httpGET, httpPOST, httpDELETE, httpHEAD,

450

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

httpPUT

CustomCommand Sets the custom HTTP command name

Headers StringList holding optional header parameters to pass along with

the HTTP command

Password For authenticated HTTP requests, sets the password to be used

PostData Sets the data to be posted along with a httpPOST command as

string

ResponseType Sets the expected response type for the request. Default this is a

text response.

Types are:

rtDefault: default server response type

rtText: text response

rtBlob: blob containing binary data

rtJSON: JavaScript object resulting from parsing a JSON data

rtDocument: HTML document

rtArrayBuffer: JavaScript array buffer

TimeOut Sets the timeout value (in milliseconds). This is the time after which

the request should abort when not getting a response from the

server

URL URL for performing the HTTP request

User For authenticated HTTP requests, sets the username to be used

In the IDE, there is also a convenient design-time editor for editing the headers:

451

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TWebHttpRequest

Execute Executes the HTTP request. An optional anonymous method can

be used to catch the response

GetSize: TJSPromise Async method to fetch the size of a resource

Perform: TJSPromise Async method that can be used with await() to execute the HTTP

request

Events for TWebHttpRequest

452

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnAbort Event triggered when the HTTP request was aborted

OnError Event triggered when an error occurred with the HTTP request

OnProgress Event triggered during HTTP execution to indicate progress. Note

that due to the nature of server, the total size might not always be

returned. Use the GetSize() first if this is the case.

OnRequestResponse Event triggered when a response for the HTTP request was

received. This event returns both the response as string as well as

the JavaScript response object

OnResponse Event triggered when a response for the HTTP request was

received. This event returns the response as string

OnTimeOut Event triggered when a timeout happened for the HTTP request

453

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebCookies

TWebCookies is a collection class for managing cookies in your web application. It is defined in

the unit WEBLib.Cookies. This is a collection of TWebCookie items. The TWebCookie item has

following properties:

 property Name:string; gets or sets the cookie name/identifier

 property Value:string; gets or sets the cookie value

 property Expiry:TDateTime; gets or sets the cookie expiry date

 property Path: string; gets or sets the cookie path

The path parameter specifies a document location for the cookie, so it’s assigned to a specific

path, and sent to the server only if the path matches the current document location, or a parent:

To get the browser cookies for the application URL in the TWebCookies collection call

TWebCookies.GetCookies.

For updating the cookies in the browser after making changes to the collection TWebCookie

items, call TWebCookies.SetCookies.

Other TWebCookies collection methods:

procedure Delete(ACookie: TCookie);

Delete a cookie by instance

procedure Delete(const AName: string);

Delete a cookie by name

function Add(const AName, AValue: string; Expiry: TDateTime): TCookie;

function Add(const AName, AValue: string): TCookie;

function Add(const AName, AValue, APath: string): TCookie;

function Add(const AName, AValue, APath: string; Expiry: TDateTime): TCookie;

Four different overload functions that allow to a add a new cookie to the TWebCookies

collection.

property Items[Index: integer]: TCookie;

454

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property providing access to each cookie in the collection by an array indexer

function Find(const AName: string): TCookie;

Find a cookie instance by name in the collection

TWebClientConnector

The TWebClientConnector is a component to establish a connection between a TMS Web Core

application running in the browser and a client application written in FMX or VCL running in a

desktop or mobile environment. In combination with the TTMSFNCWebCoreClientBrowser

(available in TMS FNC Core) the TMS Web Core application can be viewed in your favorite

environment. TWebClientConnector is defined in the unit WEBLib.ClientConnector.

Setting up the TWebClientConnector

In your TMS Web Core application, drop an instance of TWebClientConnector on the form.

There are no additional steps necessary to start receiving and sending messages at browser

side.

To receive messages, you can implement the OnReceivedMessage event. The

OnReceivedMessage returns JSON, below is a sample of parsing JSON in the

OnReceivedMessage event:

procedure TForm1.DoReceivedMessage(Sender: TObject; AJSON:

TJSONObject);

var

 s: string;

begin

 s := TJSJSON.stringify(AJSON.JSObject);

 WebMemo1.Text := s;

end;

Sending messages with the TWebClientConnector

To send messages, you need to encapsulate your data in JSON, then send it to the client,

which the TWebClientConnector is connected to.

procedure TForm1.SendButtonClick(Sender: TObject);

455

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

var

 o: TJSONObject;

 js: TJSON;

 s: string;

 I: Integer;

begin

 js := TJSON.Create;

 s := '{"Message From Browser":"'+

TTMSFNCUtils.EscapeString(WebMemo1.Text) +'"}';

 o := js.parse(s);

 w.Send(o);

 o.Free;

end;

Ofcourse, sending and receiving will only work when a client, writing in VCL or FMX, is

connected. Below are the steps necessary to have a working connection between browser and

client.

Setting up the TTMSFNCWebCoreClientBrowser

Drop an instance of the TTMSFNCWebCoreClientBrowser on the form and enter the URL of

your TMS Web Core application. When starting the application, the client will automatically try to

establish a connection with the TMS Web Core application running the TWebClientConnector

component instance. When the connection is established, the OnConnected event is triggered,

allowing you to start sending and receiving messages. For receiving messages at client side,

the OnReceivedMessage event (similar to the TMS Web Core application implementation for

TWebClientConnector) can be used.

procedure TForm1.DoReceiveMessage(Sender: TObject; AJSON: TJSONValue);

var

 s: String;

begin

 if AJSON.TryGetValue<String>('Message From Browser', s) then

 begin

 ShowMessage(TTMSFNCUtils.UnescapeString(s));

 end;

end;

To send messages to the TMS Web Core application you can use the following code:

procedure TForm1.SendButtonClick(Sender: TObject);

var

456

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 c: TJSONObject;

begin

 c := TJSONObject.Create;

 c.AddPair('Message From Client', 'Hello World !');

 TMSFNCWebCoreClientBrowser1.Send(c);

 c.Free;

end;

457

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebAESEncryption

TWebAESEncryption is a wrapper around the Web Crypto API. It's recommended to first

familiarize yourself with the Web Crypto API: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Crypto_API

The Web Crypto API provides native support to create, use and store cryptographic keys

without exposing the content of private keys.

Below is a list of the most important properties, methods and events for the

TWebAESEncryption. The supported algorithms are: AES-CBC and AES-GCM.

Properties for TWebAESEncryption

Property Description

AESType: TAESEncryptionType The AES encryption algorithm type. If modified, it’s not

applied to the current key.

CryptoKey: TJSCryptoKey The CryptoKey object.

ExtractableKey: Boolean Determines if the key is extractable. If modified, it’s not

applied to the current key.

KeyLength: TAESEncryptionKeyLength The key length. If modified, it’s not applied to the

current key.

Usages Set of key usages. If modified, it’s not applied to the

current key.

Methods for TWebAESEncryption

Property Description

Decrypt(AEncryptedData: TJSArrayBuffer;

AResultType:

TCryptoDecryptResultType)

Method to decrypt an encoded data with the class’s

key. The result type can be string or binary, based on

what kind of data was encoded.

Encrypt(APlainText: string) Method to encrypt a plain text with the class’s key.

EncryptP(APlainText: string): TJSPromise Promise-based equivalent of Encrypt(APlainText).

Resolves with a TJSArrayBuffer value.

Encrypt(ABinary: TJSUint8Array) Method to encrypt binary data with the class’s key.

EncryptP(ABinary: TJSUint8Array): Promise-based equivalent of Encrypt(ABinary).

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

458

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TJSPromise Resolves with a TJSArrayBuffer value.

ExportKey(AFormat:

TCryptoExportImportFormat)

Method to export the class’s key. Supported formats

are: raw (ArrayBuffer) and jwk (JSON string).

GenerateKey Generates a new key based on the current property

settings.

ImportKey(AJSON: string) Method to import an AES key that is stored as a JSON

string.

ImportKeyP(AJSON: string): TJSPromise Promise-based equivalent of ImportKey(AJSON).

Resolves with a True value.

ImportKey(ABinary: TJSUint8Array) Method to import an AES key that is stored as binary

data.

ImportKeyP(ABinary: TJSUint8Array):

TJSPromise

Promise-based equivalent of ImportKey(ABinary).

Resolves with a True value.

ImportKey(ARaw: TJSArrayBuffer) Method to import an AES key that is stored as an array

buffer.

ImportKeyP(ARaw: TJSArrayBuffer):

TJSPromise

Promise-based equivalent of ImportKey(ARaw).

Resolves with a True value.

UnwrapKey(AImportFormat:

TCryptoExportImportFormat; AKey:

TJSArrayBuffer; AKeyAlgorithm: JSValue;

AExtractable: Boolean; AKeyUsages:

TCryptoKeyUsages)

Method to unwrap AKey with the class’s key and

algorithm. AKeyAlgorithm is the algorithm of AKey.

AImportFormat must be the same as what was used for

wrapping.

UnwrapKeyP(AImportFormat:

TCryptoExportImportFormat; AKey:

TJSArrayBuffer; AKeyAlgorithm: JSValue;

AExtractable: Boolean; AKeyUsages:

TCryptoKeyUsages): TJSPromise

Promise-based equivalent of UnwrapKey. Resolves with

a TJSCryptoKey value.

WrapKey(AKey: TJSCryptoKey;

AExportFormat:

TCryptoExportImportFormat)

Method to wrap a key with the class’s key and

algorithm.

WrapKeyP(AKey: TJSCryptoKey;

AExportFormat:

TCryptoExportImportFormat)

Promise-based equivalent of WrapKey. Resolves with a

TJSArrayBuffer value.

459

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebAESEncryption

Property Description

OnDecryptedBinary Event triggered when an encrypted data is decrypted

and the format is binary.

OnDecryptedString Event triggered when an encrypted is decrypted and

the format is string.

OnEncrypted Event triggered when a data is encrypted.

OnError Event triggered when there’s a Promise rejection.

OnKeyCreated Event triggered when a key is created.

OnKeyExportedJSON Event triggered when a key is exported as a JSON

string.

OnKeyExportedRaw Event triggered when a key is exported as an array

buffer.

OnKeyImported Event triggered when a key is imported.

OnKeyUnwrapped Event triggered when a key is unwrapped.

OnKeyWrapped Event triggered when a key is wrapped.

Create a key

A key is created by default when a new TWebAESEncryption is created. This is an async

process. If you want to be certain about not interfering with this key generation, wait

until the OnKeyCreated event is triggered.

procedure TForm1.AESKeyCreated(Sender: TObject);

begin

 //Proceed from here

end;

procedure TForm1.WebFormCreate(Sender: TObject);

begin

 aes := TWebAESEncryption.Create(aetCBC);

 aes.OnKeyCreated := AESKeyCreated;

end;

You can create new keys using the same object by calling GenerateKey or GenerateKeyP.

460

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

//Using event-based GenerateKey

procedure TForm1.AESKeyCreated(Sender: TObject);

begin

 //Proceed from here

end;

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 aes.GenerateKey;

end;

//Using promise-based GenerateKeyP

//WebButton1Click is marked as async

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 Await(JSValue, aes.GenerateKey);

 //Do something with the new key...

end;

Encrypting data

The available Encrypt methods are event-based. They will trigger the OnEncrypted event

when they are ready. Use the EncryptP promise-based functions if you need to wait for

an encryption to finish.

//Encrypting with EncryptP

procedure TForm1.WebButton1Click(Sender: TObject);

var

 ab: TJSArrayBuffer;

 I: Integer;

 res: string;

begin

 for I := 0 to 9 do

 begin

 ab := Await(TJSArrayBuffer, aes.EncryptP(myData[I]));

 //Do something with ab

 //Convert to HEX for example, before sending to a server:

 res := ABToHex(ab);

 end;

end;

Decrypting data

461

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The available Decrypt method is event-based. It will trigger the OnDecryptedBinary or

OnDecryptedString event when it is ready based on which format was selected. Use the

DecryptP promise-based function if you need to wait for a decryption to finish.

//Decrypting with DecryptP

procedure TForm1.WebButton1Click(Sender: TObject);

var

 I: Integer;

 res: string;

begin

 for I := 0 to 9 do

 begin

 res := Await(TJSArrayBuffer, aes.DecryptP(GetMyData(I),

drtString));

 //Do something with res

 end;

end;

TWebRSAEncryption

TWebRSAEncryption is a wrapper around the Web Crypto API. It's recommended to first

familiarize yourself with the Web Crypto API: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Crypto_API

The Web Crypto API provides native support to create, use and store cryptographic keys

without exposing the content of private keys.

Below is a list of the most important properties, methods and events for the

TWebRSAEncryption class. The supported algorithm is: RSA-OAEP.

Properties for TWebRSAEncryption

Property Description

ExtractableKey: Boolean Determines if the key is extractable. If modified, it’s not

applied to the current key.

Hash: TCryptoHash The hash function to be used with the algorithm. If

modified, it’s not applied to the current key.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

462

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

ModulusLength: TRSAModulusLength The length in bits of the RSA modulus. If modified, it’s

not applied to the current key.

PrivateKey: TJSCryptoKey The private CryptoKey object.

PublicKey: TJSCryptoKey The public CryptoKey object.

Usages Set of key usages. If modified, it’s not applied to the

current key.

Methods for TWebRSAEncryption

Property Description

Decrypt(AEncryptedData: TJSArrayBuffer;

AResultType:

TCryptoDecryptResultType)

Method to decrypt an encoded data with the class’s

private key. The result type can be string or binary,

based on what kind of data was encoded.

DecryptP(AEncryptedData:

TJSArrayBuffer; AResultType:

TCryptoDecryptResultType): TJSPromise

Promise-based equivalent of Decrypt. Resolves with a

TJSUint8Array or string value depending on the

AResultType parameter.

Encrypt(APlainText: string) Method to encrypt a plain text, with the class’s public

key.

EncryptP(APlainText: string): TJSPromise Promise-based equivalent of Encrypt(APlainText).

Resolves with a TJSArrayBuffer value.

Encrypt(ABinary: TJSUint8Array) Method to encrypt binary data, with the class’s public

key.

EncryptP(ABinary: TJSUint8Array):

TJSPromise

Promise-based equivalent of Encrypt(ABinary).

Resolves with a TJSArrayBuffer value.

ExportKey(AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat)

Method to export the class’s keys. AKeyType

represents which key to export. The supported formats

are PKCS#8 (PEM encoded string) for private keys, SPKI

(PEM encoded string) for public keys, and jwk (JSON

string) for private/public keys.

ExportKeyP(AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat):

TJSPromise

Promise-based equivalent of ExportKey. Resolves with

a string value.

ImportKey(AKey: string; AKeyType: Method to import a string formatted key. AKeyType

463

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat)

determines which key to import (private/public).

AFormat should be PKCS#8/jwk in case of a private key

and SPKI/jwk in case of a public key.

ImportKeyP(AKey: string; AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat):

TJSPromise

Promise-based equivalent of ImportKey(AKey).

Resolves with a True value.

ImportKey(ABinary: TJSUint8Array;

AKeyType: TCryptoAsymKeyType)

Method to import a key stored in binary format. Will

automatically use PKCS#8 for a private key and SPKI

for a public key.

ImportKeyP(ABinary: TJSUint8Array;

AKeyType: TCryptoAsymKeyType):

TJSPromise

Promise-based equivalent of ImportKey(ABinary).

Resolves with a True value.

GenerateKey Generates a new key pair based on the current

property settings.

GenerateKeyP: TJSPromise Promise-based equivalent of GenerateKey. Resolves

with a True value.

UnwrapKey(AImportFormat:

TCryptoExportImportFormat; AKey:

TJSArrayBuffer; AKeyAlgorithm: JSValue;

AExtractable: Boolean; AKeyUsages:

TCryptoKeyUsages)

Method to unwrap AKey with the class’s private key

and algorithm. AKeyAlgorithm is the algorithm of

AKey. AImportFormat must be the same as what was

used for wrapping.

UnwrapKeyP(AImportFormat:

TCryptoExportImportFormat; AKey:

TJSArrayBuffer; AKeyAlgorithm: JSValue;

AExtractable: Boolean; AKeyUsages:

TCryptoKeyUsages): TJSPromise

Promise-based equivalent of UnwrapKey. Resolves with

a TJSCryptoKey value.

WrapKey(AKey: TJSCryptoKey;

AExportFormat:

TCryptoExportImportFormat)

Method to wrap AKey with the class’s public key and

algorithm.

WrapKeyP(AKey: TJSCryptoKey;

AExportFormat:

TCryptoExportImportFormat):

Promise-based equivalent of WrapKey. Resolves with a

TJSArrayBuffer value.

464

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TJSPromise

Events for TWebRSAEncryption

Property Description

OnDecryptedBinary Event triggered when an encrypted data is decrypted

and the format is binary.

OnDecryptedString Event triggered when an encrypted is decrypted and

the format is string.

OnEncrypted Event triggered when a data is encrypted.

OnError Event triggered when there’s a Promise rejection.

OnKeyCreated Event triggered when a key is created.

OnKeyExportedJSON Event triggered when a key is exported as a JSON

string.

OnKeyExportedPKCS8 Event triggered when a key is exported in PKCS#8

format as a PEM encoded string.

OnKeyExportedSPKI Event triggered when a key is exported in SPKI format

as a PEM encoded string.

OnKeyUnwrapped Event triggered when a key is unwrapped.

OnKeyWrapped Event triggered when a key is wrapped.

OnPrivateKeyImported Event triggered when a private key is imported.

OnPublicKeyImported Event triggered when a public key is imported.

TWebRSASignature

TWebRSASignature is a wrapper around the Web Crypto API. It's recommended to first

familiarize yourself with the Web Crypto API: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Crypto_API

The Web Crypto API provides native support to create, use and store cryptographic keys

without exposing the content of private keys.

Below is a list of the most important properties, methods and events for the

TWebRSASignature. The supported algorithm is: RSASSA-PKCS1-v1_5.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

465

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TWebRSASignature

Property Description

ExtractableKey: Boolean Determines if the key is extractable. If modified, it’s not

applied to the current key.

Hash: TCryptoHash The hash function to be used with the algorithm. If

modified, it’s not applied to the current key.

ModulusLength: TRSAModulusLength The length in bits of the RSA modulus. If modified, it’s

not applied to the current key.

PrivateKey: TJSCryptoKey The private CryptoKey object.

PublicKey: TJSCryptoKey The public CryptoKey object.

Usages Set of key usages. If modified, it’s not applied to the

current key.

Methods for TWebRSASignature

Property Description

ExportKey(AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat)

Method to export the class’s keys. AKeyType

represents which key to export. The supported formats

are PKCS#8 (PEM encoded string) for private keys, SPKI

(PEM encoded string) for public keys, and jwk (JSON

string) for private/public keys.

ExportKeyP(AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat):

TJSPromise

Promise-based equivalent of ExportKey. Resolves with

a string value.

GenerateKey Generates a new key pair based on the current

property settings.

GenerateKeyP: TJSPromise Promise-based equivalent of GenerateKey. Resolves

with a True value.

ImportKey(AKey: string; AKeyType:

TCryptoAsymKeyType; AFormat:

TCryptoExportImportFormat)

Method to import a string formatted key. AKeyType

determines which key to import (private/public).

AFormat should be PKCS#8/jwk in case of a private key

and SPKI/jwk in case of a public key.

ImportKeyP(AKey: string; AKeyType:

TCryptoAsymKeyType; AFormat:

Promise-based equivalent of ImportKey(AKey).

Resolves with a True value.

466

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TCryptoExportImportFormat):

TJSPromise

ImportKey(ABinary: TJSUint8Array;

AKeyType: TCryptoAsymKeyType)

Method to import a key stored in binary format. Will

automatically use PKCS#8 for a private key and SPKI

for a public key.

ImportKeyP(ABinary: TJSUint8Array;

AKeyType: TCryptoAsymKeyType):

TJSPromise

Promise-based equivalent of ImportKey(ABinary).

Resolves with a True value.

Sign(AText: string) Sign AText with the class’s public key and algorithm.

SignP(AText: string): TJSPromise Promise-based equivalent of Sign(AText). Resolves with

a TJSArrayBuffer value.

Sign(ABinary: TJSUint8Array) Sign ABinary with the class’s public key and algorithm.

SignP(ABinary: TJSUint8Array):

TJSPromise

Promise-based equivalent of Sign(ABinary). Resolves

with a TJSArrayBuffer value.

Verify(ASignature: TJSArrayBuffer; AData:

TJSArrayBuffer)

Verify AData with ASignature, using the class’s private

key and algorithm.

VerifyP(ASignature: TJSArrayBuffer;

AData: TJSArrayBuffer): TJSPromise

Promise-based equivalent of Verify. Resolves with a

Boolean value.

Events for TWebRSASignature

Property Description

OnError Event triggered when there’s a Promise rejection.

OnKeyCreated Event triggered when a key is created.

OnKeyExportedJSON Event triggered when a key is exported as a JSON

string.

OnKeyExportedPKCS8 Event triggered when a key is exported in PKCS#8

format as a PEM encoded string.

OnKeyExportedSPKI Event triggered when a key is exported in SPKI format

as a PEM encoded string.

OnPrivateKeyImported Event triggered when a private key is imported.

OnPublicKeyImported Event triggered when a public key is imported.

OnSigned Event triggered when data is signed.

467

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

OnVerify Event triggered when data is verified

See TWebAESEncryption documentation on how to create keys.

Sign data

The available Sign methods are event-based. They will trigger the OnSigned event when

they are ready. Use the SignP promise-based functions if you need to wait for a sign

process to finish.

//Signing with SignP

procedure TForm1.WebButton1Click(Sender: TObject);

var

 ab: TJSArrayBuffer;

 I: Integer;

 res: string;

begin

 for I := 0 to 9 do

 begin

 ab := Await(TJSArrayBuffer, rsaSign.SignP(myData[I]));

 //Do something with ab

 //Convert to HEX for example, before sending to a server:

 res := ABToHex(ab);

 end;

end;

Verify data

The available Verify method is event-based. It will trigger the OnVerify event when it has

finished verifying. Use the VerifyP promise-based function if you need to wait for an

verification to finish.

//Verifying with VerifyP

procedure TForm1.WebButton1Click(Sender: TObject);

var

 res: Booelan;

 mySignature, myData: TJSArrayBuffer;

begin

 //Some code...

 res := Await(Boolean, rsaSign.VerifyP(mySignature, myData));

468

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 //if res = True, the signature is valid

 //Some more code...

end;

TWebHMACSignature

TWebHMACSignature is a wrapper around the Web Crypto API. It's recommended to

first familiarize yourself with the Web Crypto API: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Crypto_API

The Web Crypto API provides native support to create, use and store cryptographic keys

without exposing the content of private keys.

See TWebAESEncryption documentation on how to create keys. See TWebRSASignature

documentation on signing and verifying data.

Below is a list of the most important properties, methods and events for the

TWebHMACSignature class.

Properties for TWebHMACSignature

Property Description

CryptoKey: TJSCryptoKey The CryptoKey object.

ExtractableKey: Boolean Determines if the key is extractable. If modified, it’s not

applied to the current key.

Hash: TCryptoHash The hash function to be used with the algorithm. If

modified, it’s not applied to the current key.

Usages Set of key usages. If modified, it’s not applied to the

current key.

Methods for TWebHMACSignature

Property Description

ExportKey(AFormat:

TCryptoExportImportFormat)

Method to export the class’s key. Supported formats

are: raw (ArrayBuffer) and jwk (JSON string).

ExportKeyP(AFormat:

TCryptoExportImportFormat):

TJSPromise

Promise-based equivalent of ExportKey. Resolves with

a TJSUint8Array value if AFormat = efRaw. Resolves

with string if AFormat = efJSON.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

469

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

GenerateKey Generates a new key based on the current property

settings.

GenerateKeyP: TJSPromise Promise-based equivalent of GenerateKey. Resolves

with a True value.

ImportKey(AJSON: string) Method to import a HMAC key that is stored as a JSON

string.

ImportKeyP(AJSON: string): TJSPromise Promise-based equivalent of ImportKey(AJSON).

Resolves with a True value.

ImportKey(ABinary: TJSUint8Array) Method to import a HMAC key that is stored as binary

data.

ImportKeyP(ABinary: TJSUint8Array):

TJSPromise

ImportKey(ARaw: TJSArrayBuffer) Method to import a HMAC key that is stored as an

array buffer.

ImportKeyP(ARaw: TJSArrayBuffer):

TJSPromise

Promise-based equivalent of ImportKey(ABinary).

Resolves with a True value.

Sign(AText: string) Sign AText with the class’s public key and algorithm.

SignP(AText: string): TJSPromise Promise-based equivalent of Sign(AText). Resolves with

a TJSArrayBuffer value.

Sign(ABinary: TJSUint8Array) Sign ABinary with the class’s public key and algorithm.

SignP(ABinary: TJSUint8Array):

TJSPromise

Promise-based equivalent of Sign(ABinary). Resolves

with a TJSArrayBuffer value.

Verify(ASignature: TJSArrayBuffer; AData:

TJSArrayBuffer)

Verify AData with ASignature, using the class’s private

key and algorithm.

VerifyP(ASignature: TJSArrayBuffer;

AData: TJSArrayBuffer): TJSPromise

Promise-based equivalent of Verify. Resolves with a

Boolean value.

Events for TWebHMACSignature

Property Description

OnError Event triggered when there’s a Promise rejection.

OnKeyCreated Event triggered when a key is created.

OnKeyExportedJSON Event triggered when a key is exported as a JSON

470

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

string.

OnKeyExportedRaw Event triggered when a key is exported as an array

buffer.

OnKeyImported Event triggered when a key is imported.

OnSigned Event triggered when data is signed.

OnVerify Event triggered when data is verified

TWebSHAHash

TWebSHAHash exposes easy to use cryptographic hash functions, more specifically Secure Hash

Algorithms (SHA). The supported SHA algorithms are: SHA-1, SHA-256, SHA-384 and SHA-512.

Below is a list of the most important properties and methods for the TWeSHAHash.

Properties for TWebSHAHash

Property Description

HashType: TCryptoHash Sets the hashing algorithm to use.

Methods for TWebSHAHash

Property Description

Hash(AText: string): TJSPromise The result of the TJSPromise will contain the hashed

AText.

Example

procedure TForm1.WebButton1Click(Sender: TObject);

var

 sha: TWebSHAHash;

 s: string;

begin

 sha := TWebSHAHash.Create(ehSHA1);

 s := Await(string, sha.Hash('text to be hashed'));

 WebMemo1.Lines.Add(s);

471

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

end;

TWebPushNotifications

Below is a list of the most important properties methods and events for the

TWebPushNotifications. Push notifications are tested and supported in: Chrome, Firefox,

Firefox Developer Edition, Edge, Opera, and on Android: Chrome, Firefox, Opera,

Samsung Browser.

Registration for push notifications

The RegisterServiceWorker procedure first registers the service worker, then

automatically retrieves a subscription that is tied to that service worker. If the

AutoRegisterSubscription property is set to True, then it automatically registered the

subscriptios on the server via the given RegisterSubscriptionURL. The UserID is used as

an identificiation, which means it should be unique to the user. At the same time a

single UserID can be registered from different devices.

view plain text

1. procedure TForm1.WebButton1Click(Sender: TObject);
2. begin
3. WebPushNotifications1.RegistrationUserID := 'UserID';
4. WebPushNotifications1.RegisterServiceWorker;
5. end;

Multiple users on the same device
It’s possible that there are multiple users who share the same device. They might be

interested in different topics or the notifications are personalized and we want to avoid

sending a notification to a user who is not entiteled to see it (for example: email

services). This can be resolved by introducing a login-logout mechanism. We can send

the notifications as long as the user is logged in (= “Active”). For this purpose the data

store has a UserActive boolean field which identicates if the user is active or not. By

default this value is always set to True. If you’d like to modify this value, you can do so

by using the Logout or Login methods.

view plain text

1. procedure TForm1.WebButton1Click(Sender: TObject);
2. begin
3. //Request the server to set UserActive to False
4. //for the given RegistrationUserID:
5. WebPushNotifications1.RegistrationUserID := 'UserID';
6. WebPushNotifications1.Logout;
7. end;
8.

markdown/webcore.html
markdown/webcore.html

472

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

9. procedure TForm1.WebButton2Click(Sender: TObject);
10. begin
11. //Request the server to set UserActive to True
12. //for the given RegistrationUserID:
13. WebPushNotifications1.RegistrationUserID := 'UserID';
14. WebPushNotifications1.Login;
15. end;

Properties for TWebPushNotifications
Property Description

AutoGetSubscription: Boolean Get the subscription automatically when the VAPID

key is received.

AutoRegisterSubscription: Boolean Automatically register subscription.

LoginURL: string URL for setting the user’s active state to True.

LogoutURL: string URL for setting the user’s active state to False.

Registration:

TJSServiceWorkerRegistration

Provides access to the service worker registration

object.

RegistrationUserID: string A unique ID for the user (such as email).

RegistrationUserData: string Used for setting topics. Use ',' as a separator between

the topics.

RegisterSubscriptionURL: string URL for registering the subscription.

ServiceWorkerURL: string URL for the service worker.

Subscription: TJSPushSubscription Provides access to the PushSubscription object.

UnregisterSubscriptionURL: string URL for unsubscribing a subscription.

VapidPublicKey: string VAPID public key. Can be fetched from the server

using VapidPublicKeyURL.

VapidPublickeyURL: string URL to fetch the VAPID public key if it’s not set yet.

Methods for TWebPushNotifications

Property Description

CreateNewSubscription Method to create a new subscription.

GetVapidPublicKey Method to get the VAPID key from the server.

Login Method to set the user’s active state to True in the

data store.

Logout Method to set the user’s active state to False in the

data store.

473

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

RegisterServiceWorker Method to register the service worker with the

browser’s push service. It creates a subscription if

needed.

RegisterSubscription Method to register a subscription on the server.

Unsubscribe(aAll: Boolean = True) Method to unregister a subsription on the server. By

default all the subscriptions will be unsubscribed that

are connected to the UserID.

Events for TWebPushNotifications

Property Description

OnGetRegistration Event triggered when service worker registration is

available.

OnGetSubscription Event triggered when a subscription is available.s

OnGetVapidPublicKey Event triggered when the VAPID public key is fetched

from the server.

OnSubscriptionRegistered Event triggered when a subscription is sucessfully

registered.

OnUnsubscribed Event triggered when the user has unsubscribed.

474

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core 3D

TMS WEB Core 3D component library can be used to create impressive 3D WebGL

applications in Delphi. It consists of several components to display interactive 3D Charts and

Models in a Web Application.

These components internally use WebGL through Three.js, an open source, cross-browser

JavaScript library. The best thing is that one need not know WebGL or Three.js in order to make

basic 3D applications with these components. At the same time, if the need arises, direct

Three.Js API calls can be made in Delphi code through a JS interface library provided for the

purpose.

Your first 3D Chart application

Create a standard TMS Web Application in the Delphi IDE by choosing File, New, Other, TMS

Web Application.

A new web form is created. Go to the Tool Palette and select the TWebThreeJsChart

component from the “TMS Web 3D” section and drop it on the web form.

475

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now the only thing remaining is to include the proper Three.js library file. Right-click on the

Project and select “Manage JavaScript Libraries.”

Choose the “Three JS (3D)” library and click OK.

Save and Run the project. You will see a Default Chart come up in the browser. Try to rotate the

chart with the mouse and zoom with the mouse wheel. You get that interactive functionality out

of the box, without writing any code!

476

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

You can now customize the data series for this chart in the code of the form as per your

requirement. For some sample code, please see the demo project under the TMS folder Demo,

3D, Chart. The demo code is discussed in the next section.

3D Business Chart Applications
As shown above, the TWebThreeJsChart component can be used to create 3D Business Chart

applications that draw bar, line or area charts.

The 3D Bar Chart Demo
After creating a quick 3D chart application as shown in the previous section, the next step is to

try and understand the customization code in the Chart Demo so that you can code your own

custom data series for a similar 3D bar chart.

First of all, open the Chart Demo under the TMS folder Demo, 3D, Chart and run it. Move the

mouse over the chart items and you will see them glow with a Text Popup showing the value.

Try out various features given in the Demo before we discuss the code.

477

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The Terminology for Axes

Before coding the data series, you will need to understand how each axis is named. The above

picture shows the name of each Axis.

Creating the Data Series object

Please look at the Web Form code of the procedure LoadSampleSeries1.

var

 aSeries: TThreeJsChartSeries;

begin

 aSeries := TThreeJsChartSeries.Create(

 TJSArray.New('East', 'West',

 'North', 'South'),

 TJSArray.New('Q1', 'Q2', 'Q3',

 'Q4')

);

The constructor of the Series object expects 2 parameters as the Axis Labels to be passed in

two JS Arrays: 1. Legend Axis Labels 2. Category Axis Labels

Then the data is added in the form of each Legend Row as an array in the following code. The

Demo uses hard coded data but you can have your own logic to obtain the data for each

Legend row.

aSeries.addLegendRow('East',

 TJSArray.New(41834, 52835, 46563,

 60184));

aSeries.addLegendRow('West',

 TJSArray.New(48842, 62964, 54243,

 73796));

...

The rest of the Series set up code is easy to understand:

478

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

aSeries.valueAxisMarkMaximum := 100000;

aSeries.valueAxisMarkStep := 20000;

aSeries.valueFormatFloat := '$#,##0';

aSeries.valueAxisFormatFloat := ''; //use the above

aSeries.Title := 'Sales by Region';

aSeries.ValueAxisTitle := 'Quaterly Sales';

aSeries.LegendAxisTitle := 'Regions';

aSeries.CategoryAxisTitle := 'Quarters';

threeJsChart.Series := aSeries;

Notable points:

• The Format to show values on the chart items can be different from the format to show

values on the Value Axis marks. But the above code uses the same format for both.

• The series object is finally assigned to the Series property of the Chart component. The

above Load procedure is called from the WebFormCreate event and then the chart is

displayed by the following code.

threeJsChart.clearChart;

threeJsChart.createChart;

The chart component is smart enough to decide on proper axes length and marks based on the

data. But you can set the dimensions of items too, resulting in a bigger or smaller chart area.

Other features shown in the Demo

You can run and explore the Chart Demo to see many other features demonstrated:

• Built in objects: Many built in objects like the Camera, Spotlight, etc are automatically
added by the component. You don’t have to write any code.

• Interactive Rotation and Zoom with the mouse and mouse wheel: You get this
functionality out of the box, without writing any code.

• Choice of Chart Type: Chart items can be shown as Bars, Cylinders, Cones, Lines or
Areas.

• Auto colors: Colors are assigned automatically to Legend rows. You can specify
custom colors too.

• Dimension Properties for items: Item Width, Space and Plot Width (for Line and Area
charts) can be changed. The dimensions are in WebGL units. The component is smart
enough to determine the length of bottom 2 axes automatically based on the item
dimensions. But you can override the default length of Value Axis by a separate
property.

• Transparency of Chart Items: can be set with additional Opacity property.
• Optional Legend display: can be specified to associate colors with Legend items.
• Auto Marking of Value Axis: The demo code does not use this feature by default. But

you can switch on this checkbox to see its effect. This is a smart feature that determines
the marks on the Value scale based on the data.

479

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

• Other Niceties available:
o Auto rotate axis labels to always face the Camera
o Show value popups on all items
o Transparency and opacity control

Events

The following events are available:

• Interaction with Items: OnItemClick, OnItemExit, OnItemDblClick, OnItemMouseEnter,
OnItemMouseLeave, OnItemMouseMove

• Interaction with other areas of the chart: OnClick, OnDblClick

For example, the Demo uses the above events to show features like displaying value popups on

items and glowing of items when the mouse is moved over the items or when the items are

clicked.

3D Math Chart Applications
The component TWebThreeJsMathChart is available to create 3D Math Chart applications that

draw Scatter or Surface charts.

The 3D Scatter Chart Demo
Open this Demo under the TMS folder Demo, 3D, Scatter and run it.

The Terminology for Axes

480

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Before coding the data series, you will need to understand how each axis is named in a Math

chart. This is different from the bar chart seen earlier that uses business terminology. The above

picture shows the name of each Axis.

Creating the Data Series object

Please look at the Web Form code of the procedure LoadSampleSeries1. The Series class

is TThreeJsMathChartSeries. The code that passes X, Y, Z data to the series is:

aSeries.addData(x, y, z, psSphere, name,

 aPointSize, aPointColor)

In addition, the shape of the scatter point, its name, its size and color can be passed. The rest of

the code to set the Series and to create the chart is similar to the earlier Chart Demo.

Other features shown in the Demo

Other features demonstrated are similar to those described for the earlier Chart Demo except

for the following differences:

• Auto Marking feature now determines the length and scale marks for all 3 axes based
on the Series data. The Demo uses this feature. This feature saves considerable effort
for a typical Math Chart application to pre determine and set the length and scale marks
for each axis.

• Improved Legend: The Legend in the scatter chart shows the shape of the point in
addition to the color.

The Events used in the Demo are also similar to those described for the earlier Chart Demo.

The 3D Surface Chart Demo
This demo demonstrates the features of TWebThreeJsMathChart component used to draw a

surface chart based on an Equation. Hence, it is called a Parametric Surface Chart.

Open this Demo under the TMS folder Demo, 3D, Surface and run it.

481

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

How it works

In the Demo, you can select a Surface Equation from a dropdown list to draw the surface chart

accordingly. For example, here is another Surface Chart produced by the Demo:

Creating the Data Series object

Please look at the Web Form code of the procedure LoadEquation. The Series class is same as

that for earlier Scatter Demo– TThreeJsMathChartSeries. But the procedure to add the data

482

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

for surface chart is different:

aSeries.addParametricSurface(xMin, xMax,

 yMin, yMax, resolution, @surfaceCallBack);

The ranges of values for X and Y are passed along with a Delphi Parametric callback function.

The Chart component does the following:

• Generates X and Y values based on the parameters passed

• For each pair of values, calls back the Parametric function of the application to get the

value of Z.

The callback function used in the Demo is:

function TForm2.surfaceCallBack(x, y: double): double;

begin

 case cbSeries.ItemIndex of

 1: Result := abs(x-y);

 2: Result := -x*x - y*y + 6;

 3: Result := sin(x)*x+cos(y)*y;

 4: Result := 2 * sqrt(x*x/3 + y*y/8);

 5: Result := sqrt(abs(1.5 * (x*x/3 -

 y*y/4) - 6));

 6: Result := 8 * (sin(x) + cos(y));

 else

 Result := x*x + y*y;

 end;

end;

The function uses the index of the drop down list to select an equation and return a Z value

accordingly.

Other features shown in the Demo

You can run and explore the 3D Surface Chart Demo to see some more features provided for

the Surface chart:

• Show Wire Frame: The cells of the wire frame depend on the Resolution value.
• Show Wire Frame Texture: This draws a wire frame texture directly on the colored

surface of the chart. With the default high resolution, you may not be able to see this. Try
a lower resolution value to see how this works.

• Use Custom Colors and Texture.

3D PaintBox Applications

483

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The TWebThreeJsPaintBox component lets you create arbitrary 3D Scenes containing often

used objects like Cubes, Spheres, Text and more. In fact, these primitives come from the base

class and the already created Chart components are great examples of the kind of applications

that are possible.

The 3D PaintBox Demo
You can open the PaintBox Demo under the TMS folder Demo, 3D, Paintbox and run it.

The Terminology for Axes

This component uses standard WebGL axes. These are shown in the picture above. You need

to provide the positions of objects accordingly. All dimensions and positions are in WebGL units.

The code for adding objects

The objects are added to the scene in the OnCreate event of the Web Form with a code that

looks like the following. The initial parameters for each object are dimensions, followed by the a

TColor, followed by X, Y, Z position.

// Add a Bar with color $ff7777

anObject := threeJsPaintBox.AddBar(

 2, 3, 2, $ff7777, 8, 7, 10);

anObject.name := 'bar1';

// Add a cube

anObject := threeJsPaintBox.AddCube(3,

 $00FF00, 16, 5, 8);

anObject.name := 'cube2';

// Add a Sphere

anObject := threeJsPaintBox.AddSphere(2,

 $0000ff, 10, 8, 4);

anObject.name := 'sphere1';

// Add a Cylinder

anObject := threeJsPaintBox.AddCylinder(1,

484

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 1, 7, $00ffff, 4, 3.5, 13);

anObject.name := 'cylinder1';

// repaint the box to show new objects

threeJsPaintBox.Invalidate;

There are many more parameters for above functions with defaults, for example, to specify

transparency. But the Demo code does not use them and default values are used for those.

You can make quite impressive 3D applications by creating objects as shown above. The 3D

Chart components discussed earlier are examples of such applications.

Direct Use of the Three.Js API

Object creation methods like “AddCube” return a 3D Object of the type TThreeJsObject3D.

Such types are Three.Js objects made available to you in Delphi syntax via the specially coded

JS Interface unit “Libthreejs.”

The end result is that you can directly use the methods and properties of these objects as

documented in Three.Js documentation. For example, to change the position of an object, you

will change its “position” property directly, in Delphi code.

All the methods that expect a color as a parameter have been modified to use TColor of Delphi

for the convenience of Delphi developers even though Three.Js internally uses the Web color

codes.

Sample code for Other features

Please run this Demo and inspect the source to see how you can perform these actions on

objects in your own code.

• Built in objects: Many built in objects like the Camera, Spotlight, etc are automatically
added by the component. You don’t have to write any code.

• Interactive Rotation and Zoom with the mouse and mouse wheel: You get this
functionality out of the box, without writing any code.

• Rotation by code: Rotate the whole scene around the origin by RotateLeft and
RotateRight methods of the component. The demo uses Rotate trackbars to show this
feature.

• Change Center of Viewing: To make another object’s position as the center of
viewing/rotation, use the method SetTargetViewVector and pass the position of another
object. This is demonstrated by the button “Set Cube2 as Center of Viewing.”

• Panning by code: Similarly, you can pan the camera by Pan* methods of the
component. The demo shows this feature by the 4 Pan buttons.

• Zooming by code: Use the ZoomIn method. This is shown by the Zoom trackbar.
• Save orientation: Suppose you want to save the exact orientation of the scene with

respect to the camera and then restore it later. A SaveState method is provided for this
purpose. Similarly, a ResetState restores the orientation to a saved state. The Demo
shows this feature by “Save Orientation” and “Restore Orientation” buttons.

• Debugging arrow: Sometimes, you may want to know the exact position of certain
invisible objects like the SpotLight and its target. A method ShowDebugArrow is

485

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

provided for this purpose. The demo shows this feature via the button “Show Arrow from
Spotlight to Its Target.”

• Moving an object: If you have the handle of an object, you can change its position
property directly. This is shown by the buttons “Move Spotlight Up/Down” where the
object used is the Built In SpotLight object. You can use such code on any object that
you have saved as a variable. The bottom trackbars are used in the Demo to move the
object selected in the List “Operations on Object.”

Events

The following events are available:

• Interaction with Objects: OnItemClick, OnItemExit, OnItemDblClick,

OnItemMouseEnter, OnItemMouseLeave, OnItemMouseMove

• Interaction with other areas of the Scene: OnClick, OnDblClick

3D Model Applications

The TWebThreeJsModelBox component lets you create or load arbitrary 3D Models from

model files. In addition to the earlier described PaintBox methods, it contains methods to add

Obj/Mtl or GLTF models from model files and can Export the scene to GLTF model files.

“ThreeJS Models (3d)” JS Library is required
If you use the TWebThreeJsModelBox component in an application, you should include the JS

Library “ThreeJS Models (3d)” by using the same Project right-click menu “Manage JavaScript

Libraries” that is described in an earlier section “Your first 3D Chart application.”

The 3D Model Demo
Since this Demo needs to load models from data files, an extra second step is required to copy

those files as described below.

• Open the Model Demo under the TMS folder Demo, 3D, Model.
• Copy the 2 subfolders from the Data folder of the project to the web output folder.
• Now build and run the Demo.
• Select the Model “R2 D2 Robot” at the top and click on “Load Obj/Mtl Object” to get a

result similar to the following picture.

486

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The Code to Load OBJ/MTL Models

You will see a code like the following to add objects from OBJ/MTL files:

threeJsModelBox.AddObjectMtl('model-R2D2',

 'r2-d2.obj', 'assets/',

 'r2-d2.mtl', 'assets/',

 'assets/');

The first parameter is the name given to the model followed by the OBJ and MTL model file

names and various folders accompanying them.

The code to Load GLTF Model

You will find this in the action code of Load GLTF Model button. The call is AddObjectGltf that is

much simpler because only one GLTF file needs to be specified with an optional path for the

accompanying folder, often not needed.

Getting the Object in OnObjectLoad event

Note that the loading of the Model is asynchronous and requires internal loading of many other

files such as textures. So the above Add methods do not return an Object immediately.

Instead, you have to use the event OnObjectLoad that hands over the object to you. There, you

can take other actions on the object like rotating it if needed. For example, if you see the code

487

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

for this event,you will see a particular “Gothic Fence” object being rotated after loading because

its default loaded view is horizontal, flat.

Additional features for Models

Auto Position Object after Loading by the method BringObjectInFullView

A third party 3d model object can be of any size. The Three.Js code to properly position the

camera so as to bring the object of any size in full view is complicated. Hence, the component

implements a method BringObjectInFullViewthat does this job well.

This method is used in the Demo’s OnObjectLoad event to bring the object properly in view.

You can see the difference made by this auto positioning method by unchecking the option

when loading the R2 D2 model. The model is large and if you do not use the above method, you

can only see the feet of the Robot after a load. You need to zoom out to see the full Robot

which is big.

Additional Lights and Gamma Correction

To demonstrate loading of GLTF models, the Demo uses an already exported GLTF file from

the Demo itself for the same R2 D2 Robot. Just click on the button “Load GLTF File” to load it.

You will notice that the loaded model appears darker as compared to OBJ/MTL loaded result.

This is so because GLTF models process the model as per their own algorithms needed to

store everything in one file. Hence, GLTF models often need more light and something called a

“Gamma Correction.” Hence,please switch on those options in the Demo, and then reload to

see how it works better.

The above options use the component method AddLights and the property

UseGammaCorrection.

Changing colors of lights

The Model Demo also shows sample code for changing color of various lights, including the

built-in SpotLight and AmbientLight.

488

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebStellarDataStoreClientDataset Component

Introduction

The StellarDS.io service is an instantly available, secure and worry-free cloud data storage

service. The component TWebStellarDataStoreClientDataset makes it easy for a Delphi TMS

WEB Core Application to use database tables on the StellarDS.io service by a familiar syntax of

using ClientDataSet. It also allows a seamless integration of the StellarDS.io data tables with

data-aware components like TWebDBGrid, TWebDBTableControl and many more... All the

database operations can be done in the standard Delphi way through the

TWebStellarDataStoreClientDataset component. All you need to do is specify the StellarDS.io

settings for authentication and authorization and choose the table(s) to connect to and the fields

to use. Then connect a DataSource and Data components to it and make the dataset active.

Your first web application using TWebStellarDataStoreClientDataSet

Setup your StellarDS.io project in StellarDS.io web admin app

Follow these steps:

1. Navigate to https://stellards.io/ and sign up for StellarDS.io if not already done

2. Go to My Account → Manage Database

3. Under "Tables", create the tables you need and add the required Fields to each table

4. The Table name or Table ID will be need to use these from your client app

5. Under "Applications", select to get client access via OAuth or via access tokens. See

next paragraph for details and recommendations for chosing either one access method.

6. When chosing OAuth, first set your app Name, CallbackURL and Role. The Name's only

purpose is for remembering what the OAuth access is used for. The CallbackURL will

typically be the start page of your web client application (typically something like

http://localhost:8000/Project1/Project1.html). Note that this URL might be different when

you deploy your application to a web server. Finally, also select the Role. The Role will

determine the access rights the application will have. When these settings are

configured, the app will generate a ClientId and Secret. Keep these settings in a safe

place as these will be needed in your web applications.

7. When chosing Access Tokens, also here you can specify an app Name, the duration of

validity of the access token, the role and finally also an optional domain restriction. When

the domain is set, the StellarDS.io endpoints will only be accessible with the generated

access token when executed from the specified domain. Keep the generated access

token in a safe place.

489

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Create a TMS WEB Core application

Create a standard TMS WEB Core Application in the Delphi IDE by choosing File, New, Other,

TMS WEB Core Application. A new web form is created.

Set up the TWebStellarDataStoreClientDataSet component

Go to the Tool Palette and select the TWebStellarDataStoreClientDataSet component from the

“TMS Data Access” section and drop it on the web form.

• App.ClientId: specify the ClientId here obtained via the StellarDS.io web interface

• App.Secret: specify the Secret here obtained via the StellarDS.io web interface

• App.CallbackURL: Set this to the start URL of the web application

• TableName: Select what table from the project you want to consume via the client

dataset

For a setup with an access token, set the public property

TWebStellarDataStoreClientDataSet.AccessToken to the token obtained via the StellarDS.io

web app

Setup fields

The DataSet field definitions need to be set up either in Object Inspector by right-clicking on the

“Fields Editor” or in the WebFormCreate event code.

Select the fields in the Object Inspector

Follow these steps:

1. Right-click the TWebStellarDataStoreClientDataSet and select “Edit Dataset Fields”

2. Under "Connection Settings", either set the obtained access token or the OAuth flow's

ClientId, Secret and CallbackURL if these properties have not been automatically

retrieved from the WebStellarDataStoreClientDataSet component being edited

3. Click the “Connect” button and follow the authentication instructions. When an access

token is set, no authentication will be needed. If the process is successful, a dialog with

the list of available tables and fields is displayed.

490

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

4. Select the table from the tables list (or from here you can also add tables and define

meta data from the tables)

5. When the WebStellarDataStoreClientDataSet component's Fields collection is still

undefined, the fields from the selected table will now automatically be added

6. Use the "Fields Editor" from the context-menu when you want to further add or remove

fields manually

7. Note that each table in StellarDS.io has an id field. This id field cannot be edited. It is the

key field for each table.

Create the Fields in code

Here is an example of adding the field definitions in code in the OnCreate event. In the

Object Inspector, double-click on OnCreate event of the Web Form. This creates an

event handler procedure WebFormCreate. The following code in it sets up the field

definitions. What fields you add are based on how you defined them for the Table in

StellarDS.io. Note that id field must be defined as data type ftInteger.

WebStellarDataStoreClientDataSet1.FieldDefs.Clear;

WebStellarDataStoreClientDataSet1.FieldDefs.Add('id', ftInteger);

WebStellarDataStoreClientDataSet1.FieldDefs.Add('note',ftString);

WebStellarDataStoreClientDataSet1.FieldDefs.Add('date',ftDate);

WebStellarDataStoreClientDataSet1.Active := True;

Add Data Components that connect to the DataSet

Now select and drop a TWebDataSource, TWebDBGrid and TWebDBNavigator component on

the Web Form.

Set up the Columns of the DBGrid

Do that by clicking on the Columns property of the DBGrid.

Set up a New Record event

Since we will be adding New Records with the DB Navigator, we need to set up the default

values of the record. For this, we set up an OnNewRecord event procedure for the StellarDS.io

Client Data Set in the Object Inspector and type the following code in it.

procedure TForm1...NewRecord(DataSet: TDataSet);

begin

491

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 DataSet.FieldByName('note').AsString := 'New Note';

 DataSet.FieldByName('date').AsDateTime := Date; // set to today

end;

Run the Web Application

Now you can build and run the application. When you run it for the first time, the component

automatically asks you to login by using your credentials for StellarDS.io. The DB Grid will

appear empty as there are no records. Try adding new records with the Navigator and see how

it works.

Todo List Demo

Please find this demo in the folder Demo\DBBackend\StellarDataStore\TodoList. This Demo

connects the component to a Tasks table to show you the Tasks with their status, description

and dates.

Additional features in this Demo

Add, Update, Delete through separate data aware controls and buttons

The Demo allows you to perform add, update, delete operations through database field editor

controls and buttons instead of through the Navigator.

Sorting on columns

We want to be able to sort on any column of the DB Grid by clicking on the header of the

column. So we need to be able to read all the records in the order of that field. For this, we need

to add a Sort Field Definition specifying the field to be sorted on. This is done in the event

procedure GridTasksFixedCellClick.

WebStellarDataStoreClientDataSet1.ClearSortFieldDefs;

WebStellarDataStoreClientDataSet1.AddSortFieldDef(LIndex,

gridTasks.Columns[ACol].SortIndicator = siAscending);

WebStellarDataStoreClientDataSet1.Refresh;

The first parameter to AddSortFieldDef call is the field name and the second parameter is a

boolean flag that is true for ascending order and false for descending order. The Demo uses its

own logic to pass this information and then Refreshes (reloads) the data in the desired order.

Updating, inserting and deleting data

492

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This Demo also shows an example of connecting Data components like CheckBox or a Memo

to the database so that those fields can be edited in the current record. After editing, a call to

Update from the update button takes care of committing the changes to the cloud database.

Similary, the Demo has examples of Inserting a new record and deleting the current record by

respective calls.

Troubleshooting

Exceptions are displayed in a red alert message at the bottom of the web page. You can also

look at the Browser Console for error messages. If you start getting authentication errors when

the application was working earlier, it’s most probably a changed IP address. In any case, the

first thing you can try is clear the Local Storage which is under Applications in Chrome

Developer tools.

Properties of TWebStellarDataStoreClientDataSet

Property Description

AccessToken This is a public property that can be used to set the access token

obtained from the StellarDS.io web app for access token based

access

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

App.ClientId Get from the “API ClientId” application setting in the StellarDS.io

admin app

App.Secret Get from the “API Secret” application setting in the StellarDS.io admin

app

App.CallbackURL Get from the “API CallBackURL” application setting in the StellarDS.io

admin app

Connection Can be linked to a TWebStellarDataStoreConnection component. The

connection component can be linked to multiple datasets and can be

responsible for the authentication & authorization with the

StellarDS.io service. The connected

TWebStellarDataStoreClientDataSet will then use the authorized

connection obtained by the linked connection component. This way,

only a one-time connection is needed.

PersistTokens.Enabled When true, an obtained access token and refresh token is

493

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

automatically persisted in local storage for reuse when the web app

restarts to avoid a new authentication and authorization cycle

PersistTokens.Key Set the key under which the values are persisted in the app's local

storage

TableJoinQuery Specify a join statement to work with data from two joined tables in

StellarDS.io. The join is specified as:

TableName1;JoinField1=TableName2;JoinField2.

TableName Specify a table name to connect to from the “Control Panel” section

of StellarDS.io

TableSortQuery Specify the sort order of records retrieved from the StellarDS.io table.

The sort order is defined as: Field1;asc

TableWhereQuery This allows to specify server side filtering. The filter is defined as

Field1;condition;value&Field2;condition;value...

OnError This is an event property that notifies the application of any errors

from myCloudData.net. The event can be set up at design time in

Object Inspector by double-clicking on it. If the Application does not

subscribe to this event, an Exception is raised on such errors. If

subscribed, the application can then decide what to do. For example,

show error, raise exception or take some corrective action. Note that

hard errors (Delphi Exceptions) are not passed in this event. Rather,

they cause an Exception that appears in a red alert. But in any case, all

errors are always logged to the browser console.

OnTableNotFound This event is triggered when the connection was successful but the

specified table was not found. From this event handler, it is possible

to write table initialization code. As this is an event handler that can

contain async code, mark it with the async attribute and call the Done

procedure at the end

Methods of TWebStellarDataStoreClientDataSet

Method Description

Refresh(Force: boolean

= false);

Refresh reloads all the objects from the database. If AddSortFieldDef

has been used to set up sorting definitions, the objects are loaded in

the order specified. In addition, the current record pointer is restored

after the Reload which is convenient for the user interface of the web

494

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Method Description

application. Refresh is internally postponed till all the pending

updates started asynchronously are finished. The Force parameter

ignores the pending updates and forces a reload.

AddSortField and

ClearSortFieldDefs

Use AddSortFieldDef to add one or more sort definitions for loading

the data. Before using a series of these calls, you must clear all sort

definitions by calling ClearSortFieldDefs.

procedure AddSortFieldDef(aField: String; isAscending: Boolean));

Where

- aField - the field name for the sorting order

- isAscending - Set True for ascending order.

ClearTokens After a successful authentication & authorization, the

TWebStellarDataStoreClientDataset will store the obtained access

tokens in the local storage so that a next time, this does not need to

be obtained again. If for some reason this needs to be removed, call

procedure ClearTokens;

LoadTokens Force to load the obtained access & refresh tokens from the browser

local storage

SaveTokens Force to save the obtained access & refresh tokens to the browser

local storage

TWebStellarDataStoreConnection Component

Introduction

This component allows to authenticate and authorize one time against the StellarDS.io service

and use this connection with multiple TWebStellarDataStoreClientDataSet components that are

linked to this TWebStellarDataStoreConnection via its Connection property. As

TWebStellarDataStoreeConnection performs authentication and authorization similar to the

standalone TWebStellarDataStoreClientDataSet, it has the same properties to set the OAuth

characteritics.

Properties of TWebStellarDataStoreConnection

Property Description

App.ClientId Get from the “API ClientId” application setting in the StellarDS.io

495

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

admin app

App.Secret Get from the “API Secret” application setting in the StellarDS.io admin

app

App.CallbackURL Get from the “API CallBackURL” application setting in the StellarDS.io

admin app

PersistTokens.Enabled When true, an obtained access token and refresh token is

automatically persisted in local storage for reuse when the web app

restarts to avoid a new authentication and authorization cycle

PersistTokens.Key Set the key under which the values are persisted in the app's local

storage

Events of TWebStellarDataStoreConnection

Property Description

OnAccessToken Event triggered when the connection has obtained the access token.

Get the access token via

WebStellarDataStoreConnection.AccessToken

OnConnect Event triggered when the WebStellarDataStoreConnection made a

successful authentication and authorization via OAuth2

OnError Event triggered when the authentication and authorization failed at

some point. Inspect the response to see information on possible

causes of the failure

OnRequestResponse Event triggered returning the result object of HTTP requests internally

performed by WebStellarDataStoreConnection

OnResponse Event triggered returning the response as text of HTTP requests

internally performed by WebStellarDataStoreConnection

496

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebMyCloudDbClientDataset Component

Introduction

The myCloudData.net service is an instantly available, secure and worry-free cloud data storage

service.

The component TWebmyCloudDbClientDataset makes it easy for a Delphi TMS Web

Application to use database tables on myCloudData.net service by a familiar syntax of using

ClientDataSet. It also allows a seamless integration of the myCloudData.net data tables with

data-aware components like TWebDBGrid. All the database operations can be done in the

standard Delphi way through the TWebmyCloudDbClientDataset component.

All you need to do is specify the myCloudData properties and add the field definitions either in

design more or in code in a standard Delphi syntax. Then connect a DataSource and Data

components to it and make the dataset active.

Your first web application using TWebmyCloudDbClientDataset

Set up your myCloudData project in the myCloudData console

Follow these steps:

1. Navigate to https://www.myclouddata.net/ and sign up for myCloudData if not already done

2. Go to My Account → Control Panel

3. Create a new Table and add the required Fields

4. Note the Table name. This will be used for the TableName property later. Go to My Account

→ API Key

5. Enter your myCloudData password and click “Get your App Key”

6. Note the App Key and App Callback URI values. These will be our

properties AppKey and AppCallbackURL to be used later later. Note the App Secret value. This

will be our property AppSecret to be used later. Note that the AppCallbackURL should be set to

the URL of your web application. This can be different in debugging (typically something like

http://localhost:8000/Project1/Project1.html) as from a deployed application. You might as such

need to adapt the callback URL for deployment!

Create a TMS Web Application

Create a standard TMS Web Application in the Delphi IDE by choosing File, New, Other, TMS

Web Application. A new web form is created.

Set up the TWebmyCloudDbClientDataset component

https://www.myclouddata.net/
http://localhost:8000/Project1/Project1.html

497

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Go to the Tool Palette and select the TWebmyCloudDbClientDataset component from the “TMS

Data Access” section and drop it on the web form.

Specify the Component Properties

Set up the properties either in code or in the Object Inspector by right-clicking on the “Fields

Editor”:

• AppKey: from the “My Account → API Key” section of myCloudData.net

• AppCallbackURL: from the “My Account → API Key” section of myCloudData.net

• TableName: from the “My Account → Control Panel” section of myCloudData.net

Create the Fields or Properties of each object in the Object Store

The DataSet field definitions need to be set up either in Object Inspector by right-

clicking on the “Fields Editor” or in the WebFormCreate event code.

Select the fields in the Object Inspector

Follow these steps:

1. Right-click the TWebmyCloudDBClientDataset and select “Fetch Fields”

2. Enter the Client ID (AppKey), Client Secret (AppSecret) and CallbackURL (A local URL

is required here, for example: http://127.0.0.1:8888) values. Note that the TableName is

retrieved automatically from the TableName property.

3. Click the “Fetch” button and follow the authentication instructions. If the process is

successfull, a dialog with the list of available fields is displayed.

4. Right-click the TWebmyCloudDBClientDataset and select “Fields Editor”

5. Select the required fields

Create the Fields in code

Here is an example of adding the field definitions in code in the OnCreate event. In the

Object Inspector, double-click on OnCreate event of the Web Form. This creates an

event handler procedure WebFormCreate. The following code in it sets up the field

definitions. What fields you add are based on how you defined them for the Table in

myCloudData.net. Note that _ID field must be defined as data type ftString.

1. myCloudClientDataSet.FieldDefs.Clear;
2. myCloudClientDataSet.FieldDefs.Add('_ID', ftString);
3. myCloudClientDataSet.FieldDefs.Add('note',ftString);
4. myCloudClientDataSet.FieldDefs.Add('date',ftDate);
5. myCloudClientDataSet.Active := True

Add Data Components that connect to the DataSet

http://127.0.0.1:8888/

498

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now select and drop a TWebDataSource, TWebDBGrid and TWebDBNavigator component on

the Web Form.

Set up the DataSource and Data components

Set the DataSource’s DataSet property to WebMyCloudDbClientDataset1. Then set the

DataSource property of the grid and navigator to point to TWebDataSource1.

Set up the Columns of the DBGrid

Do that by clicking on the Columns property of the DBGrid.

Set up a New Record event

Since we will be adding New Records with the DB Navigator, we need to set up the default

values of the record. For this, we set up an OnNewRecord event procedure for the myCloudDb

Client Data Set in the Object Inspector and type the following code in it.

procedure TForm1...NewRecord(DataSet: TDataSet);

begin

 DataSet.FieldByName('note').AsString := 'New Note';

 DataSet.FieldByName('date').AsDateTime := Date; // set to today

end;

Run the Web Application

Now you can build and run the application. When you run it for the first time, the component

automatically asks you to login by using your credentials for myCloudData.net. The DB Grid will

appear empty as there are no records. Try adding new records with the Navigator and see how

it works.

Todo List Demo

Please find this demo in the folder Demos. This Demo connects the component to a Tasks table

to show you the Tasks with their status, description and dates.

Additional features in this Demo

Add, Update, Delete through separate data aware controls and buttons

The Demo allows you to perform add, update, delete operations through datbase field editor

controls and buttons instead of through the Navigator.

Sorting on columns

499

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

We want to be able to sort on any column of the DB Grid by clicking on the header of the

column. So we need to be able to read all the records in the order of that field. For this, we need

to add a Sort Field Definition specifying the field to be sorted on. This is done in the event

procedure GridTasksFixedCellClick.

1. myCloudClientDataSet.ClearSortFieldDefs;
2. myCloudClientDataSet.AddSortFieldDef(LIndex, gridTasks.Columns[ACol].SortIndicator = si

Ascending);
3.
4. myCloudClientDataSet.Refresh;

The first parameter to AddSortFieldDef call is the field name and the second parameter is a

boolean flag that is true for ascending order and false for descending order. The Demo uses its

own logic to pass this information and then Refreshes (reloads) the data in the desired order.

Updating, inserting and deleting data

This Demo also shows an example of connecting Data components like CheckBox or a Memo

to the database so that those fields can be edited in the current record. After editing, a call to

Update from the update button takes care of committing the changes to the cloud database.

Similary, the Demo has examples of Inserting a new record and Deleting the current record by

respective calls.

Troubleshooting

Exceptions are displayed in a red alert message at the bottom of the web page. You can also

look at the Browser Console for error messages.

If you start getting authentication errors when the application was working earlier, it’s most

probably a changed IP address. In any case, the first thing you can try is clear the Local Storage

which is under Applications in Chrome Developer tools.

Reference Section

TWebMyCloudDbClientDataset

Below is a list of the most important properties and methods of TWebIndexedDbClientDataSet

component.

Properties of TWebmyCloudDbClientDataSet

Property Description

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

AppKey Get from the “API Key” section of myCloudData.net.

500

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

AppCallbackURL Get from the “API Key” section of myCloudData.net.

TableName Specify a table name to connect to from the “Control Panel” section

of myCloudData.net.

OnError This is an event property that notifies the application of any errors

from myCloudData.net. The event can be set up at design time in

Object Inspector by double-clicking on it. If the Application does not

subscribe to this event, an Exception is raised on such errors. If

subscribed, the application can then decide what to do. For example,

show error, raise exception or take some corrective action. Note that

hard errors (Delphi Exceptions) are not passed in this event. Rather,

they cause an Exception that appears in a red alert. But in any case, all

errors are always logged to the browser console.

Methods of TWebmyCloudDbClientDataset

Only the methods specific to myCloudData are listed below. Other methods from the base

DataSet classes are used in the standard way.

Refresh

procedure Refresh(Force: Boolean=False);

Refresh reloads all the objects from the database. If AddSortFieldDef has been used to set up

sorting definitions, the objects are loaded in the order specified. In addition, the current record

pointer is restored after the Reload which is convenient for the user interface of the web

application. Refresh is internally postponed till all the pending updates started asynchronously

are finished. The Force parameter ignores the pending updates and forces a reload.

AddSortFieldDef and ClearSortFieldDefs

Use AddSortFieldDef to add one or more sort definitions for loading the data. Before using a

series of these calls, you must clear all sort definitions by calling ClearSortFieldDefs.

procedure AddSortFieldDef(aField: String; isAscending: Boolean));

Where

• aField - the field name for the sorting order

• isAscending - Set True for ascending order.

501

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ClearTokens

After a successful authentication & authorization, the TWebmyCloudDbClientDataset will store

the obtained access tokens in the local storage so that a next time, this does not need to be

obtained again. If for some reason this needs to be removed, call

procedure ClearTokens;

502

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebFirestoreClientDataset Component

Introduction

The component TWebFirestoreClientDataset makes it easy for a Delphi TMS Web Application

to create and use database tables (called collections) on Google Cloud Firestore noSQL

database by a familiar syntax of using ClientDataSet. It also allows a seamless integration of the

Firestore data collections with data-aware components like TWebDBGrid. All the database

operations can be done in the standard Delphi way through the TWebFirestoreClientDataset

component.

All you need to do is specify the Firestore properties and add the field definitions either in design

time or in code in a standard Delphi syntax. Then connect a DataSource and Data components

to it and make the dataset active.

Your first web application using TWebFirestoreClientDataset

Set up your Firestore project in the Firebase console

Follow these steps:

1. Navigate to https://console.firebase.google.com/ and sign up for Firebase if not already done

2. Create a new project in Firebase or select an existing project

3. In the left menu, select Database

4. Create a Firestore database. Choose the options “Start in test mode” and let the region be

default

5. Don’t create a collection as our ClientDataSet component will create it if it doesn’t exist

6. Click on the tab “Rules” above and change the rules to allow only authenticated users to

access the database:

rules_version = '2';

service cloud.firestore {

 match /databases/{database}/documents {

 match /{document=**} {

 allow read, write: if request.auth != null;

 }

 }

}

https://console.firebase.google.com/

503

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

7. Click on Authentication in left menu and select Sign-in method as Google. Enable it.

Note the authorized domain with firebaseapp.com. For example, test-15a3d.firebaseapp.com.

This will be our AuthDomain property to be used later.

If your TMS web application will run on localhost, make sure localhost is added to the list.

If your TMS web application will run on a remote webserver, make sure the domain name is

added to the list.

8. Click on the Settings Gear Icon next to Project Overview on the left. Note the Project ID and

Web API Key values. These will be our properties ProjectId and ApiKey to be used later.

Create a TMS WEB application

Create a standard TMS WEB Application in the Delphi IDE by choosing File, New, Other, TMS

WEB Application. A new web form is created.

Enable the Firestore JavaScript libraries for your project. From the project context menu in the

IDE, select “Manage JavaScript libraries” and select Google Firestore

504

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Set up the TWebFirestoreClientDataset component

Go to the Tool Palette and select the TWebFirestoreClientDataset component from the “TMS

Data Access” section and drop it on the web form.

Specify the Component Properties

Set up the properties either in code or in the Object Inspector as given below:

ApiKey: as obtained above in step 8 above.

AuthDomain: as obtained above in step 7 above.

ProjectId: as obtained above in step 8 above.

CollectionName: select a name of the collection that you want to use

KeyFieldName: specify the name of the key field

AutoGenerateKeys: set to True

SignInRequired: set to True as we set up this requirement in authentication rules above

Create the Fields or Properties of each object in the Object Store

The DataSet field definitions need to be set up either in code or in the Object Inspector by right-

clicking on the “Fields Editor”.

Select the fields in the Object Inspector

Follow these steps:

1. Set up your Google App in the Google Developers Console

(https://console.developers.google.com/)

1a. Go to “Credentials” → “Create Credentials” “Create OAuth client ID”

1b. Select “Web Application”, enter the Authorized URL: http://127.0.0.1:8888 and click “Create”

1c. The Client ID and Client Secret values are displayed

1d. Go to “Dashboard” and enable the required API(s)

2. Right-click the TWebFirestoreClientDataset and select “Fetch Fields”

3. Enter the Client ID, Client Secret and CallbackURL values from step 1. Note that the

CollectionName and ProjectID are retrieved automatically from the CollectionName and

ProjectID properties.

4. Click the “Fetch” button and follow the authentication instructions. If the process is

successfull, a dialog with the list of available fields is displayed.

5. Right-click the TWebFirestoreClientDataset and select “Fields Editor”

https://console.developers.google.com/
http://127.0.0.1:8888/

505

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

6. Select the required fields

Create the Fields in code

Here is an example of adding the field definitions in code in the OnCreate event. In the Object

Inspector, double-click on OnCreate event of the Web Form. This creates an event handler

procedure WebFormCreate. Type the following code in it that sets up the fields and then makes

the DataSet active.

fireStoreClientDataSet.FieldDefs.Clear;

fireStoreClientDataSet.FieldDefs.Add(id', ftString);

fireStoreClientDataSet.FieldDefs.Add('note',ftString);

fireStoreClientDataSet.FieldDefs.Add(('date',ftDate);

fireStoreClientDataSet.Active := True

Add Data Components that connect to the DataSet
Now select and drop a TWebDataSource, TWebDBGrid and TWebDBNavigator component on

the Web Form.

Set up the DataSource and Data components

Set the DataSource’s DataSet property to WebFirestoreClientDataset1. Then set the

DataSource property of the grid and navigator to point to TWebDataSource1.

Set up the Columns of the DBGrid

Do that by clicking on the Columns property of the DBGrid.

Set up a New Record event

Since we will be adding New Records with the DB Navigator, we need to set up the default

values of the record. For this, we set up an OnNewRecord event procedure for the Client Data

Set in the Object Inspector and type the following code in it.

procedure TForm1...NewRecord(DataSet: TDataSet);

begin

 DataSet.FieldByName('note').AsString := 'New Note';

 DataSet.FieldByName('date').AsDateTime := Today;

end;

Run the Web Application

506

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now you can build and run the application. When you run it in a browser that is not

logged in to Google already, the component automatically asks you to login by using

your Google credentials. The DB Grid will appear empty as there are no records. Try

adding new records with the Navigator and see how it works.

Todo List Demo

Please find this demo in the folder Demos. This Demo connects the component to a Tasks table

to show you the Tasks with their status, description and dates.

Additional features in this Demo

Add, Update, Delete through separate data aware controls and buttons

The Demo allows you to perform add, update,delete operations through datbase field editor

controls and buttons instead of through the Navigator.

Sorting on columns

Warning: We are using Firestore service side Sort Order for this feature just to demonstrate

them. But in practice, column sorting should rather be implemented by using local sorting

features of the ClientDataSet as described later.

We want to be able to sort on any column of the DB Grid by clicking on the header of the

column. So we need to be able to read all the records in the order of that field. For this, we need

to add a Sort Field Definition specifying the field to be sorted on. This is done in the event

procedure GridTasksFixedCellClick.

fireStoreClientDataSet.ClearSortFieldDefs;

fireStoreClientDataSet.AddSortFieldDef(LIndex, gridTasks.Columns[ACol].SortIn

dicator = siAscending);

fireStoreClientDataSet.Refresh;

The first parameter to AddSortFieldDef call is the field name and the second parameter is a

boolean flag that is true for ascending order and false for descending order. The Demo uses its

own logic to pass this information and then Refreshes (reloads) the data in the desired order.

Local Sorting recommended

Although the column sorting above was implemented using Firestore features to demo them, in

practice, this should be done by local sorting. This also prevents problems with Firestore filters if

you are using them.

Here is a quick hint on how to do local sorting. To sort descending on due_date field, do this:

507

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

fireStoreCDS.Indexes.Add('byDate',

 'due_date',[ixDescending]);

fireStoreCDS.ActiveIndex := 'byDate';

Here, 'byDate' is any name you give to this index. To sort ascending, remove the ixDescending

flag. You will find an example in the Advanced TodoList Demo.

Updating, inserting and deleting data

This Demo also shows an example of connecting Data components like CheckBox or a Memo

to the database so that those fields can be edited in the current record. After editing, a call to

Update from the update button takes care of committing the changes to the cloud database.

Similary, the Demo has examples of Inserting a new record and Deleting the current record by

respective calls.

Troubleshooting

Normally, you will see any exceptions raised in a red alert message at the bottom of the web

page. You can also look at the Browser Console for error messages.

For any debugging, if you need to browse or edit the actual collection on the Cloud, you can do

that in Firestore console. Note that individual records or objects under a Collection are called

Documents in Firestore terminology.

Filtering records at Firestore

If the collection contains a large number of records, you may want to limit the records obtained

from the server. The following features are available for this purpose.

Naming of procedures and mapping to Firestore Filter functions

Note that all the functions below start with the prefix AddService to indicate that the filtering

occurs on the service/server side. Also, each function maps to a particular kind of filter on the

Firestore side, for example AddServiceFilterCondition maps to a "where" filter on Firestore. This

is important to understand so that you can refer to proper Firestore documentation to look at

filtering examples, their limitations and errors.

Filters may require use of Firestore Sorting!

Filters may require to use a Sort on the field being used in the filter. This is done by the calls

ClearSortFieldDefs and AddSortFieldDef as indicated in descriptions of filters below. But if you

are using them for other purposes, for example, for column click sorting, better not do that and

508

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

use local sorting as described in the previous section. Because any current sort order is going to

interfere with filter results.

Filtering methods available at Firestore level

AddServiceFilterCount method

Maps to: Firestore "limit" type filter

Use this to specify a limit condition.

You can limit the number of records obtained by using this filter. Setting a filter activates it on

next Refresh or when you next make the dataset active.

Example:

fireStoreCDS.AddServiceFilterCount(100);

Usage note: Note that if you are using a sort condition as defined by a AddSortFieldDef

specification, the count will be done in that sort order. This type of filter can be used along with

AddServiceFilterRange that akways works in the current sort order.

AddServiceFilterCondition method

Maps to: Firestore "where" type filter

Use this method to specify a where condition. Setting a filter activates it on next Refresh or

when you next make the dataset active.

Important: If you are using a Sort Order by using a AddSortFieldDef call, it must be on the

same field that you are using in this filter.

Examples:

1. Get records where field "status" has the value "New"

fireStoreCDS.AddServiceFilterCondition('status', '==', 'New');

509

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

2. Use more than once to specify multiple conditions ANDed but for the same field.

fireStoreCDS.AddServiceFilterCondition('age', '>', 18);

fireStoreCDS.AddServiceFilterCondition('age', '<', 65);

3. For an OR condition, use the "in" operator. For example, to get records where field "status"

has the value "New" or "Pending"

fireStoreCDS.AddServiceFilterCondition('status', 'in', TJSArray.New('New',

'Pending'));

Warning: Date/Time fields require special code

Since Date/Time values are stored as strings on the Firestore side, you need to pass values

properly. This is described in the section 4.6 "Special considerations for Date/Time fields."

Limitations of this filter that maps to where on Firestore

The Where filter feature in FireStore can not be used in all possible ways that SQL allows. For

example, you can add more than one where filters, provided they are on the same field and if a

Sort Order is being used, the Sort Order must be on the same field.

Usage note: It's not possible to describe all possible rules and usage of Firestore "where" filter

in this document. For more details, please see the Firestore document "Querying and filtering

data" (search Google on this) and refer to the section on "where" clauses.

AddServiceFilterRange method

Maps to: Firestore filters startAt, startAfter, endAt, endBefore

Use this method to specify a Firestore "start" and/or "end" condition on a value that refers to the

current sort field set by AddSortFieldDef call. Setting a range filter activates it on next Refresh or

when you next make the dataset active.

Important: The value passed works on the current sort field. So you must have defined a sort

order by AddSortFieldDef call.

Example:

Suppose you have defined the sort on the "age" field by AddSortFieldDef

fireStoreCDS.ClearSortFieldDefs;

fireStoreCDS.AddSortFieldDef("age", true);

510

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Now you want to start at age 18 and end at age 65. You will use 2 filters.

fireStoreCDS.AddServiceFilterCondition(frStartAt, 18);

fireStoreCDS.AddServiceFilterCondition(frEndAt, 65);

Warning: Date/Time fields require special code

Since Date/Time values are stored as strings on the Firestore side, you need to pass values

properly. This is described in the section 4.6 "Special considerations for Date/Time fields."

AddServiceFilterContinueAfterLast

When you use the filters above such that all the records are not obtained, for example, you used

AddServiceFilterCount to get only 50 records. How do you get the next 50 records? Add this

filter and Refresh. You will get next set of records.

Using this method appropriately will allow you to step forward through a set of records. You may

need to use ClearServiceFilters sometimes, for instance, if you are using a start or end

condition to specify new conditions. On the other hand, using it with just the limit condition

AddServiceFilterCount may not require a use of ClearServiceFilters before using it as there is

no starting or ending condition.

If there are no more records, you will get an empty dataset.

ClearServiceFilters

Clears all filters added so that all the records are obtained from the server. Clearing takes effect

on next Refresh or when you next make the dataset active.

Special consideration for Date/Time fields

When you specify field definition as TDateTimeField or TDateField, the component stores them

as RFC3399 strings in Firestore. An RFC3339 string looks like this:

//RFC3339 format date time string

2019-10-12T07:20:50.52Z

In order to pass a field value for such a field to be used in a AddServiceFilterCondition or

AddServiceRangeFilter call, you need to be able to pass such a string. For that purpose, you

need to use the function DateTimeToRFC3339 from DateUtils unit.

511

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

So for example, you will be calling a filer function as this:

fireStoreCDS.AddServiceFilterRange(

 frStartAfter,

 DateTimeToRFC3339(aDelphiDateTime)

);

This is especially tricky if you are using a TDateField and when storing values in Firestore, care

is not taken to make the time part Zeros. For example, the first record for this date might have

the date field value as "2019-10-12T07:20:50.52Z" and you want to start the range on the date

2019-10-12.

If you call AddServiceFilterRange with frStartAt and value as "2019-10-12" it won't find that

record and you get an empty list of records. Further, even if you use the value as

DateTimeToRFC3339(aDate) with that date, it won't work unless your date has the exact time in

the string.

What is the solution in this case? When storing a Delphi TDateTime value in your Delphi code,

always use Trunc on the datetime variable so that time part becomes Zero.

 // correct way to store only dates

 CDS.FieldByName('date').AsDateTime := Trunc(aDelphiDateTime);

Then the filter will work with the value DateTimeToRFC3339(aDelphiDate) where aDelphiDate

has the same date.

To summarize, depending on whether you use only date values or datetime values in your

fields, your App has to take care to store only date part with Trunc or full date time string.

Further, you have to send a similar value with or without the time part when using filters for them

to work properly.

Firestore timestamp field: Firestore also has a data type of timestamp. In case you want to

connect to existing data in Firestore that has a timestamp field, please contact us. We have a

pending modification to support the timestamp field of Firestore that will be released in due

course.

Firestore Filtering Demo

512

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

A demo is available that shows use of the above filtering methods. You will find this demo under

Demo\Services\Firestore.There are 2 parts to this demo, an import utility that imports 500 JSON

objects to a Firestore collection as a prerequisite for the demo and then the Demo itself that

filters the collection when obtaining data.

Preparing for the Filter Demo: Build and Run the Import Utility

In the Demo folders, you will find a project ImportTestData. Please follow these steps:

1. Open the project TMSWeb_ImportTestData

2. Build and Run the project

3. Enter values for API Key, AuthDomain and ProjectID if they are not automatically filled by

your previous usage of any Firestore demo.

4. Click on Import Test Data.

This should import 500 objects from the JSON file in a new collection called SalesData. You can

verify that in the Firestore Console. Also, in case you want to recreate this collection due to any

reruns etc, you can delete the colleciton in Firestore console and import again.

Side note: How to customize the Import Utility to create collections from other JSON files

The import utility demonstrates the use of Class method AddServiceObjects of the component.

It basically loads the JSON into a ClientDataSet and then uses its JSON records array to

directly add objects at the server.

To develop another import utility to import other JSON files to Firestore collections, you can

make a copy of this project and then search for CUSTOMIZE comments in the source and

change them according to your new requirements.

KNOWN PROBLEM IN JSON LOADING FROM URI: All data types are properly identified

except Date/Time fields. So according to how many such fields are there and their names, you

need to take care of fixing date/time fields as the Web Core URI Loading code does not identify

them properly. Please see the code on how the fields were fixed by using a utility function.

Running the Filters Demo

Steps:

1. Open the project TMSWeb_FirestoreFilters.

2. If you didn't change the Collection name when importing, just Build the project. Otherwise,

please search for CUSTOMIZE comment and use the same collection name here to which you

imported the data above.

3. Now run the project.

513

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

4. Click on the Filters items one by one and see how they work.

5. To look at how the actual filters are used in code, please see the procedure

setupExampleFilter.

New Async methods for code-based processing

In traditional Delphi code, you might use code like the following to process a ClientDataSet.

 aDataset.Open;

 aDataset.Insert;

 change field values

 aDataSet.Post;

 ...get the generated ID of new

 ...record to use in some code

 ...

This is not going to work for a Firestore ClientDataSet because the operations are

asynchronous. So when the Open finishes, the dataset may not be in open state and the Insert

will get an error. Similarly, when the Post after Insert finishes, there is no guarantee that the

generated ID of the new record is ready for use somewhere else.

Some workarounds can be coded in the dataset events like AfterOpen that ensures that the

dataset is open. But it's not as convenient as the code above.

New Async methods

To deal with such processing code, we now provide Async methods that allow you to code the

same solution but in a different way.

Here is some sample code using the new Async functions provided for the purpose.

OpenAsync

fireStoreClientDataSet.OpenAsync(

 procedure(success: Boolean; errorName, errorMsg: String)

 begin

 if not success then

 begin

514

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 ..handle error case

 end

 else

 begin

 .. further processing on success

 ... inserts, updates, etc

 end;

 end);

PostAsync after Insert

Similarly, if you were to do an Insert and obtain the generated ID for the record in the Firestore

collection, you will use this kind of code.

fireStoreClientDataSet.Insert;

... set field values as required

fireStoreClientDataSet.PostAsync(

 procedure(success: Boolean; data: JSValue; errorName, errorMsg: String)

 begin

 if not success then

 begin

 ..handle error case

 end

 else

 begin

 .. data parameter is the ID

 .. generated by the Firestore

 end;

 end);

PostAsync after Edit

Here is an example of modify.

fireStoreClientDataSet.Edit;

... set field values as required

fireStoreClientDataSet.PostAsync(

 procedure(success: Boolean; data: JSValue; errorName, errorMsg: String)

 begin

 if not success then

515

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 begin

 ..handle error case

 end

 else

 begin

 .. data parameter is the the

 .. JSON data updated

 end;

 end);

DeleteAsync and CloseAsync

Similarly, there are **DeleteAsync** and **CloseAsync** methods that return a success or

failure to the passed response procedure as in case of **OpenAsync**.

So when it comes to processing the dataset in code, you can use the above methods with the

kind of code suggested to check for errors and success before proceeding.

Processing Loops

It might be tricky to make processing loops this way that process all the records till EOF using

Next but it's certainly possible. Several possible designs are possible by either using

anonymous response functions with recursion or by using object methods instead of an

anonymous response procedures.

Batch Inserts with AddServiceObjects

If you need to insert a large number of records in the Firestore collection, you could write a

processing loop as described above. But that is complicated and would be slow if you waited for

previous insert to finish before inserting the next record. On the other hand, if you decided to fire

many inserts at once, the speed might improve but there are complications of finding when they

finish and whether there were any errors.

To deal with such use cases, we have added a Class Method AddServiceObjects that you can

use to insert upto 500 records in a JSON Array at once directly to the Firestore collection. Since

this is a class method, you are supposed to use it by prefixing with class name

TFirestoreClientDataset. You don't need to open any dataset locally as it directly inserts at the

server end.

Please see the ImportTestData project described under Firestore Filters above for an example

of how it uses this method to import a JSON file into a firestore collection.

516

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Sign In Authentication Summary and Alternatives

Google Sign-In method, simple to use

Here is how we set up user authentication in the Todo List demo above.

1. In step 6 of the setup, we set up a Security Rule in Firebase console that allows only Signed

In users to access the database.

2. In step 7 of the setup, we enabled only Google Sign-In method for authentication. Here we

also noted the values of ApiKey, AuthDomain and ProjectId to be used.

3. After specifying the above 3 properties, we also switched ON the property SignInRequired of

the component.

These are the only steps necessary if you want to secure your database so that it can be

accessed only those users who can Login to Google.

Advantage of Google Sign-In

The advantage of Google SignIn is that you don't have to make any Login form, SignUp form or

handle the situations where the user wants to change or reset his password. The component

takes care of making the correct calls without having any special user interface and Google

takes care of all the user interface and other services.

Other Sign-In alternatives

You will see many more Sign-In methods in Firebase console. The component does not support

them yet with the exception of Email/Password method that has been implemented now as

described next.

Allowing all users (remove authentication)

Before we see the Email/Password Sign-In option, you might wonder how to allow all users,

logged in or anonymous to access your database in case you need to do that for some reason?

For example, when you are developing and testing database logic and don't want any Login

complications.

To do that, in the Firebase console, change the security rule described in section 2.1 such that

there is no "if" condition. For example, here is the changed security rule to allow "ALL" access to

the database.

rules_version = '2';

service cloud.firestore {

517

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 match /databases/{database}/documents {

 match /{document=**} {

 allow read, write;

 }

 }

}

Email/Password Sign-In method

If you enable this method in Firebase console then the previous steps are same as far as setting

up the Security Rule and switching ON of the property SignInRequired of the component.

In addition, you need to take care of the following in your App code:

Decide if you want to support both Google Sign-In and Email/Password methods

In this case, your code will need to have your own user interface to let the user select either of

the above. If the user selects Google Sign-In, you just need to switch ON the flag

SignInRequired of the component and make it active or else use the OpenAsync method

described earlier if you want to know about the success or failure.

Signing in with Email/Password

In this case, your code will need to have your own user interface to ask the user for the Email

and Password and an additional Signup flag depending on whether the user wants to sign up.

Then your code will call SignInAsync method of the component, passing it the email, password

and the Signup flag. You will know the success or failure of the call by the Callback function

passed. Here is an example of this call. This is quite similar to OpenAsync call described earlier

except that this includes new parameters before the callback.

 fireStoreClientDataSet.SignInAsync(

 aUserEmail, aPassword,

 false, // Signup flag

 procedure(success: Boolean; errorName,

 errorMsg: String)

 begin

 if not success then

 begin

 showmessage(errorMsg);

518

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 exit;

 end;

 ... Open success actions like

 ... disabling buttons, etc.

 end

);

If the Signup parameter is passed as true, Firebase will attempt to create a new user.

The component is smart enough to identify if the user is already logged in to avoid that step

internally. On the other hand, if another user is logged in, it forces a new login.

Viewing the list of users in Firebase console

If you go to Firebase console, you can click on Users menu to see the list of users who signed

up for your App. You can disable one or more of these users by console's action menu. If you

have also enabled Google Sign-In method then those users will also appear in this list.

What if the user has forgotten the password?

Your code can give this interface option to the user and if he indicates a "Forgot password"

action, call the method SendPasswordResetEmail of the component. Here is an example code:

fireStoreClientDataSet.SendPasswordResetEmail(

 aUserEmail,

 procedure(success: Boolean; errorName,

 errorMsg: String)

 begin

 if not success then

 begin

 showmessage(errorMsg);

 exit;

 end;

 ... Success actions like

 ... asking the user to check email

 ... and follow the instructions

 end

);

519

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Firebase sends an email message to the user with a password reset link that allows the user to

select another password. You can view and modify the template of the message in Firebase

console.

User specific data (multi-tenant)

So far, our design allows the users to see all the records of the collection. The collection can be

secured by the Sign In methods used above but all Signed In users will see all the records in the

collection. How do we implement user specific data so that a logged in user is able to create

and see only his or her records?

UseridFilter

Before signing in or making the ClientDataSet active, you need to make the property

UseridFilter active as given below.

 fireStoreClientDataSet.UseridFilter := ufActive;

Obviously, you would do this for a new collection as far as possible because nothing can be

done about the existing records of an existing collection.

Once you set the UseridFilter active, the Component takes care of using the id of the Signed-In

user internally in the following operations.

1. While creating or updating an object, it forces a property (column) that stores the Userid of

the Signed-In user.

2. While getting the list of objects, it filters the list by the above column so that the list only

contains objects that have the Userid of the Signed-In user.

Setting the above property functionally completes the requirement of storing and getting user

specific data. But that's not enough as far securing the data in Firestore is concerned. For that,

you need to modify the security rule.

New Security Rule

What if a knowledgeable malicious user who has the Login permissions for your App, tries to

use Firestore API directly and after a login, tries to get a list of all objects, even those belonging

520

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

to other users? To prevent this, you will need to modify the Security Rule described earlier in

Section 2.1.

Here is the new security rule that you need to set in Firestore console for this project.

rules_version = '2';

service cloud.firestore {

 match /databases/{database}/documents {

 match /{document=**} {

 allow create: if request.auth != null;

 allow read, write: if request.auth != null && request.auth.uid ==

resource.data.uid;

 }

 }

}

The new allow statement for read/write protects any data in which the uid property added by the

component does not match the uid of the Signed-In user. This check is not needed for a new

record and hence the allow for create operation only checks for a Signed-In user access.

UseridFieldName

The default UseridFilter feature uses a field or property name of 'uid' for the records read and

written by the Signed-In user.

What if you already have existing data having such a field storing the uid but with a different

field name? Or, may be, you want to use a different field name instead of 'uid?'

In such a case, you can specify the field name by assigning it to the property UseridFieldName.

For example,

 // See CAUTION note below

 fireStoreClientDataSet.UseridFieldName := 'userid';

CAUTION: But if you have applied a security rule as described above, please be sure to change

that to use the correct field name.

How to find the Signed-In Status

In order to give the best experience to the user, a web app should be able to find out if a user is

already signed-in to Firebase.

521

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

There are 2 alternatives to finding and taking action on a Signed-In status.

SubscribeToSignInEvents method

This method requires that you have already set the Firebase related properties, namely,

ApiKey, AuthDomain and ProjectId.

When you call this method, the component

keeps informing you of a SignIn change by the OnSignInChange event till you call it again with

an Off parameter.

Your app can take proper actions in the OnSignInChange event, for example, hiding a Login

panel and showing a panel that should come up after SignIn.

First time, this event occurs immediately as soon as you call the Subscribe method. However, if

you want to take a once-only action based on the SignedIn status, it's not possible to do that in

this asynchronously occuring event. For that purpose, you need to use the second method

descibed below.

GetSignedInUserAsync method

This method also requires that you have already set the Firebase related properties, namely,

ApiKey, AuthDomain and ProjectId. Once you do that, you can find out if a user is already

signed-in. Here is some sample code:

fireStoreClientDataSet.GetSignedInUserAsync(

 procedure(isSignIn: Boolean;

 UserName: String; UserEmail: String)

 begin

 if isSignIn then

 begin

 ... some code...

 end;

 end

An app may use both the above methods--the event to do always-do type actions on a SignIn

change and the method GetSignedInUserAsync to do once-only after SignIn type of actions.

Advanced Demo to show features for multi-tenant

522

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

You will find another TodoList Advanced Demo that demonstrates all the features described in

the Section 6 for Sign-In features and the User Specific Data. Please see the folder

Demo\Services\Firestore to find this demo.

TWebFirestoreClientDataset reference

Below is a list of the most important properties and methods of TWebFirestoreClientDataset

component.

Properties of TWebFirestoreClientDataset

Property Description

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

ApiKey Get from the “Project settings” section of Firebase console as

described earlier

AuthDomain Get from the Authentication section of Firebase console as

described earlier

CollectionName Specify a collection name to connect to in Firestore

KeyFieldName Set the name of the primary key field

AutoGenerateKeys Recommended to set to True to let Firestore generate keys for

new records

ProjectId Get from the “Project settings” section of Firebase console as

described earlier

SignInRequired Set to True if only authenticated users are allowed access as per

the Rules set up for the database. In this case, the component

automatically tries to login on the first access.

UseridFilter Set to ufActive if you want the component to automatically force a

uid field so that each logged in user can only see his or her own

records. The default is ufInactive

UseridFieldName Set a field name if you don't want the component to use the

default field name of 'uid' for this feature. You might need this, for

example, if you have existing data that already has a field with a

different name having the same uid value

OnError This is an event property that notifies the application of any errors

from Firestore. The event can be set up at design time in Object

Inspector by double-clicking on it. If the Application does not

subscribe to this event, an Exception is raised on such errors. If

subscribed, the application can then decide what to do. For

523

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

example, show error, raise exception or take some corrective

action. Note that hard errors (Delphi Exceptions) are not passed in

this event. Rather, they cause an Exception that appears in a red

alert. But in any case, all errors are always logged to the browser

console.

Methods of TWebFirestoreClientDataset

Only the methods specific to Firestore are listed below. Other methods from the base DataSet

classes are used in the standard way.

Refresh

procedure Refresh(Force: Boolean=False);

Refresh reloads all the objects from the database. If AddSortFieldDef has been used to set up

sorting definitions, the objects are loaded in the order specified. In addition, the current record

pointer is restored after the Reload which is convenient for the user interface of the web

application. Refresh is internally postponed till all the pending updates started asynchronously

are finished. The Force parameter ignores the pending updates and forces a reload.

AddSortFieldDef and ClearSortFieldDefs

Use AddSortFieldDef to add one or more sort definitions for loading the data. Before using a

series of these calls, you must clear all sort definitions by calling ClearSortFieldDefs.

procedure AddSortFieldDef(aField: String; isAscending: Boolean));

where

- aField - the field name for the sorting order

- isAscending - Set True for ascending order.

AddServiceFilterCount

Maps to: "limit" filter type in Firestore

Limit the number of records coming from the Firestore collection. Setting a filter activates it on

next Refresh or when you next make the dataset active.

procedure AddServiceFilterCount(numRecords: Integer);

524

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

AddServiceFilterCondition

Maps to: "where" filter type in Firestore

Adding one or more such filters is another way to limit the number of records coming from the

Firestore collection. Setting a filter activates it on next Refresh or when you next make the

dataset active.

procedure AddServiceFilterCondition(aField: String; anOperator: String;

aValue: JSValue);

where

- aField - the field name

- anOperator - can be a comparison operator like '>='. Another operator 'in' is also available for

look up of a value in an array of values. See an example in section 4 above. Special rules

govern use of operators like '=='. See Limitations note below.

- aValue - is a value depending on the field type.

Note: If the Field is a Date/Time field, the value needs to be passed by special code.

Limitations: The Where feature in FireStore can not be used in all possible ways that SQL

allows. For example, you can add more than one where filters, provided they are on the same

field and if a Sort Order is being used, the Sort Order must be on the same field. Futher, in case

of '==' operator, the Sort Order must not be on the same field.

For more details, please see Firestore documentation on filtering.

AddServiceFilterRange

Maps to: "start" and "end" type filters in Firestore

Adding one or more such filters is another way to limit the number of records coming from the

Firestore collection. Setting a filter activates it on next Refresh or when you next make the

dataset active. Further, this works only on the current sort field. The value passed refers to the

current sort field set by AddSortFieldDef call.

TFireStoreRangeFilterType = (frStartAt, frEndAt, frStartAfter, frEndBefore);

 procedure AddServiceFilterRange(

 rangeType: TFireStoreRangeFilterType;

 aValue: JSValue

);

525

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

where

- rangeType - specifies the type of filter by the enum type given above.

- aValue - the value for the range. It refers to the value of current sort field set by

AddSortFieldDef call.

Note: You nust have defined the current sort field by using the method AddSortFieldDef.

Further, if the current sort field is a Date/Time field, the value needs to be passed by special

code.

AddServiceFilterContinueAfterLast

This gives you a way to get records beyond the current last record obtained. For example, if you

first obtained only 30 records by AddServiceFilterCount(30). Next time, call this method to add

this filter. Then each time you call Refresh, you will get next 30 records and when they finish,

you will get an empty dataset.

ClearServiceFilters

Clears all filters added so that all the records are obtained from the server. Clearing takes effect

on next Refresh or when you next make the dataset active.

procedure ClearFilters;

Async methods

These methods allow you to do processing of dataset in code where you can wait for the

outcome of the previous async operation before doing the next.

OpenAsync

TFirestoreOpenAsyncResult = reference to procedure(success: Boolean;

errorName, errorMsg: String);

procedure OpenAsync(response: TFirestoreOpenAsyncResult);

Where the response procedure gets a success flag along with error parameters.

526

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

CloseAsync

TFirestoreCloseAsyncResult = reference to Procedure;

procedure CloseAsync(response: TFirestoreCloseAsyncResult);

Where the response procedure just indicates end of close without any parameters.

PostAsync

TFirestorePostAsyncResult = reference to procedure(success: Boolean; data:

JSValue; errorName, errorMsg: String);

procedure PostAsync(response: TFirestorePostAsyncResult);

Where the response procedure gets a success flag along with error parameters. In addition,

there is a data parameter that returns the generated ID for a PostAsync after Insert and the

whole JSON data object in case of PostAsync after Edit.

DeleteAsync

procedure DeleteAsync(response: TFirestorePostAsyncResult);

where the response procedures is same as for PostAsync and the data returned is the JSON

object deleted.

AddServiceObjects

This is a Class Method AddServiceObjects that you can use to insert upto 500 records in a

JSON Array at once directly to the Firestore collection. Since this is a class method, you are

supposed to use it by prefixing with class name TFirestoreClientDataset. You don't need to

open any dataset locally as it directly inserts at the server end.

class procedure AddServiceObjects(

 anApiKey, anAuthDomain, aProjectId, aCollectionName: String;

 dataObjects: TJSArray;

 responseEvent: TFirestoreBatchCommitResultEvent

527

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

);

where

- The parameters anApiKey, anAuthDomain, aProjectId, aCollectionName are same as the

properties by similar name described for FirestoreClientDataSet.

- dataObjects is the JSON array containing the objects to be passed. Maximum 500 objects are

allowed at a time.

- responseEvent is the procedure that gets the completion event.

The response event procedure has the following format, giving a success flag or error details.

TFirestoreBatchCommitResultEvent = reference to procedure(success: Boolean;

errorName, errorMsg: String);

Sign-In related methods

If SignInRequired is ON then Google Sign-In is automatically tried when the ClientDataSet is

made active or OpenAsync is used.

Signout

Use this method to Sign Out of Firebase. You need to Close the dataset before calling it.

SignInAsync

If Sign-In method Email/Password is enabled in Firebase Console then you need to use this

method to Sign-In.

procedure SignInAsync(

 aUserEmail, aPassword: String; IsSignUp: Boolean;

 responseEvent: TFirestoreOpenAsyncResult);

where

- IsSignup is True if a new user is to be created with the given Email and Password

- responseEvent is the procedure that gets the success or failure result

The response event procedure has the same format described in OpenAsync method above.

528

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

SendPasswordResetEmail

Use this method to let Firebase send a Reset Password link to the user.

procedure SendPasswordResetEmail(aUserEmail: String; responseEvent:

TFirestoreOpenAsyncResult);

The response event procedure has the same format described in OpenAsync method above.

SubscribeToSignInEvents

procedure SubscribeToSignInEvents(doSubscribe: Boolean);

Use this method to get notifications on any Sign-In change by the event OnSignInChange. The

event can be used to take special action if a user is detected as already signed-in.

The event signature is:

TFirestoreSignInChangeEvent = procedure(isSignIn: Boolean; UserName: String;

UserEmail: String) of object;

When IsSignIn is ON, the UserEmail parameter contain valid data of the signed-in user.

Note that the first time this event occurs as soon as you call the subscribe method.

GetSignedInUserAsync

Use this method to find out if a user is signed-in and the Email for the user.

TFirestoreGetSignedInAsyncResult = reference to procedure(isSignIn: Boolean;

UserName: String; UserEmail: String);

procedure GetSignedInUserAsync(responseEvent:

TFirestoreGetSignedInAsyncResult);

529

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Tips, tricks, troubleshooting notes

We will be adding items in this section based on user support queries from the customers.

Error processing

If you do some operations like Open by using the new Async methods, you will get to know if

errors occurred in the immediate Response function. So please use them whenever you can.

For example, instead of setting active or Open, it is better to use OpenAsync or SignInAsync.

Any other errors occuring during Firestore operations will raise an exception. As a developer,

you can probably identify them or can use the Console Log to find if errors occurred. But for the

benefit of the End User, it is recommended that you use the OnError event of the component to

get notified of errors and display them to the user with or without modification as per your own

interface design.

530

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebRadServerClientDataset

Introduction

Embarcadero Rad server (https://www.embarcadero.com/products/rad-server) is a technology

for creating REST API services written in Delphi that can be hosted on Windows IIS or Linux

Apache servers. These REST APIs can be accessed from TMS WEB Core web client

applications. In its most basic form, the TWebHttpRequest component can be used to perform

HTTP(s) GET,PUT,POST,DELETE requests to the APIs exposed by Embarcadero Rad Server.

When creating a CRUD REST API functionality, the TWebRadServerClientDataset can

internally fully handle the communication and offer access to the data via a TDataset based

interface to the DB-aware UI controls in your web client applications. The

TWebRadServerClientDataset is multi-tenant aware. This means that it works based on user-

bound data, offers a login method and will perform operations on the data belonging to the

logged-in user.

Configuring your Embarcadero Rad server back-end

Create a new Rad Server project from your Delphi IDE.

https://www.embarcadero.com/products/rad-server

531

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Create a new data module and set the ResourceName attribute to the name you want to use to

access the dataset from the web client application. The TWebRadServerClientDataset will

internally construct the URL to use the Rad Server REST API with.

To perform CRUD operation on a table, add methods Get,Post,GetItem,PutItem,DeleteItem to

the datamodule:

[ResourceName('tasks')]

TTasksResource = class(TDataModule)

 conn: TFDConnection;

 query: TFDQuery;

published

 procedure Get(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

 [ResourceSuffix('{item}')]

 procedure GetItem(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

 procedure Post(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

 [ResourceSuffix('{item}')]

 procedure PutItem(const AContext: TEndpointContext; const ARequest:

TEndpointRequest; const AResponse: TEndpointResponse);

 [ResourceSuffix('{item}')]

 procedure DeleteItem(const AContext: TEndpointContext; const

ARequest: TEndpointRequest; const AResponse: TEndpointResponse);

end;

In these methods return JSON objects for the Get/GetItem procedures from the data in the

dataset used and get the posted data as JSON object and insert this as a new record in the

dataset.

Note that as Rad Server is a multi-tenant architecture, the logged in user information can be

retrieved from the AContext parameter of the methods. From here, AContext.User.UserID can

be used to get the data belonging to a specific user or insert it with the correct user information.

The full source code for a sample Rad Server package that creates a REST API for CRUD

operations on a tasks table can be found under Demo\DBBackend\RadServer\Server.

After creating and compiling the Rad Server package, follow these steps to start Rad Server

with your package:

1) From the command line, execute:

532

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

EMSDevServer -l"RADServerTasks.bpl"

2) When you run this for the first time on a system

• The EMSDevServer will not find any configuration and will ask you to Create it. Say

YES.

• Then Rad Server Setup Wizard starts. Do not change anything. Keep it at default.

Note the location of DB File Directory because this is the location where it creates its

EMS database for Rad Server and the INI file of parameters.

• We are going to change the INI file there for our local Demo runs and tests.

C:\Users\Public\Documents\Embarcadero\EMS

• Click Next and keep defaults for Sample Data where it will create sample users and

user groups.

• Click Next and note down the default user-name and password for IB Console, a

utility.

• Final screen asks for confirmation to create default files. Again leave them at default

and click on Finish.

• It shows some messages giving license warnings, etc. Once you are through, the

compiled Rad Server starts running.

3) The Rad Server starts running. If you get an error that can not connect to EMS database

then it means that Interbase service is not running. You will need to start it from Task

Manager—Services

4) Once Rad Server is running, Click on Open Browser to do a quick test. It will show a

version.

5) Change the URL in the browser to show tasks: http://localhost:8080/tasks

You will see JSON of the tasks present in the database. Once this works, you can start

using the Client Demo that assumes that Rad Server is running on localhost:8080.

6) Stop the Server and close it.

7) EDIT the INI file emsserver.INI in the folder

C:\Users\Public\Documents\Embarcadero\EMS that we noted above.

Change the parameter CrossDomain’s value to *. This will get rid of cross-domain error

in Chrome that you would otherwise get.

http://localhost:8080/tasks

533

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

CrossDomain=*

Now run the server again from the Batch file. Remember, whenever you change the INI

file, you have to stop and restart the server.

Use Rad Server via TWebRadServerClientDataset

To start using the Rad Server REST API offering CRUD access to a table, drop a new

TWebRadServerClientDataset instance on the TMS WEB Core web client application form.

1) Set the WebRadServerClientDataset.RadServerURL to the URL for the Rad Server.

When performing local testing, this is default http://localhost:8080

2) Set the table name WebRadServerClientDataset.TableName, i.e. this is the

ResourceName attribute set for the datamodule exposing the table.

3) Set the key field for the tasks table via WebRadServerClientDataset.KeyfieldName

4) Add the field types that will be used in the client dataset via

WebRadServerClientDataset.FieldDefs

To login with a user account, use WebRadServerClientDataset.Login() passing the username

and password. After a successful login, the dataset becomes active and any connected DB-

aware control will show the data in the dataset. To signup a new user, just use the

WebRadServerClientDataset.Login() method with last Boolean parameter set to true.

From this moment on, operations such as edit, insert, delete will be handled via the

WebRadServerClientDataset on the Rad Server exposed table.

Reference

These are the properties, methods, events of the TWebRadServerClientDataset component

Properties

http://localhost:8080/

534

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

AppSecret Sets the optional application secret key value

KeyfieldName Sets the keyfield for the dataset

MasterSecret Sets the optional master secret key value

RadServerURL Sets the URL to perform the REST API HTTP(s) requests on

TableName Sets the resource name that will be used in the Rad Server

Methods

Property Description

Login(UserName,Password:

string; IsSignup: boolean)

Performs a login on the Rad Server instance. When successful,

the data is fetched in the dataset.

When IsSignUp is true, a new account is created on the Rad

Server instance

Events

The TWebRadServerClientDataset exposes the standard TDataSet events and is as such

similar in functionality

535

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebDreamFactoryClientDataset

Introduction

DreamFactory offers REST API creation without writing code. Via a web interface, the various

characteristics of the REST API you want to create to let your application access data and other

services on the back-end, can be configured. As such, you can create a REST API that can be

consumed by a TMS WEB Core web client application. For handling CRUD operations on data

that are exposed by a DreamFactory REST API, the TWebDreamFactoryClientDataset is

available. The TWebDreamFactoryClientDataset is the bridge between the REST API and the

DB-aware controls that are used in the web client application.

Configuring your DreamFactory back-end

Download the DreamFactory installer from https://bitnami.com/stack/dreamfactory/installer and

install the software. After install, DreamFactory can by default be started via

http://127.0.0.1/dreamfactory/dist/index.html#/login

To create a REST API service for a SQLite database used in the demo, follow these steps

Create the SQLite Service 'tasksdb'

 - Select Services on the top menu

- Click Create on the left menu

- Click on "Service Type" dropdown to select Database--SQLite

 - Namespace: tasksdb

 - Label: Tasks DB Service

 - Go to Config tab

 - Database: tasks

- Save

Create Schema Table Task

- Select Schema on the top menu

https://bitnami.com/stack/dreamfactory/installer
http://127.0.0.1/dreamfactory/dist/index.html#/login

536

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

- Click on Service dropdown to select "Tasks DB Service". If not visible, click on Refresh

button next to it or refresh the page.

- Click on upload JSON and upload the following JSON code. This will create the table.

{

 "resource": [

 {

 "name": "task",

 "label": "Task",

 "plural": "Tasks",

 "alias": null,

 "auto_increment": true,

 "is_primary_key": true,

 "field": [

 {

 "name": "id",

 "label": "Id",

 "type": "id"

 },

 {

 "name": "userid",

 "label": "User Id",

 "type": "user_id_on_update"

 },

 {

 "name": "status",

 "label": "Status",

 "type": "string",

 "db_type": "nvarchar(80)",

 "size": 80,

 "allow_null": false

 },

 {

 "name": "descr",

 "label": "Description",

 "type": "text",

 "allow_null": false

 },

 {

 "name": "due_date",

 "label": "Due Date",

 "type": "date",

537

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 "allow_null": false

 }

]

 }

]

}

Setup CORS

- Select Config on the top menu

- Click CORS on the left menu

- Click the + button

 - Path: *

 - Click on Methods dropdown to select "All"

 - Enabled: ON

- Save

Set up a Role "LoggedIn" to access the “tasksdb” service

- Select Roles on the top menu

- Click Create on the left menu

 - Name: LoggedIn

 - Active: ON

 - Go to Access tab

 - Click on + button to add a rule

 - Select Service as tasksdb

 - Select Component as *

 - Select Actions as All

 - Click on Show/Hide in the last column "Advanced filters". A Filter set up form

appears.Click on + button to its right

 - Enter Field as userid

 - Leave Operator as =

 - Enter Value as {user.id}

- Save

Create App Tasks

- Select Apps on the top menu

538

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

- Click Create on the left menu

 - Application Name: Tasks

 - Click on "Default Role" dropdown to select our role created earlier, "Default"

 - Active: ON

- Save

- Copy the API key from the Tasks app, it is required for the TMS WEB Core w.

Set up User service for Open Registration

- Select Services on the top menu

- Click on User service in the list

 - Go to Config tab

 - Allow Open Registration: ON

 - Click on + button to add a Per App Open Reg Role

 - Select App as Tasks

 - Select Role as LoggedIn

- Click on "Open Reg Email Service" drop down and select the EMPTY value.

- Save

Using DreamFactory via TWebDreamFactoryClientDataset

Drop a TWebDreamFactoryClientDataset component on the form. First set the API key for the

use of the DreamFactory REST API. This API key was obtained in the setup step 5 “Create

App”. Configure the URL of WebDreamFactoryClientDataset to the URL of the DreamFactory

server. When testing on localhost, this is for example 'http://127.0.0.81'.

Setup the WebDreamFactoryClientDataset.DBServiceName to the name of the DreamFactory

service you created, i.e. for this sample ‘tasksdb’ and set the

WebDreamFactoryClientDataset.TableName to the name of the table you want to use for this

dataset, i.e. for this sample ‘tasks’ and also set the unique key field name via

WebDreamFactoryClientDataset.KeyfieldName.

Finally, setup the fields the dataset will use via the WebDreamFactoryClientDataset.FieldDefs.

Reference

These are the properties, methods, events of the TWebDreamFactoryClientDataset component

539

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties

Property Description

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

ApiKey Sets the DreamFactory unique application secret obtained after

creating a collection

DBServiceName Sets the name of the service created in DreamFactory for

accessing the database

DreamFactoryURL Sets the URL for the DreamFactory server

KeyfieldName Sets the name of the unique key field in the table

TableName Sets the name of the table in DreamFactory to work with as a

dataset for user management

Methods

Method Description

Login(UserName,Password:

string; IsSignup: boolean)

Performs a login on the DreamFactory service. When

successful, the data is fetched in the dataset.

When IsSignUp is true, a new account is created on the Rad

Server instance

Refresh Reloads the data from DreamFactory table in the web client

dataset

AddSortFieldDef(aField:

string; isAscending:

Boolean)

Sets the sort order of data returned from DreamFactory in the

dataset

ClearSortFieldDefs Clears any previously set sort order

Events

The TWebDreamFactoryClientDataset exposes the standard TDataSet events and is as such

similar in functionality. It offers an additional event for handling a signup attempt with an already

existing username

Event Description

OnUserExists(Sender,

UserName)

Event triggered when a signup is attempted using a username

that already existed.

540

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebFaunaDbClientDataSet

Introduction

FaunaDb offers a cloud hosted database and offers access to the data via a REST API. This

REST API can be consumed by a TMS WEB Core web client application, allowing you to create

web applications with data in the backend hosted by FaunaDb and as such no longer worry

about this part of your web application. To make the use of the REST API from FaunaDb to

perform CRUD operations on your data easier and codeless, the TWebFaunaDbClientDataset

is available that works as a bridge between your FaunaDb hosted data and the DB-aware

controls in your TMS WEB Core web client application.

Configuring the FaunaDb server back-end

To create a database with a table hosted on the FaunaDB cloud database, follow the steps

below:

1) Sign up with Faunadb and Login to the dashboard

2) Click on “New Database” to create a new database with any name. Save.

3) In the left menu click on “Shell”. From there execute the script to create the needed

tables

Script step 1: create two tables

CreateCollection({ name: "Tasks" });

CreateCollection({ name: "users",

 permissions: { create: "public"}, //trying to allow sign up

});

Script step 2: create one user so login will be possible

Create(

 Collection("users"),

 {

 credentials: {password:"1234"},

 data: {

541

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 email: "john@doe.com",

 },

 }

);

Script step 3: create an index on the user table to sort users table

CreateIndex({

 name: "users_by_email",

 permissions: {read:"public"},

 source: Collection("users"),

 terms: [{field: ["data","email"]}],

 unique: true,

});

Script step 4: Assign admin privileges to logged in user to enable changing indexes for example

CreateFunction({

 name: "addPermission",

 role: "admin",

 body: Query(

 Lambda("x",

 Let (

 {curpriveleges:

 {"privileges":

 Union(Select("privileges",

Get(Role("loggedInUser"))),

 Var("x"))

 }

 },

 Update(Role("loggedInUser"),Var("curpriveleges"))

)

)

)

})

Script step 5: create the role that defines what the logged-in user can do

CreateRole({

 name: "loggedInUser",

 membership: {resource: Collection("users")},

542

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 privileges: [

 {resource: Collection("Tasks"), actions: {read: true, write:

true, create: true, delete: true}},

 {resource: Ref("indexes"), actions: {read: true, write: true,

create: true, delete: true}},

 {resource: Ref("collections"), actions: {read: true, write:

true}},

 {resource: Function("addPermission"), actions: { call: true}}

]

});

4) At the end of the result, you should see a line with the Secret: "secret":

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

5) Copy the value of the secret to the clipboard and use it in the web client application

Using FaunaDB via TWebFaunaDBClientDataset

To start using your created FaunaDB dataset, drop a TWebFaunaDBClientDataset instance on

the TMS WEB Core web client application form.

1) Set the WebFaunaDBClientDataset.ClientKey to the secret obtained while executing the

script to create the table

2) Set the name of the data table on FaunaDB you want to work with via

WebFaunaDBClientDataset.CollectionName.

3) Set the name of the user table on FaunaDB you want to work with for user management

via WebFaunaDBClientDataset.UsersCollectionName

4) Set the name of the created index on the users table via

WebFaunaDBClientDataset.UsersIndexName

To login with a user account, use WebFaunaDBClientDataset.Login() passing the username

and password. After a successful login, the dataset becomes active and any connected DB-

aware control will show the data in the dataset.

From this moment on, operations such as edit, insert, delete will be handled via the

543

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

WebFaunaDBClientDataset on the FaunaDB exposed table. To signup a new user, just use the

WebFaunaDBClientDataset.Login() method with last Boolean parameter set to true.

Reference

These are the properties, methods, events of the TWebFaunaDbClientDataset component

Properties

Property Description

Active Set this to True to activate the DataSet. Field definitions must be

present along with other properties described below.

ClientKey Sets the FaunaDB unique application secret obtained after

creating a collection

CollectionName Sets the name of the collection in FaunaDB to work with as a

dataset

KeyfieldName Sets the keyfield for the dataset

MasterSecret

UsersCollectionName Sets the name of the user collection in FaunaDB to work with as a

dataset for user management

UsersIndexName Sets the name of the index for unique user identification

Methods

Property Description

Login(UserName,Password:

string; IsSignup: boolean)

Performs a login on the FaunaDB cloud database. When

successful, the data is fetched in the dataset.

When IsSignUp is true, a new account is created on the Rad

Server instance

Refresh Reloads the data from FaunaDB in the web client dataset

AddSortFieldDef(aField:

string; isAscending:

Boolean)

Sets the sort order of data returned from FaunaDB in the

dataset

ClearSortFieldDefs Clears any previously set sort order

544

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events

The TWebFaunaDBClientDataset exposes the standard TDataSet events and is as such similar

in functionality. It offers an additional event for handling a signup attempt with an already

existing username

Event Description

OnUserExists(Sender,

UserName)

Event triggered when a signup is attempted using a username

that already existed.

545

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebSQLRestClientDataset, TWebSQLRestConnection

Introduction

SQLDBRESTBridge is an open-source project https://wiki.freepascal.org/SQLDBRestBridge

that offers a REST bridge for SQL databases. SQLDBRESTBridge allows to create a REST API

for performing CRUD operations on a SQL database. Head to the wiki page for all details

related to SQLDBRESTBridge.

Configuring the SQLDBRESTBridge server back-end

The demo comes with the source code to create the server instance (project restserver.lpr) that

needs to be compiled with Lazarus as well as the executable restserver.exe.

The sample is based on a SQLite database todo.db. This database contains a user table and a

tasks table. The tables are created with:

-- Fake autoincremental

create table t2(id integer primary key autoincrement);

-- These must match table names below !

insert into sqlite_sequence (name,seq) values ('Tasks',1);

insert into sqlite_sequence (name,seq) values ('Users',1);

drop table t2;

-- Primary key autoincrement, because this allows to assign a value

and will update sqlite_sequence

-- See https://www.sqlite.org/autoinc.html

create table Users (

 uID integer primary key autoincrement,

 uLogin varchar(50) not null,

 uPassword varchar(100) not null

);

create unique index udxUsers on Users(uLogin);

create table Tasks (

 tID integer primary key autoincrement,

 tUserFK integer not null,

https://wiki.freepascal.org/SQLDBRestBridge

546

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 tStatus varchar(15) not null,

 tDueDate date not null default CURRENT_DATE,

 tDescription varchar(4096)

);

create index idxTaskUser on Tasks(tUserFK);

After compiling the server, start it from the command line and it will be ready listening to

requests on http://localhost:8080/

Using SQLite via TWebSQLRestClientDataset

Drop a TWebSQLRestConnection component on the form. This is the non-visual component

through which the communication between the dataset and the REST server will happen. The

TWebSQLRestConnection URI needs to be set to the URL of the server, in this case

http://localhost:8080/ The REST server can require a default login for which the credentials are

set with TWebSQLRestConnection.User and TWebSQLRestConnection.Password.

Then drop two TWebSQLRestClientDataset instances on the form, one for the user table and

one of the tasks table. The TWebSQLRestClientDataset metadata can be automatically

initialized from the server or it can be programmatically done in the client. The example shows

the Tasks table metadata being initialized from the server and the user table metadata

programmatically initialized

 // Retrieve metadata from server and setup indexes in the client for

tasks tabls

 cdsTasks.UseServerMetaData := True;

 cdsTasks.Indexes.Add('ByDueDate', 'tDuedate',[]);

 cdsTasks.Indexes.Add('ByStatus', 'Tstatus',[]);

 cdsTasks.Indexes.Add('ByDescr', 'Tdescription',[]);

 cdsTasks.Indexes.Add('ByDueDateDesc', 'tDuedate',[ixDescending]);

 cdsTasks.Indexes.Add('ByStatusDesc', 'Tstatus',[ixDescending]);

 cdsTasks.Indexes.Add('ByDescrDesc', 'Tdescription',[ixDescending]);

 cdsTasks.ActiveIndex := 'ByDueDate';

 cdsTasks.IDField:='tID';

 // programmatic field initialization for user table used to add new

users

http://localhost:8080/
http://localhost:8080/

547

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 cdsnewuser.FieldDefs.Add('uID',ftLargeInt,0);

 cdsnewuser.FieldDefs.Add('uLogin',ftString,255);

 cdsnewuser.FieldDefs.Add('uPassword',ftString,255);

There is also a dataset cdsValidLogin used for the sole purpose of verifying the login.

The login is validated with:

 CDSValidLogin.Close;

 CDSValidLogin.Params.ParamByName('uLogin').AsString :=

edtLogin.text;

 CDSValidLogin.Params.ParamByName('uPassword').AsString :=

edtPassword.text;

 CDSValidLogin.Load([], nil);

When opening this dataset, it either has or has not a record, indicating the user exists or does

not exist. This is handled in the cdsValidLogin.AfterOpen event;

procedure TForm1.cdsValidLoginAfterOpen(DataSet: TDataSet);

begin

 FUID := -1;

 if cdsValidLogin.Recordcount = 0 then

 Showmessage('Invalid username/password')

 else

 begin

 FUID := cdsValidLogin.FieldByName('uID').AsInteger;

 EnableTasks;

 LoadTasks;

 end;

end;

When the user is found, the user tasks dataset is loaded via LoadTasks and as the dataset is

filled, the DB-aware UI controls can work on this dataset.

procedure TForm1.LoadTasks;

begin

 CDSTasks.Close;

 CDSTasks.Params.ParamByName('uID').asInteger := fUID;

 CDSTasks.Load([], nil);

end;

548

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The CDSTasks dataset then handles all further CRUD operations. In this sample, the client-side

changes are not immediately updated in the server database. For this demo, it was chosen to

do this in batch via calling CDSTasks.ApplyUpdates. The dataset will then internally handle

applying all client-side dataset changes in one time to the server.

549

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

jQuery components

TMS WEB Core includes wrapper for the jQWidgets jQuery controls. This UI control can be

obtained from: www.jqwidgets.com

To get started with the jQWidgets controls, it is important that the JavaScript and CSS libraries

for these controls are added to the project. This is done by including the JavaScript libraries and

CSS files to the main project HTML file. To get started, either open the main project HTML file

from the Delphi IDE and add in the HTML file the script and CSS file references.

In the jQWidgets demo application, this is for example:

To make it easier for development and debugging, TMS WEB Core made a development

version ready. To add jQWidgets UI control script references to your project, open the “Manage

JavaScript libraries” menu item from the context menu in the Delphi IDE project manager and

make sure to add first the jQuery 3.1.1 library reference followed by the jQWidgets development

http://www.jqwidgets.com/

550

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

library. There is a reference for the jQWidgets core UI controls and an additional separate

reference for the jQWidgets grid:

This adds the needed core jQWidgets library references to the project main HTML files. When

you then add jQWidgets UI controls to the form, these controls will dynamically add their

required additional jQuery files to the project HTML file.

Note that the jQWidgets library references added this way are for development purposes only!

For a final release, it is required that you put the jQWidgets library files on your server and link

to script files on your server!

551

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXButton

Description

Below is a list of the most important properties methods and events for TWebJQXButton.

Represents a button with optional image.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXButton

Caption Sets the caption text of the button

CaptionPosition Sets the position of the caption text

CaptionImageRelation Sets the position of the image relative to

the caption text

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

552

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the Delphi class is connected with the

existing HTML element in the form HTML

file

ImageURL Sets the URL of the image to be displayed

in the button

ImagePosition Sets the position of the image

ImageHeight Sets the height of the image in pixels

ImageWidth Sets the width of the image in pixels

RoundedBorders Sets if the button is displayed with rounded

borders

Template Sets the template used to display the

control. Options are Default, Primary,

Success, Warning, Danger, Info

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXButton

OnClick Event triggered when the button is clicked

553

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXButtonGroup

Description

Below is a list of the most important properties methods and events for TWebJQXButtonGroup.

Represents a group of buttons. The buttons can optionally behave like a radio group or

checkbox group.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXButtonGroup

ButtonSelect[Button: Integer] Select or unselect a button based on the

index in the Items list

EnableHover Enables the visual effect when a button is

hovered

Items A list of button caption texts

Mode Sets how the button group behaves.

Options are: Default, CheckBox,

RadioButton

Template Sets the template used to display the

control. Options are Default, Primary,

Success, Warning, Danger, Info

554

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXButtonGroup

OnClick Event triggered when a button is clicked

555

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXCalendar

Description

Below is a list of the most important properties methods and events for TWebJQXCalendar.

Represents a calendar that enables the user to select a date using a visual monthly calendar

display.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXCalendar

556

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Date Sets the Calendar’s Date. If multiselect is

True this is the first day of range of dates

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

EndDate Sets the last day of a range of dates. Only if

MultiSelect is True

FirstDayOfWeek Sets which day to display in the first day

column

MaxDate Sets the maximum selectable date

MinDate Sets the minimum selectable date

MultiSelect If set to True a range of dates can be

selected

OtherMonthDays If set to True the days of days of the

previous and next month are displayed

ShowToday Sets if today’s day is highlighted

Theme Sets the name of the theme that is used to

display the control

WeekNumbers Sets if the week numbers are displayed

Events for TWebJQXCalendar

OnDateClick Event triggered when a date is selected

OnNavigateClick Event triggered when the calendar is

navigated to a different month

557

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXColorPicker

Description

Below is a list of the most important properties methods and events for TWebJQXColorPicker.

A control that allows the user to easily pick a color.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXColorPicker

Color Sets the selected color

ColorMode Sets the color mode to hue or saturation

558

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

Events for TWebJQXColorPicker

OnChange Event triggered when a color is selected

559

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXComboBox

Description

Below is a list of the most important properties methods and events for TWebJQXComboBox.

A combobox control that contains an input field with auto-complete functionality and a list of

selectable items displayed in a drop-down.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXComboBox

AutoComplete If set to True only the items that match the

searched text are displayed in the list

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

560

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

file

ItemIndex Sets the selected item index

Items The collection of items

MultiSelect Sets if multiple items can be selected

Theme Sets the name of the theme that is used to

display the control

TextHint Sets the text displayed before an item is

selected

Methods for TWebJQXComboBox

GetDisabled Returns if the provided item index is disabled

SetDisabled Sets the provided item index as disabled

GetSelected Returns if the provided item index is selected

SetSelected Sets the provided item index as selected

Events for TWebJQXComboBox

OnChange Event triggered when an item is selected

561

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXDateTimeInput

Description

Below is a list of the most important properties methods and events for

TWebJQXDateTimeInput.

Represents a datetimeinput that enables the use to select a date or time using a popup

calendar display or by keyboard input into the text field.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXDateTimeInput

Date Sets the Calendar’s Date. If multiselect is

True this is the first day of range of dates

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

562

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

existing HTML element in the form HTML

file

EndDate Sets the last day of a range of dates. Only if

MultiSelect is True

FirstDayOfWeek Sets which day to display in the first day

column

MaxDate Sets the maximum selectable date

MinDate Sets the minimum selectable date

MultiSelect If set to True a range of dates can be

selected

ShowToday Sets if today’s day is highlighted

Theme Sets the name of the theme that is used to

display the control

WeekNumbers Sets if the week numbers are displayed

Events for TWebJQXDateTimeInput

OnDateClick Event triggered when a date is selected

563

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXDropDownList

Description

Below is a list of the most important properties methods and events for

TWebJQXDropDownList.

Represents a control that contains a list of selectable items displayed in a drop-down.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXDropDownList

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

ItemIndex Sets the selected item index

564

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Items The collection of items

MultiSelect Sets if multiple items can be selected

Theme Sets the name of the theme that is used to

display the control

TextHint Sets the text displayed before an item is

selected

Methods for TWebJQXDropDownList

GetDisabled Returns if the provided item index is disabled

SetDisabled Sets the provided item index as disabled

GetSelected Returns if the provided item index is selected

SetSelected Sets the provided item index as selected

Events for TWebJQXDropDownList

OnChange Event triggered when an item is selected

565

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXGrid

Description

Below is a list of the most important properties methods and events for TWebJQXGrid.

The Grid is a powerful control that displays tabular data. It offers rich support for interacting with

data, including paging, grouping, sorting filtering and editing.

Designtime

566

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXGrid

Columns

Alignment Sets the text alignment in the column

ColumnType Sets the type of the column. Default,

Image (image URL displayed as an

image), Email (email address displayed as

hyperlink) or Link (URL displayed as

hyperlink)

DataField Sets the field name of the dataset field to

bind the column to

DataType Sets the datatype of the column. Available

types are: Date, Double, Integer, String

Editor Sets the editor for the column. Available

editors are: CheckBox, DateTimeInput,

DropDownList, Edit, None, NumberInput

Format Sets the column formatting

Freeze Sets if the column is fixed

Title Sets the title of the column

Width Sets the width in pixels of the column

Cells[Col, Row: Integer] Gets or sets the value of a grid cell based

on the column and row index

Data

567

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

DataArray If DataType is set to Array, assign a

TJSArray with the data to load in the grid

DataType Sets the type of data to load in the grid.

Available types are: Array, CSV, JSON,

None

Delimiter Sets the delimiter character if DataType is

set to CSV

Id Sets the column name to be used as ID

column if DataType is set to JSON

JSON If DataType is set to JSON, assign the

JSON data to load in the grid

Url Assign the location of a CSV or JSON file

to load the data in the grid if DataType is

set to CSV or JSON respectively

RowSelect[Row: Integer] Select a grid row based on the row index

FocusedCell Gets or sets the currently focused cell

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

Options

Bands

Enabled Sets if row banding is enabled in the grid

RowCount Sets the number of rows between

banding rows

Editing Sets if editing is enabled in the grid

Filtering Sets if filtering is enabled in the grid

Grouping Sets if grouping is enabled in the grid

Hovering Sets if hovering is enabled in the grid

568

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Paging

Enabled Sets if paging is enabled in the grid

PageSize Sets the number of rows per page

SelectionMode Sets the selection mode. Options are

single row, single cell, multiple rows,

multiple cells

Sorting

ColumnIndex Sets the column index the grid should be

sorted by

Direction Sets the sortdirection. Options are

Ascending, Descending or Unsorted

Enabled Sets if sorting is enabled

RowCount Sets the number of displayed rows

RowHeight Sets the height of a grid row

Theme Sets the name of the theme that is used to

display the control

Methods for TWebJQXGrid

SelectCell Selects a single cell based on the provided

row and column index

SelectRow Selects a single row based on the provided

row index

Events for TWebJQXGrid

OnCellClick Event triggered when a cell is clicked

OnCellEditClick Event triggered when a cell is edited

OnCellEditDone Event triggered after a cell is edited

569

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

OnCellEditStart Event triggered when a cell is edited

OnCellEditValidate Event triggered after a cell is edited

OnCellSelect Event triggered when a cell is selected (via

keyboard arrow keys)

OnFilter Event triggered when the grid is filtered

OnGetCellData Event triggered when a cell is rendered

OnPageChange Event triggered when changing to a different

page

OnRowClick Event triggered when a row is clicked

OnRowSelect Event triggered when a row is selected (via

keyboard arrow keys)

OnSort Event triggered when the grid is sorted

570

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXKnob

Description

Below is a list of the most important properties methods and events for TWebJQXKnob.

Represents a control with a round shape which displays a draggable indicator within a range of

values.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXKnob

Appearance

571

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

BorderColor Sets the border color of the control

BorderWidth Sets the border width of the control

Color Sets the background color of the control

Labels

Offset Sets the labels position offset in

percentage

Step Sets the step between labels

Visible Sets if the labels are displayed

Marks

BorderColorProgress Sets the border color of the marks in the

progress part

BorderColorRemaining Sets the border color of the marks in the

remaining part

ColorProgress Sets the color of the marks in the

progress part

ColorRemaining Sets the color of the marks in the

remaining part

MajorInterval Sets the interval between major marks

MajorSize Sets the size of the major marks

MarkType Sets the type of marks displayed. Options

are Line or Circle

MinorInterval Sets the interval between minor marks

Offset Sets marks position offset in percentage

Size Sets the size of the marks

Width Sets the width of the marks

Pointer

BorderColor Sets the border color of the pointer

Color Sets the color of the pointer

Offset Sets the pointer position offset in

percentage

PointerType Sets the type of pointer displayed.

Options are Arrow, Circle, Line

Size Sets the size of the pointer

572

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Visible Sets if the pointer is displayed

Width Sets the width of the pointer

ProgressBar

BackgroundColor Sets the background color of the

progressbar

BorderColor Sets the border color of the progressbar

Color Sets the color of the progressbar

Offset Sets the progressbar offset position in

percentage

Size Sets the size of the progressbar

EndAngle Sets the ending angle of the progressbar

for the maximum value

Maximum Sets the maximum value

Minimum Sets the minimum value

StartAngle Sets the starting angle of the progressbar

for the minimum value

Step Sets the step between values in the range

Value Sets the default value

Events for TWebJQXKnob

OnChange Event triggered when the value is changed

573

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXMaskedInput

Description

Below is a list of the most important properties methods and events for TWebJQXMaskedInput.

Represents an input control which uses a mask to distinguish between proper and improper

user input.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXMaskedInput

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

Mask Sets the mask configuration.

574

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

For an integer character from 0 to 9

A For an alpha numeric character from 0 to

9 and from A to Z

L For an alpha character from A to Z

Text Set the default text that is displayed

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXMaskedInput

OnChange Event triggered when the value is changed

575

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXMenu

Description

Below is a list of the most important properties methods and events for TWebJQXMenu.

Represents a menu control with support for sub-menus, it can be displayed vertical, horizontal

or as a popup.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXMenu

ElementClassName Optionally sets the CSS classname when

576

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

Menu Set the TWebMainMenu control associated

with the TWebJQXMenu

Mode Set the display mode. Horizonal, Popup or

Vertical

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXMenu

OnItemClick Event triggered when a menu item is clicked

577

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXNumberInput

Description

Below is a list of the most important properties methods and events for TWebJQXNumberInput.

Represents a control that allows the user to input currency, percentages and any type of

numeric data.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXNumberInput

DecimalDigits Sets the number of available decimal digits

Digits Sets the number of available digits

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

578

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

file

InputMode Sets the input mode to Advanced (input

with numeric mask) or Simple (restricted

user input)

MaxValue Sets the maximum allowed input value

MinValue Sets the minimum allowed input value

ShowSpinButtons Sets if the spin buttons are displayed

SpinButtonsStep Sets the increase/decrease step

Symbol Sets the character to use as currency or

percentage symbol

SymbolPosition Sets the position of the symbol. Left or

Right

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXNumberInput

OnChange Event triggered when the input value is

changed

579

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXProgressBar

Description

Below is a list of the most important properties methods and events for TWebJQXProgressBar.

Represents a control that visually indicates the progress of an operation.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXProgressBar

AnimationDuration Sets the duration of the animation to fill the

progressbar to the value. Set to 0 to disable

animation

ColorRanges

Color Sets the color of the progressbar up to the

value set in the Stop property

Stop Sets the end position for this color

ElementClassName Optionally sets the CSS classname when

580

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

Maximum Sets the maximum value

Minimum Sets the minimum value

Orientation Sets the progressbar orientation to

Horizontal or Vertical

ShowValue Sets if the value is displayed in the

progressbar

Theme Sets the name of the theme that is used to

display the control

Value Sets the value of the progress position

581

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXRangeSelector

Description

Below is a list of the most important properties methods and events for

TWebJQXRangeSelector.

Represents a control that can be used to select a numeric range.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXRangeSelector

Maximum Sets the maximum value of the range

MaximumValue Sets the end value of the selected range

Minimum Sets the minimum value of the range

MinimumValue Sets the start value of the selected range

MajorTicksInterval Sets the interval between major ticks

MinorTicksInterval Sets the interval between minor ticks

MoveOnClick Sets if the range is moved left or right when

the range selector is clicked

Resizable Sets the if the initial range can be resized

by dragging the thumbs

582

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ShowMajorTicks Sets if the major ticks are displayed

ShowMinorTicks Sets if the minor ticks are displayed

ShowMarkers Sets if the markers (thumbs) are displayed

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXRangeSelector

OnChange Event triggered when the range is changed

583

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXRating

Description

Below is a list of the most important properties methods and events for TWebJQXRating.

Represents a control that allows to select a rating.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXRating

ElementClassName Optionally sets the CSS classname when

styling via CSS is used

ElementID Optionally sets the HTML element ID for a

HTML element in the form HTML file the

label needs to be connected with. When

connected, no new control is created but

the Delphi class is connected with the

existing HTML element in the form HTML

file

ItemCount Sets the number or rating items displayed

Value Sets the default value

584

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Events for TWebJQXRating

OnChange Event triggered when the value is changed

TWebJQXResponsivePanel

Description

Below is a list of the most important properties methods and events for

TWebJQXResponsivePanel.

Represents a panel control with a responsive behaviour. The responsive panel collapses when

the browser window (or parent element) width becomes less than a set value and the panel is

then accessible by clicking a button.

Designtime

585

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Runtime

Properties for TWebJQXResponsivePanel

AnimationType Sets the type of animation used when the

panel is opened or closed. Options are

Fade, Slide or None

AutoClose Sets if the panel is automatically closed

when a mouse click occurs outside the

panel (only while the ToggleButton is

visible)

CollapseBreakPoint If the width of the browser window (or

parent element) in pixels is lower than this

value the ToggleButton is displayed,

otherwise the ToggleButton is hidden

Theme Sets the name of the theme that is used to

display the control

ToggleButtonSize Sets the size of the ToggleButton

Methods for TWebJQXResponsivePanel

Refresh Performs a refresh of the control. If the width

of the parent element has changed the

ToggleButton is hidden or displayed based

on the width of the parent element

Events for TWebJQXResponsivePanel

OnClose Event triggered when the panel is closed by

clicking the ToggleButton

OnCollapse Event triggered when the window (or parent

element) width is higher than

CollapseBreakPoint and the ToggleButton is

hidden

OnExpand Event triggered when the window (or parent

element) width is lower than

CollapseBreakPoint and the ToggleButton is

586

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

displayed

OnOpen Event triggered when the panel is opened

by clicking the ToggleButton

TWebJQXSlider

Description

Below is a list of the most important properties methods and events for TWebJQXSlider.

Represents a control that lets the user select from a range of values by moving a thumb along a

track.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXSlider

ButtonsPosition Sets the position of the buttons. Options

are Both (Left and Right), Left, Right. Only

available when ShowRangeSlider is False

587

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Maximum Sets the maximum value of the slider

MaximumValue Sets the maximum selected value when

ShowRangeSlider is True

Minimum Sets the minimum value of the slider

MinimumValue Sets the minimum selected value when

ShowRangeSlider is True

MinorTicksFrequency Sets the frequency of the minor ticks

MinorTicksSize Sets the size of the minor ticks

Mode Sets the mode of the slider. Options are

Default or Fixed. If fixed the

ShowButtons Sets if the buttons are displayed. Only

available when ShowRangeSlider is False

ShowMinorTicks Sets if the minor ticks are displayed along

the slider

ShowRange Sets if the slider range background is

displayed

ShowRangeSlider Sets if the slider is displayed as a range

slider and has 2 thumbs. This allows to

select a minimum and maximum value

ShowTicks Sets if the ticks are displayed along the

slider

Step Set the slider’s increment and decrement

step when the thumb is moved

Template Sets the template used to display the

control. Options are Default, Primary,

Success, Warning, Danger, Info

Theme Sets the name of the theme that is used to

display the control

TickSize Sets the size of the ticks

TicksPosition Sets the position of the ticks. Options are

Both (above and below the slider), Bottom

or Top

Value Sets the default value

Events for TWebJQXSlider

OnChange Event triggered when the value is changed

588

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TWebJQXTabs

Description

Below is a list of the most important properties methods and events for TWebJQXTabs.

TWebJQXTabs is similar to a VCL TPageControl.

Designtime

Runtime

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXTabs

Collapsible Sets if the tab is collapsible by clicking the

selected tab

EnableHover Sets if a hover effect is displayed when

hovering a tab with the mouse cursor

EnableScrollAnimation Sets if animation is used when scrolling

through the tabs

Position Sets the position of the tabs row. Options

are Top and Bottom

589

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Reorder Sets if the tabs can be reordered with drag

and drop

ScrollPosition Sets the position of the scrollbar arrows.

Options are Left, Right and Both

ScrollStep Sets the distance in pixels that is scrolled

with the scroll arrows

SelectionTracker Sets if an animated effect is displayed

when switching between tabs

TabIndex Sets the index of the active tab

ToggleMode Sets the method used to select a tab.

Options are Click, DoubleClick and

MouseEnter

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXTabs

OnSelected Event triggered when a new tab is selected

OnTabClick Event triggered when a tab is clicked

TWebJQXTagCloud

Description

Below is a list of the most important properties methods and events for TWebJQXTagCloud.

Represents a control that displays a collection of pre-defined tags. Each tag has a weight value

which corresponds with the size of the displayed tag. Tags can also be sorted based on weight

or name.

Designtime

Runtime

590

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

HTML template tag

The HTML tag the component can be associated with in an HTML template. Assign the ID

attribute with a unique value and set the identical value to the ElementID property. Detailed

information can be found in the Use of HTML templates topic.

HTML tag <DIV ID=”UniqueID”></DIV>

ElementID UniqueID

Properties for TWebJQXTagCloud

DisplayLimit Sets the maximum number of items

displayed

DisplayTopWeighted When true, the TopWeighted items are

prioritized in the list

DisplayMaxValue Hides items with a value higher than the

maximum value

DisplayMinValue Hides items with a value lower than the

minimum value

Items

Tag Sets the ID of the Tag

TagLabel Sets the label text of the Tag

TagName Sets the name of the Tag

TagValue Sets the value of the Tag

MaxColor Sets the text color of the items with the

highest value. Together with the MinColor

value, tags with will be colored with

gradient colors between MinColor and

MaxColor

MinColor Sets the text color of the items with the

lowest value. Together with the MaxColor

value, tags with will be colored with

gradient colors between MinColor and

MaxColor

MaxFontSize Sets the maximum font size of the items

with the highest value

591

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

MinFontSize Sets the minimum font size of the items

with the lowest value

SortBy Sets how the items are sorted. Options are:

None (original order), Label or Value

SortOrder Sets if the items are ordered ascending or

descending if SortBy is different from None

TextCase Sets the text case of the items. Options are:

Original, UpperCase, LowerCase,

FirstUpper, CamelCase

Theme Sets the name of the theme that is used to

display the control

Events for TWebJQXTagCloud

OnClick Event triggered when a tag is clicked

592

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Connecting to data

As Delphi developers we are used to frameworks and components to take the chore out of

using databases. Ever since Delphi 1, database handling was abstracted by the TDataSet &

TDataSource. Wouldn't it be nice (and mainly productive as this is what is important after all) if

this exact abstraction model allowed us to create web applications consuming data? Exactly

that goal is what we wanted to achieve with TMS WEB Core, only technically under the hood

things are RADically different from the implementation of Delphi 1 like datasets and

datasources. So, with TMS WEB Core, you have your DB-aware edit, label, combobox,

datepicker etc... and these can be hooked up to a datasource and a datafield can be specified.

The dataset though is in this case a wrapper component that will under the hood do its work

getting data or updating data via the use of REST HTTP calls to microservices exposed on a

data server. As our TMS XData product already provided exactly that: exposing your databases

via REST HTTP calls, we extended it to have a web XData client component so you can from

Delphi, create a web application against an XData client and hook up your DB-aware

components to an XData dataset, pretty much the same way as you can for VCL or FMX native

client applications.

For the sake of demo purposes, we have created a first sample app with a web client dataset.

This web client dataset gets its data in JSON format from a server via a HTTP REST call. This

allows to view and edit the data in the web client dataset but won't do updates server side so

that it isn't possible to 'fiddle' with the data and break the sample this way.

Here you can see a form editing contact info with several DB-aware controls, including a DB-

navigator.

593

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

When the dataset is connected to the server, the DB-aware controls display and can edit the

data.

594

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

For viewing data, TMS WEB Core comes with following built-in components:

TWebClientConnection, TWebClientDataSet, TWebDataSource.

Drop the components on the form and assign the WebClientConnection instance to

WebClientDataSet.Connection and assign the WebClientDataSet to WebDataSource.

The data will be retrieved via a HTTP GET request in JSON format. To fill the client dataset, it is

expected that the JSON consists of a JSON array or a JSON array under a specific node in the

595

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

JSON HTTP response.

Specify the URL where the HTTP GET retrieves the JSON data via WebClientConnection.URI.

When the JSON array is under a specific node, specify this with

WebClientConnection.DataNode: string;

As JSON as such does not come with meta-data, it will be needed to setup the DB fields

expected in the JSON array. Add these as new fields to the dataset via the “Fields Editor” or

select “Fetch fields” from the design-time editor of the WebClientDataSet:

When a WebClientConnection is assigned to the WebClientDataSet and an URL is specified,

the IDE will perform a HTTP request and interpret the retrieved JSON and add the DB fields

found.

For example, for this sample JSON data at URL: https://jsonplaceholder.typicode.com/posts

the result is:

https://jsonplaceholder.typicode.com/posts

596

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

After this, we can simply choose from the dataset fields editor “Add all fields” and all fields

available in the JSON data will be available for our DB-aware controls:

After setting WebClientConnection.Active = true, the WebClientConnection performs a HTTP

GET request on the URL to fetch the JSON data. This is an asynchronous process. When this is

ready, the OnAfterConnect event is triggered. When this event is triggered, all data was loaded

into the connected WebClientDataSet and the data is ready for use. When

WebClientConnection.AutoOpenDataSet = true, the WebClientConnection will automatically

open the dataset after this, making it ready to put data in connected DB-aware controls. A

typical flow to connect to data, fetch it and then using the dataset directly from code is:

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 // start the asynchronous process to perform a HTTP GET request to retrieve the data

 WebClientConnection1.Active := true;

end;

procedure TForm1.WebClientConnection1AfterConnect(Sender: TObject);

begin

 // Data was retrieved in OnAfterConnect, dataset was automatically opened by the

 // WebClientConnection and ready for use

 WebClientDataSet1.First;

 while not WebClientDataSet1.Eof do

 begin

 WebListbox1.Items.Add(WebClientDataSet1.FieldByName('email').AsString);

 WebClientDataSet1.Next;

 end;

end;

Connecting to a TMS XData based server is one possible way to hook up to databases. Please

refer to the TMS XData documentation for information how you can connect to TMS XData

exposed databases from a TMS WEB Core application.

You can implement your own interfaces to a database server via REST HTTP calls and over-

time we plan to create and offer connectors to such server as Embarcadero RAD server,

Google Cloud datastore and several others...

597

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Using WebSockets

TMS WEB Core promises easy, fast and RAD component based web application development.

For fast, real-time updates on a web page with light-weight server-communications,

WebSockets are an ideal mechanism.

That is why TMS WEB Core also comes with a WebSocket client:

This is a non-visual component that makes it very easy to start using WebSocket based

communication. Drop this component on the form, configure the WebSocket hostname & port

and call WebSocketClient.Connect. When a connection is established, the OnConnect event is

triggered. From the moment of connection, data sent by the WebSocket server is received via

the event OnDataReceived. The signature of this event is:

procedure OnDataReceived(Sender: TObject; Origin: string; Data:

TJSObject);

Origin is the WebSocket server sending the data and the data itself is sent as a JavaScript

Object. This means it can be different types. Sending data is equally easy. Simply call

WebSocketClient1.Send(AMessage: String);

To create an online chat application using this WebSocket technology takes only a few

configurations in the component to configure the WebSocket server and a couple of lines of

code. There is the logic that performs the Connect & Disconnect:

procedure TWebForm1.Connect;

begin

 if FConnected then

 begin

 WebSocketClient1.Disconnect;

 end

 else

 begin

 if WebEdit1.Text = '' then

 ShowMessage('Please enter a name first')

 else

 WebSocketClient1.Connect;

598

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 end;

end;

To send a message when connected, we simply send the message as color/sender/message

pair via the WebSocketClient.Send() function. Each chat user can choose a color and

messages from the user are displayed in his selected color:

procedure TWebForm1.SendMessage;

var

 s: string;

begin

 if FConnected and (WebEdit2.Text <> '') then

 begin

 s := TTMSFNCGraphics.ColorToHTML(TMSFNCColorPicker1.SelectedColor)

+ '~' + WebEdit1.Text + '~' + WebEdit2.Text;

 // limit message length

 s := Copy(s,1,256);

 WebSocketClient1.Send(s);

 WebEdit2.Text := '';

 end;

end;

To display the message, we use the web-enabled TTMSFNCListBox component from the TMS

FNC UI Pack. With this control we can show the received messages in listbox items with

banding and some HTML formatting per item to indicate the sender and the message. The

message is received via WebSocketClient.OnDataReceived as text and therefore we can use

Data.toString to get the JavaScript object as text:

procedure TWebForm1.WebSocketClient1DataReceived(Sender: TObject;

Origin: string;

 Data: TJSObject);

var

 it: TTMSFNCListBoxItem;

 sl: TStringList;

 s: String;

 n: string;

 c: TTMSFNCGraphicsColor;

 v: string;

begin

 it := lst.Items.Add;

 s := Data.toString;

599

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 sl := TStringList.Create;

 try

 TTMSFNCUtils.Split('~', s, sl);

 if sl.Count > 2 then

 begin

 c := TTMSFNCGraphics.HTMLToColor(sl[0]);

 n := ''+sl[1]+'';

 v := sl[2];

 it.Text := n + ' says:
 ' + v;

 it.TextColor := c;

 end;

 finally

 sl.Free;

 end;

end;

There isn't much more to creating a chat application for your TMS WEB Core applications

except of course to put a WebSocket server application on your server that can equally be

written with Delphi. See the TMS WEB Core demos for a sample WebSocket server service

application.

600

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core chat client application running in the Chrome browser

601

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Core chat client application running in the Safari browser on iPhone

602

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

IndexedDB

IndexedDB is a NoSQL database that allows a web application to store anything persistently in

the user’s browser. Significant amount of structured data can be stored on the client-side

including files and blobs. In addition, it provides indexes for fast searching of this data.

Each IndexedDB database is unique to a domain or subdomain. It can not be accessed by any

other domain.IndexedDB is available in the latest releases of all browsers supported by TMS

WEB Core.

TMS WEB Core IndexedDB Library
TMS WEB Core IndexedDB Library provides two ways to create and use IndexedDB databases.

TIndexedDbClientDataset Component

The component TIndexedDbClientDataset makes it easy for a Delphi web application to create

and use IndexedDB databases by a familiar syntax of using ClientDataSet. It also allows a

seamless integration of an IndexedDB database with data-aware components like

TWebDBGrid. All the database operations, including the creation of fields can be done in the

standard Delphi way through the TIndexedDbClientDataset component.

Internally, the TIndexedDbClientDataset component uses TIndexedDb class described below to

provide this seamless integration thus hiding all the complexity of dealing with asynchronous

IndexedDB operations and their responses.

TIndexedDb class

A Delphi web application can also use the class TIndexedDb to directly create and use

IndexedDB databases. The original IndexedDB API is low-level and asynchronous. The class

TIndexedDb provdies easier methods to perform IndexedDB operations where the results are

communicated to the specified Delphi event procedures of the application. However, the use of

this class needs a basic knowledge of using JavaScript objects, arrays (Pas2Js syntax) and

coding Delphi events without using design time aids.

Your first IndexedDB application

Create a TMS web application

Create a standard TMS Web Application in the Delphi IDE by choosing File, New, Other, TMS

Web Application. A new web form is created.

603

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Set up the IndexedDB Client Data Set component
Go to the Tool Palette and select the TWebIndexedDbClientDataset component from the “TMS

Web Data Access” section and drop it on the web form.

Specify the IndexedDB Database Properties

Set up the properties of the IndexedDB database in the Object Insector as given below: 1.

IDBDatabaseName: NotesDB 2. IDBObjectStoreName: “Notes” 3. IDBKeyFieldName: “id” 4.

IDBAutoIncrement: true (default)

This tells the component to use the object store “Notes” in the database “NotesDB.” The primary

key field for the object store is specified as “id” which is set up as an auto increment key. The

component is smart enough to create the database if it doesn’t exist.

Create the Fields or Properties of each object in the Object Store

The fields of the object store need to be set up in the WebFormCreate event code. In the Object

Inspector, double-click on OnCreate event of the Web Form. This creates an event handler

procedure WebFormCreate. Type the following code in it that sets up the fields and then makes

604

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

the DataSet active.

 WebIndexedDbClientDataset1.FieldDefs.Clear;

 WebIndexedDbClientDataset1.FieldDefs.Add('id',ftInteger);

 WebIndexedDbClientDataset1.FieldDefs.Add('note',ftString);

 WebIndexedDbClientDataset1.FieldDefs.Add('date',ftDate);

 WebIndexedDbClientDataset1.Active := True;

Note that special attention is required when using multiple tables in the same IndexedDB

database. Due to the asynchronous nature, create a new table and activating it is not happening

synchronously. This implies that when creating and activating multiple (new) tables, this needs

to be done after each other. For this reason, the IndexedDBClientDataSet.Init method with

anonymous method parameter or OnInitSuccess event is provided. Here the dataset can be

easily asynchronously activated after initialization and the initialization of multiple tables can be

done after each other.

Here is example code initializing a single IndexedDB database with two different tables used by

two different datasets:

procedure TMyForm.WebFormCreate(Sender: TObject);

begin

 userds.FieldDefs.Clear;

 userds.FieldDefs.Add('id',ftInteger, 0, true, 3);

 userds.FieldDefs.Add('username',ftString);

 userds.FieldDefs.Add('city',ftString);

 userds.FieldDefs.Add('country',ftString);

 orderds.FieldDefs.Clear;

 orderds.FieldDefs.Add('id',ftInteger, 0, true, 3);

 orderds.FieldDefs.Add('product',ftString);

 orderds.FieldDefs.Add('quantity',ftInteger);

 orderds.FieldDefs.Add('price',ftFloat);

end;

procedure TMyForm.WebFormShow(Sender: TObject);

begin

 userds.Init(

 procedure

 begin

 orderds.Init(

 procedure

 begin

605

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 Userds.Active := true;

 Orderds.Active := true;

 end

)

 end

);

end;

Add DB-aware components that connect to the DataSet

Now select and drop a TWebDataSource, TWebDBGrid and TWebDBNavigator components on

the Web Form.

Set up the DataSource and Data components

Set the DataSource’s DataSet property to WebIndexedDbClientDataset1. Then set the

DataSource property of the grid and navigator to point to TWebDataSource1.

Set up the Columns of the DBGrid

Do that by clicking on the Columns properties of the DBGrid as shown in the picture.

Set up a New Record event

There is one last thing to do. Since we will be adding New Records or Objects with the DB

Navigator, we need to set up the default values of the record. For this, we set up an

OnNewRecord event procedure for the IndexedDB Client Data Set in the Object Inspector and

type the following code in it.

procedure TForm1.NewRecord(DataSet: TDataSet);

begin

 DataSet.FieldByName('note').AsString := 'New Note';

 DataSet.FieldByName('date').AsDateTime := Today;

end;

Run the Web Application

Now you can build and run the application. First time, the IndexedDB Client DataSet component

will automatically create the database as it doesn’t exist. The DB Grid will appear empty as

there are no records. Try adding new records with the Navigator and see how it goes.

Managing the IndexedDB Database

In Chrome, start Developer Tools and then select Application. Then see IndexedDB under

Storage section. You will see the NotesDB database in it. Here, you can browse through the

records and do other operations. For instance, if you change the fields of the database, you can

606

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

delete the database itself so that it is recreated with the new fields when you run the application

again.

Todo List Demo
Please find this demo in the folder Demos. It shows more advanced usage of using the

IndexedDB through the IndexedDbClientDataSet.

Additional features in this Demo

Creating a Permanent Index on a Field

We want to be able to sort on any column of the DB Grid by clicking on the header of the

column. So we need to be able to read all the records in the order of that field. For this, we need

to create permanent indexes on those fields in IndexedDB. The following code in

WebFormCreate event takes care of it.

 IndexedDBClientDataSet.AddIDBIndex('ByDate', 'due_date');

 IndexedDBClientDataSet.AddIDBIndex('ByStatus', 'status');

 IndexedDBClientDataSet.AddIDBIndex('ByDescr', 'descr');

 IndexedDBClientDataSet.IDBActiveIndex := 'ByDate';

607

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The first parameter to AddIDBIndex call is the name that we want to give to an index. The

second parameter is the field name. Third parameter is a Boolean specifying isUnique which is

OFF by default. Since the fields can contain repeated values, we leave isUnique at default.

In order to read the objects in the order of an index, we need to use a code like this:

 IndexedDBClientDataSet.IDBActiveIndex := 'ByDate';

 IndexedDBClientDataSet.IDBIndexDescending := False;

 IndexedDBClientDataSet.Refresh;

The property IDBActiveIndex specifies the objects to be read in the order of ‘ByDate’ index.

Further, the IDBIndexDescending specifies whether the order is Descending or not. The Demo

uses this kind of code on the Column Click event of the DB Grid to rekiad it in the desired order.

The actual reload is done by the Refresh call.

This Demo also shows an example of connecting Data components like CheckBox or a Memo

to the database so that those fields can be edited in the current record. After editing, a call to

Update from the update button takes care of committing the changes to the IndexedDB.

Similarly the Demo has examples of Inserting a new record and Deleting the current record by

respective calls.

TWebIndexedDbClientDataSet

Description

The component TIndexedDbClientDataset makes it easy for a Delphi web application to create

and use IndexedDB databases by a familiar syntax of using ClientDataSet. It allows a seamless

integration of an IndexedDB database with data-aware components like TWebDBGrid. All the

database operations, including the creation of fields can be done in the standard Delphi way

through the TIndexedDbClientDataset component.

All you need to do is specify the IndexedDB database properties and add the fielddefs by code

in a standard Delphi syntax. Then connect a DataSource and Data components to it and it starts

working. It even creates the database if it doesn’t exist.

Below is a list of the most important properties and methods of TWebIndexedDbClientDataSet

component.

Properties of TWebIndexedDbClientDataSet

Property Description

Active Set this to True to activate the ClientDataSet.

The IndexedDB database specified by IDB*

properties is automatically created if it doesn’t

exist.

IDBActiveIndex Set the name of the index to be made active.

608

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Once this is done, on next Refresh or Active,

the ClientDataSet loads the objects in the

order of the active index.

IDBAutoIncrement Set a True or False value to indicate that the

primary key field is auto incremented (default

True)

IDBDatabaseName Set the name of the database

IDBIndexDescending Set a True value to indicate descending order

of the active index

IDBKeyFieldName Set the name of the primary key field

IDBObjectStoreName Set the name of the ObjectStore in the

database

OnIDBError This is an event property to get notified of any

errors. The event can be set up at design time

in Object Inspector by double-clicking on it.

OnIDBAfterUpdate This event is triggered after an asynchronous

IndexedDB operation was successfully

executed.

Methods of TWebIndexedDbClientDataSet
Only methods specific to IndexedDB are listed. Other methods from the base ClientDataSet

class continue to work as before.

Refresh

procedure Refresh;

Refresh reloads all the objects from the IndexedDB database. If an IDBActiveIndex has been

specified, the objects are loaded in the order of that index. In addition, the current record pointer

is restored after the Reload.

AddIDBIndex

Use AddIDBIndex to add one or more permanent indexes to the IndexedDB database. Make

these calls before you make the component active. The index will be added only if the database

does not exist and the component creates it. The call is ignored for an existing database.

procedure AddIDBIndex(

 anIndexName: String;

 fields: String;

 isUnique: Boolean=False);

609

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Where

• anIndexName - the name to be given to the index

• fields - the field name on which index is to be built. To specify more than one field

names, separate the names with semicolons

• isUnique - Specify whether the field value is unique in each object (row)

Notes:

• The call is ignored for an existing database.

• Use the properties IDBActiveIndex and IDBIndexDescending to activate an index for

data loading.

TIndexedDb (Advanced Use)
A Delphi web application can use the class TIndexedDb to directly create and use IndexedDB

databases.

Using this class needs a knowledge of Pas2Js classes TJSArray, TJSObject and their basic

syntax in Delphi Pascal. We will try to describe them briefly in “Understanding how the data is

stored and retrieved.” But you may skip the rest of this document if you are not interested in a

low-level direct access to IndexedDB API.

Description
The original IndexedDB API is low-level and asynchronous. The class TIndexedDb provdies a

simpler interface with methods to perform IndexedDB operations where the results are

communicated to the specified Delphi event procedures of the application.

When several operations are issued simultaneously where the same event procedure of the

application gets the response, the application may want to identify the exact operation that was

completed. For this purpose, the library provides a way for the application to pass custom data

that comes back with the response and helps the application associate a response with an

operation.

Below is a list of the most important properties methods and events of TIndexedDb class.

Properties

Property Description

ActiveIndex Set the name of the index to be made active. Once this is done,the

method GetAllObjsByIndex returns all objects in the order of the

active index

AutoIncrement Set a True or False value to indicate that the primary key field is

auto incremented

DatabaseName Read Only property, get the Database Name

IndexDescending Set a True value to indicate descending order of the active index

KeyFieldName Read Only property, get the Primary Key Field Name

610

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ObjectStoreName Read Only property, get the Object Store Name

Methods and Events of TIndexedDb
The methods and events are listed in their logical order so that they are easier to understand.

This is so because IndexedDB only supports asynchronous operation. For each call, there is an

event in which the resposne comes. Hence, describing the events along with the methods

makes more sense.

Create and Destroy

These are the standard Delphi methods.

 constructor Create(AOwner: TComponent);

 destructor Destroy;

Open or Create an IndexedDB database

Open an IndexedDB database. The database is created if it doesn’t exist.

procedure Open(

 aDbName: String;

 objectStoreNameToCreate: String;

 KeyFieldName: String = '';

 autoIncrement: Boolean = False;

 sequenceID: Integer = 0);

Where

• aDbName - the database name

• objectStoreName - the object store name

• KeyFieldName - the primary key field name. If non-empty, it means an in-line key

otherwise an out-of-line key. These terms are described in the section “Understanding

how the data is stored and retrieved” below.

• autoIncrement - Specify whether the primary key field is AutoIncrement. This works for

a new database only. For an existing database, it is ignored and if different a warning is

shown

• sequenceID - This is an optional ID to be passed to identify the response of this open in

case multiple opens are issued simultaneously.

OnResult: Response Event of all methods like Open that perform operations on

IndexedDB

Before calling open, you need to setup the OnResult event property to point to an event

procedure. The same event gets responses of other operations too.

611

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Format of the event procedure for OnResult:

procedure DoOnResult

 (success: Boolean;

 opCode: TIndexedDbOpCode;

 data: JSValue;

 sequenceId: JSValue;

 errorName: String;

 errorMsg: String);

where

• success - indicates a True or False
• opCode - helps identify the operation. Can be one of the following opcodes: opOpen,

opAdd, opPut, opDelete, opGet, opGetAllKeys, opGetAllObjs, opGetAllIndexKeys,
opGetAllObjsByIndex.

• data - The data is sent back in the event for all the operations except for Open, Put or
Delete. The data type of the parameter is JSValue. Depending on the operation, you
need to cast it to proper data that you are expecting. This is further explained in the
description of each operations later.

• sequenceId - Id from the original call in order to identify the response in case of multiple
operations of the same type issued simultaneously. Note that this is also of the type
JSValue. So it is upto the application to send any kind of information to identify an
operation. For example, it can even send a JS Object in place of sequence id having
more information than just an Id number.

• errorName - If you see the documentation of any operation in the original IndexedDB
docs, you will the errors mentioned under an error name. That name is passed here in
case you want to code some logic based on a particular error.

• errorMsg - error messa ge if success is False

After the success of an open, the application may decide to issue other operations like add, get,

etc.

Understanding how the data is stored and retrieved

Before discussing the Add, Get and other procedures that add or get data, we need to

understand how the Data is stored and retrieved in IndexedDB.

IndexedDB is a NoSQL, object database. In a relational database, a table stores a collection of

rows. In IndexedDB, an ObjectStore stores a collection of JavaScript objects.

A brief introduction to a JavaScript Object

A JavaScript or JS object is a collection of named values. We will call these “properties” in

further discussion. If you know OOP terms, a JS object is equivalent to a dictionary or map. You

612

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

can have any number of properties representing “fields” of data. Further, there can be nested

objects. So the value of a property can be a JS object and so on to any level deep.

In TMS Web Core, you can create a JS object with a syntax similar to the following:

var

 aDataObj: TJSObject;

begin

 aDataObj := TJSObject.New;

 aDataObj['name'] := 'John';

 aDataObj['age'] := 44;

The above code creates a JS object with 2 properties.

Objects are stored by unique Primary Key

In IndexedDB, a JS object is stored and accessed by a primary key that is unique.

You need to specify a primary key at the time of creating an ObjectStore in IndexedDB. This

was the parameter KeyFieldName described above for the Open procedure.

There are 2 types of primary keys in IndexedDb.

In-line key specification

When you pass a non-empty KeyFieldName to Open, it is an in-line key specification. The term

“in-line” means the JS Object itself contains the primary key property by that name.

EXAMPLE: Suppose you pass KeyFieldName as ‘id’ to the Open procedure that creates the

ObjectStore. Then it means that when calling an Add procedure, you should pass the data as a

JS Object that contains a property by the name ‘id’ having a unique key value. You are

responsible for putting that property value in the JS Object before passing it to the Add

procedure.

Exception: The only exception is if you also specified AutoIncrement primary key for the

ObjectStore when creating it with Open. In that case, you need not add the key property.

IndexedDB fills it after adding the object by using its internal key generator.

Note that the TIndexedDbClientDataset component described earlier internally uses an in-line

key.

Out-of-line key specification

If you pass an empty string as KeyFieldName property to the Open procedure, it means the

ObjectStore is created with an out-of-line key. This means that the JS Object does not have an

implicit (in-line) key property. Rather, you are supposed to pass a unique primary key value as a

separate parameter (out-of-line) to Add procedure when adding data.

What is the use of out-of-line keys? You can have the data as any JS data type. In in-line keys,

the data must be a JS Object. In out-of-line keys, the data can be anything, for instance, an

613

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

integer or a string. For example, a simple picture application might use an out-of-line primary

key as the name of a picture file and the data as the “binary” stream of the picture.

Methods to Add Data

AddData method

 procedure AddData(

 data: JSValue;

 sequenceID: JSValue = 0);

Data parameter

• Database created with in-line key and AutoIncrement - Pass a JS Data Object. After the

Add completes a key property will be created with the key value generated internally.

• Database created with in-line key and non-AutoIncrement - Pass a JS Data Object that

must contain the key as a property having a unique value.

• Database created with out-of-line key and AutoIncrement - Pass any kind of data, even

primitive data types are possible.

• Database created with out-of-line key and non-AutoIncrement - You can not use this

method in this case. Use PutData method described below.

sequenceID parameter - Optional. Pass any value or object that will help you identify a

particular add operation out of many in the OnResult event. Or, you can also pass any data as

sequenceID that will help in processing the outcome in OnResult event.

What comes back in OnResult data

The key value that was generated in case of AutoIncrement comes back as data parameter of

the event procedure.

PutData method

 procedure PutData(

 akey: JSValue;

 data: JSValue;

 sequenceID: JSValue = 0);

Use this method only if the database was created with out-of-line key specification.

Parameters

• aKey - For Add operation, you must pass a unique key value. For Modify, pass the value
of an existing key.

614

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

• data - Pass any kind of data, even primitive data types can be passed.

• sequenceID - Optional. Pass any value or object that will help you identify a particular
PutData operation out of many in the OnResult event. Or, you can also pass any data as
sequenceID that will help in processing the outcome in OnResult event.

Methods to Modify or Update Data

PutData method

There are 2 variations of this method. One is already described above for out-of-line key

specification. When you pass an existing key value to that PutData, it acts as a Modify

operation.

The second variation is without a key.

 procedure PutData(

 data: JSValue;

 sequenceID: JSValue = 0);

Use this method only if the database was created with in-line key specification. In this case, the

data must be a JS Data Object and an existing key value must be passed as a key property to

modify that object or record.

DeleteData method

 procedure DeleteData(

 akey: JSValue;

 sequenceID: JSValue = 0);

Pass the key of the object to be deleted. The sequenceID has same meaning as in earlier

methods.

Methods to Get Data

GetData method

 procedure GetData(

 akey: JSValue;

 sequenceID: JSValue = 0);

Pass the key of the object to fetch. The object comes back as data in OnResult response event.

The sequenceID has same meaning as in earlier methods.

GetKeys method

615

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 procedure GetKeys(

 sequenceID: JSValue = 0);

The data that comes back in the OnResult response event is a JS Array containing all the keys

in natural order. The sequenceID has same meaning as in earlier methods.

GetAllObjs method

 procedure GetAllObjs(

 sequenceID: JSValue = 0);

The data that comes back in the OnResult response event is a JS Array containing all the data

objects or items in natural order. The sequenceID has same meaning as in earlier methods.

Methods to Get Data by an Index

How permanent indexes are created in IndexedDB is described in the next section. Here, you

will find a description of the methods that get data in the order of a particular index.

GetIndexData method

 procedure GetIndexData(

 indexPropertyName: String;

 akey: JSValue;

 sequenceID: JSValue = 0);

This is similar to the GetData method described earlier except that you also pass the name of

an index to use and pass the key as the field value used in that index to fetch the data.

GetIndexKeys method

 procedure GetIndexKeys(

 indexPropertyName: String;

 sequenceID: JSValue = 0);

This is similar to the GetIndexKeys method described earlier except that you also pass the

name of an index for which you want to get a list of keys.

GetAllObjsByIndex method

 procedure GetAllObjsByIndex(

 sequenceID: JSValue = 0);

616

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

This method is the most useful that is used by ClientDataSet to load the data. It is similar to

GetAllObjs described earlier. But it uses the value of 2 properties of the class to determine the

index and the order of the objects returned:

• ActiveIndex - Set this to the index name to use for the order of objects. If this is set to
empty string (default), the objects are returned in the order of the primary key index.

• IndexDescending - Set this to False (default) to get the objects in ascending order. Set
to True to get them in Descending order.

Setting up the Indexes

AddIndex

Use AddIndex to add one or more permanent indexes to the IndexedDB database. Make these

calls before you open the database. The index will be added only if the database does not exist

and hence is created on open. The AddIndex call is ignored for an existing database.

procedure AddIndex(

 anIndexName: String;

 fields: String;

 isUnique: Boolean=False);

Where

• anIndexName - the name to be given to the index

• fields - the field name on which index is to be built. To specify more than one field

names, separate the names with semicolons

• isUnique - Specify whether the field value is unique in each object (row)

Notes:

The call is ignored for an existing database.

Using indexes

This is described earlier under “Methods to Get Data by an Index”. There are two types of

methods.

• Methods that require Index Name as a parameter. These are GetIndexData and

GetIndexKeys.

• Methods that use the properties ActiveIndex and IndexDescending to work accodring to

an index. Currently there is only one such method, GetAllObjsByIndex. However, these

properties are also mapped to the TIndexedDbClientDataset component for easy use of

indexes when loading data internally by using GetAllObjsByIndex.

617

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Handling Asynchronous behavior of IndexedDB

If you do a Modify, Delete or Insert, there is a new event that if assigned gets a notification after

it completes.

It is ONIDBAfterUpdate and the signature is as follows.

 TKeyId = record

 value: JSValue;

 end;

 TIDBAfterUpdateEvent = procedure(success: Boolean; opCode:

TIndexedDbOpCode; keyId: TKeyId; errorName, errorMsg: String) of

object;

Opcode specifies a modify, insert or delete enum. KeyId is the key of the new or modified record

in case you want to use it.

Here is a sample code that adds 5 records on a button press.

var

 addNum: Integer = 1;

 countAdded: Integer = 0;

procedure TForm1.btAddMultipleRecordsClick(Sender: TObject);

begin

 countAdded := 0;

 IndexedDBClientDataSet.ONIDBAfterUpdate := DoAfterInsert;

 IndexedDBClientDataSet.Insert;

 IndexedDBClientDataSet.FieldByName('descr').AsString := Format('Task

%d',[addNum]);

 IndexedDBClientDataSet.FieldByName('status').AsString :=

cbTaskStatus.Text;

 IndexedDBClientDataSet.FieldByName('due_date').AsDateTime :=

pickTaskDate.Date;

 IndexedDBClientDataSet.Post;

end;

procedure TForm1.DoAfterInsert(success: Boolean;

618

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 opCode: TIndexedDbOpCode; keyId: TKeyId; errorName, errorMsg:

string);

begin

 if not Success then

 begin

 ShowMessage('Error: '+ errorMsg);

 IndexedDBClientDataSet.ONIDBAfterUpdate := nil;

 Exit;

 end;

 // Do something with ID added if needed

 Console.log(Format('Id of the new record: %d',

[integer(keyId.value)]));

 Inc(countAdded);

 // Add next record

 if countAdded = 5 then

 begin

 ShowMessage('5 records added successfully.');

 IndexedDBClientDataSet.ONIDBAfterUpdate := nil;

 Exit;

 end;

 Inc(addNum);

 IndexedDBClientDataSet.Insert;

 IndexedDBClientDataSet.FieldByName('descr').AsString := Format('Task

%d',[addNum]);

 IndexedDBClientDataSet.FieldByName('status').AsString :=

cbTaskStatus.Text;

 IndexedDBClientDataSet.FieldByName('due_date').AsDateTime :=

pickTaskDate.Date;

 IndexedDBClientDataSet.Post;

end;

619

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Electron

Electron is an open source library for creating cross-platform desktop applications with HTML,

CSS, and JavaScript. Combined with TMS WEB Core, Delphi developers can also create

applications for Windows, macOS and Linux by writing the code only once. More information on

Electron can be found on the offical website: https://electronjs.org/

The minimum required Electron version is: 8.0.0. If you already have Electron installed but the

version is lower than 8.0.0, then the minimum required version will be installed globally. If a

project needs a specific lower version, please install it locally.

Your first TMS Web Electron Application

To create a new Electron application from TMS WEB Core, select the “TMS Web Electron

Application” from the wizard:

https://electronjs.org/

620

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

It generates a project similar to a TMS Web PWA Application, but instead of the manifest and

serviceworker files, it has generated a main javascript file, a package file and 3 icons for the

different platforms:

To every Electron application the package.json is the starting point. This is where the engine will

search for the main javascript file that it can run. Both the default generated package.json and

main.js are capable of creating, running and packaging an application, but they can be further

customized by editing them.

The icon files can be changed through the project options:

621

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

When Electron: Version is not specified, the default Electron packager version installed on the

machine is used. If you have multiple different Electron packager versions installed on the

machine, you can specify here at project level what Electron packager version to use. As there

have been quite a few breaking changes between versions before Electron 6 and from Electron

6, a compiler define that you can use in your application code was introduced:

{$IFDEF ELECTRON6UP}

You can now develop your application like you would normally do with a TMS Web Application.

622

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Building the application

In Debug mode, pressing F9 will compile the source code, then start up the Electron engine and

launch the application.

There are however small differences between the available 6 Build modes.

• Build-Win32/Build-Win64 will create a packaged 32/64-bit Windows application. If F9

was pressed for building, then it will launch the application after packaging it.

• Build-Linux32/Build-Linux64 will create a packaged 32/64-bit Linux application. After

copying the application to a Linux machine, it can be run.

623

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

• Build-Mac32/Build-Mac64 currently only copies the source files to the Build folder,

because it’s not possible to create a packaged macOS application on a Windows

machine. The application can be created by copying the source code and

running electron-packager on the Mac.

Building on a Mac

If you are unfamiliar with macOS in general and you have no idea how to start with building, you

can follow these steps:

Prepare the system by installing NodeJS.

Use npm in the terminal to install electron-packager.

//for global installation:

npm install electron-packager -g

//for local installation:

npm install electron-packager

Navigate to the folder where the source code is, then from the terminal, run the following

command:

npm run build-mac64

This produced a packaged application that can run on your Mac. It’s recommended to sign the

application if it’s for distribution. More information about that can be found

here: https://electronjs.org/docs/tutorial/code-signing

Migrate your application to newer versions

With WEB Core v1.4 we had to introduce changes that are not backwards compatible

due to changes in the Electron framework. Below you will find a few steps to help you

get started with migrating your application.

Replace the main.js file

This is required for every project! The new code depends on the new main.js file. If you

wish to work on a project that was created under previous versions, you will first need to

replace the main.js. If you modified the main.js then you need to copy your code to the

new main.js file as well.

Dialog callbacks

The dialogs now require callbacks if you want to return any results and not just show a

message. Here are two code snippets to show you the file opening:

https://github.com/electron-userland/electron-packager
https://nodejs.org/en/
https://github.com/electron-userland/electron-packager
https://electronjs.org/docs/tutorial/code-signing

624

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Before WEB Core v1.4:
procedure TForm1.WebButton1Click(Sender: TObject);

var

 sl: TElectronStringList;

begin

 if ElectronOpenDialog1.Execute then

 begin

 sl := TElectronStringList.Create;

 sl.LoadFromFile(ElectronOpenDialog1.FileName);

 Meditor.Lines.Assign(sl);

 sl.Free;

 end;

end;

From WEB Core v1.4:
procedure TForm1.OpenDialogCallback(FileNames: TJSElectronStringDynArray);

var

 sl: TElectronStringList;

begin

 if Length(FileNames) > 0 then

 begin

 sl := TElectronStringList.Create;

 try

 sl.LoadFromFile(FileNames[0]);

 MEditor.Lines.Assign(sl);

 finally

 sl.Free;

 end;

 end;

end;

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 ElectronOpenDialog1.Execute(@OpenDialogCallback);

end;

Remove the Sender parameter from TElectronIPCCommunication.OnMessage

The Sender parameter allowed you in the past to send a message directly back to the

sender. Unfortunately with the removal of the remote module we don't have access to

the BrowserWindow object from the renderer processes anymore.

Remove TElectronIPCMain related codes

TElectronIPCMain had to be removed from our code because it was also depending on

the remote module. If you need something from the main process, you need to send a

625

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

message from the IPCRenderer and handle the request and response yourself. You can

see quite a few examples of this in our source code.

Accessing the Developer Tools

When the application is deployed in Debug mode Electron adds a default menubar to the

application if a TElectronMainMenu has not been added to the main form. The Developer Tools

can be accessed with View > Toggle Developer Tools or via the Ctrl+Shift+I shortcut. This might

be enough if something occasionally needs to be checked.

To force any window to have the Developer Tools opened after the given window is shown, use

the following code in the form’s OnCreate event:

ElectronWindow.OpenDevTools;

Drag and drop

Electron provides support for drag and drop functionality. There’s a difference between dragging

into and dragging out of an application.

In both cases the dragging needs be detected by an event, but at this moment these events for

TMS Web components are not yet completed. Until then with some simple javascript, the

dragging event detection can be handled.

From desktop to Electron

Dragging something into the application is actually a feature that is supported by HTML5.

Normally the full file path would not be accessable due to a security feature. Electron removes

this limitation as Electron applications are meant to run on a desktop using native features of the

operating system.

procedure TForm1.WebFormCreate(Sender: TObject);

type

 TDropProc = reference to procedure(ElectronFL: TJSElectronFileList);

var

 el: TJSHTMLElement;

 LDropProc: TDropProc;

begin

 el := WebMemo1.ElementHandle;

 LDropProc := @HandleFileDragDrop;

 asm

 el.ondragover = (e) => {

 e.preventDefault();

 };

 el.ondrop = (e) => {

 e.preventDefault();

 let efl = e.dataTransfer.files;

 LDropProc(efl);

626

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 }

 end;

end;

procedure TForm1.HandleFileDragDrop(ElectronFL: TJSElectronFileList);

var

 esl: TElectronStringList;

 ef: TJSElectronFile;

begin

 esl := TElectronStringList.Create;

 ef := ElectronFL[0]; //use the first file in case of multiple files

 esl.LoadFromFile(ef.path);

 WebMemo1.Lines.Assign(esl);

 esl.Free;

end;

From Electron to desktop
Dragging something out of an Electron application is supported, but the file must already exist

on the local file system. If the file does not exist, it’s up to the developer to create it on the fly

based on the contents from the application. If the file is present, then it takes two steps to drag

something:

1. Send a message in the drag start handler via TElectronDragAndDrop with the path to the file

that should be dragged out.

procedure TForm1.WebFormCreate(Sender: TObject);

type

 TDragProc = reference to procedure;

var

 el: TJSHTMLElement;

 LDragProc: TDragProc;

begin

 el := WebMemo1.ElementHandle;

 LDragProc := @HandleDragStart;

 asm

 el.ondragstart = (e) => {

 LDragProc();

 }

 end;

end;

procedure TForm1.HandleDragStart;

begin

 ElectronDragAndDrop.StartDrag('/path_to_item');

end;

2. Set a dragging icon through TElectronDragAndDrop (for example in the OnCreate event of

the form). Setting an empty icon path might work on Windows but not on other platforms.

627

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElectronDragAndDrop.ListenToDrag('/path_to_icon');

If some code needs to be executed when the dragging is happening, ElectronDragAndDrop has

an OnStartDrag event which can be assigned.

procedure TForm1.WebFormCreate(Sender: TObject);

 procedure DoDragEvent(Sender: TObject);

 begin

 //Code

 end;

begin

 ElectronDragAndDrop.OnStartDrag := DoDragEvent;

end;

Fonts

Sometimes a nice looking application that has been created, does not look the same on another

platform, because the font differs. But why is the font not being shown as set? This is due to the

fact that different platforms can have different sets of fonts installed. If the used font is not

installed, then of course it cannot be used by the application. If this behavior is not desired, it

can be fixed by adding a font manually:

The first step is to add the font file to the project

Add the following code to the project html file

<style>

 @font-face {

 font-family: 'RobotoRegular';

 src: url(Roboto-Regular.ttf) format('truetype');

 }

</style>

628

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Set the font at any control’s Font.Name property.

Set up your project with local databases

Currently we provide support for the following database management systems:

• MySQL: mysql

• PostgreSQL: pg

The setup for development (= Debug configuration) and production (= Build-Platform

configuration) is identical.

1. Add the correct dependency to the package.json file, and set the version based on your

preferences. Example for mysql:

"dependencies": {

 "mysql": "^2.18.1"

}

2. Build the project without running it. Based on which configuration you picked the output folder

will be created (TMSWeb/Debug, TMSWeb/Build-...).

3. Open a commandline prompt / terminal in the output folder and install the module you'd like to

use. Keep in mind that if you Clean your project, you'll need to install it again.

//mysql node module:

npm install mysql

//mysql node module with a given version:

npm install mysql@X.Y.Z

https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/pg

629

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

4. Now you can build and run your project again.

Electron Components

TElectronOpenDialog

Description

Below is a list of the most important properties and methods for TElectronOpenDialog. This

component allows to display a native open dialog.

Designtime Runtime

Properties for TElectronOpenDialog

Property Description

ButtonLabel:

string

Sets the text that will be shown inside the default “Open” button.

DefaultPath:

string

Sets the default path where the dialog is opened.

FileName:

string

Returns the filename with full path that has been opened.

Filters: string Sets the file type filters.

Options A set of options. On Windows and Linux an open dialog can’t be a file selector

and a directory selector at the same time. Choosing both will result in a directory

selector.

630

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Title: string Sets the title of the open window.

Methods for TElectronOpenDialog

Property Description

Execute(AProc:

TSelectOpenFileCallBack)

Function to show the open dialog. The AProc parameter is a

method pointer for a method that is called when the dialog is

closed. Any result from the dialog is available through the

callback.

See example usage at TElectronStringList: Example 1.

TElectronSaveDialog

Description

Below is a list of the most important properties and methods for TElectronSaveDialog. This

component allows to display a native save dialog.

Designtime Runtime

Properties for TElectronSaveDialog

Property Description

ButtonLabel: string Sets the text that will be shown inside the default

“Save” button.

631

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

DefaultPath: string Sets the default path where the dialog is opened.

FileName: string Returns the filename with full path that has been

saved.

Filters: string Sets the file type filters.

Title: string Sets the title of the save window.

Methods for TElectronSaveDialog

Property Description

Execute(AProc:

TSelectSaveFileCallBack)

Function to show the save dialog. The AProc parameter is a

method pointer for a method that is called when the dialog is

closed. Any result from the dialog is available through the

callback.

See example usage at TElectronStringList: Example 2.

TElectronMessageBox

Description

Below is a list of the most important properties and methods for TElectronMessageBox. This

component allows to display a native message dialog.

Designtime Runtime

Properties for TElectronMessageBox

Property Description

Buttons: TStringList Sets the buttons

CancelId: Integer Sets the index of the button to be used to cancel the dialog via the Esc

key. By default it’s assigned to the first button that has the “Cancel” or

“No” label.

CheckboxChecked:

Boolean

Sets and returns the checked status of the checkbox.

632

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

CheckboxLabel: string Sets the checkbox text.

DefaultId: Integer Index of the button from the Buttons list which will be selected by

default.

Detail: string Adds extra information to the Message of the dialog.

DialogType Sets the type of the dialog. The default value is embNone. On

Windows embQuestion has the same icon as embInfo. On macOS

embWarning and embError has the same warning icon.

IconPath: string Sets the path to the icon.

IconURL: string Base64 encoded string that represents the icon.

Message: string Sets the content of the dialog.

NoLink: Boolean On Windows Electron tries to figure out the common buttons from the

Buttons list (for example: “Yes”, “Cancel”). The rest will be turned into

command links.

NormalizeAccessKeys:

Boolean

Normalize the keyboard access keys across platforms. Use & in the

button label, which then will be converted for each platform

accordingly. For example, a button label of Vie&w will be converted to

Vie_w on Linux and View on macOS and can be selected via Alt-W on

Windows and Linux.

Response: Integer Returns the index of the button that was clicked.

Title: string Sets the title of the dialog.

Methods for TElectronMessageBox

Property Description

Execute(AProc:

TSelectMessageBoxCallBack =

nil)

Method to show the message dialog. The AProc parameter

is a method pointer for a method that is optionally called if

assigned when the dialog is closed. Any result from the

dialog is available through the callback.

TElectronErrorBox

Description

Below is a list of the most important properties and methods for TElectronErrorBox. This

component allows to display a native error dialog.

633

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

Properties for TElectronErrorBox

Property Description

Content: string Sets the content of the dialog.

Title: string Sets the title of the dialog.

Methods for TElectronErrorBox

Property Description

Execute Function to show the error dialog.

TElectronMainMenu

Description

This component allows to display a native menubar when the application is launched. Creating a

TElectronMainMenu and adding TElectronMenuItems to it is similar to VCL’s TMainMenu.

TElectronMainMenu should be used in the main form only.

Designtime Runtime

Updating a TElectronMainMenu

Due to an Electron limitation, it’s not possible to update a menu dynamically. This means the

menu needs to be recreated and reassigned to the window after each modification. To make this

procedure simple, just call the following line after modifying a menu:

ElectronMainMenu1.EndUpdate;

634

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronPopupMenu

Description

This component allows to display a popup menu. Creating a TElectronPopupMenu and adding

TElectronMenuItems to it is similar to VCL’s TPopupMenu.

Designtime Runtime

Methods for TElectronPopupMenu

Property Description

Popup(X, Y: Integer) Show the popup menu at X and Y coordinates.

Updating a TElectronPopupMenu

Due to an Electron limitation, it’s not possible to update a menu dynamically. This means the

menu needs to be recreated and reassigned to the window after each modification. To make this

procedure simple, just call the following line after modifying a menu:

ElectronPopupMenu1.EndUpdate;

TElectronBrowserWindow

Description

Below is a list of the most important properties and methods for TElectronBrowserWindow. This

component allows the creation of multiple application windows, which can be linked to forms or

other sources.

635

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

Properties for TElectronBrowserWindow

Property Description

FormClass: TFormClass Sets the form class of the TElectronBrowserWindow.

FullScreen: Boolean Setting it to true will open the window in fullscreen.

FullScreenable: Boolean Determines if the window can be set to fullscreen by the user or not.

IconPath: string Sets the path to the icon.

IconURL: string Base64 encoded string that represents the icon.

Kiosk: Boolean Setting it to true will open the window in kiosk mode.

MaxHeight: Integer Sets the maximum height of the window.

MaxWidth: Integer Sets the maximum width of the window.

MinHeight: Integer Sets the minimum height of the window.

MinWidth: Integer Sets the minimum width of the window.

Resizable: Boolean Sets the resizability of the window.

Methods for TElectronBrowserWindow

Property Description

Close Method to close the window.

ForceClose Method to force the closing of the window.

Hide Method to hide the window.

636

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

LoadFromURL(URL: string) Method to load from the given URL. It can be a URL

or a path to a local file too.

SendMessage(AMessage: string) Method to send message to window.

SendMessage(AMessage: JSValue) Method to send message to the window.

SendMessage(Channel: string;

AMessage: string)

Method to send message to a channel.

SendMessage(Channel: string;

AMessage: JSValue)

Method to send message to a channel.

Show Method to show the window.

ShowModal Method to show the window as a modal It blocks the

parent window.

Events for TElectronBrowserWindow

Property Description

OnActivate Triggers when the window gains focus.

OnClose Triggers when the window closes.

OnDeactivate Triggers when the window loses focus.

OnExitFullScreen Triggers when the window exits fullscreen mode.

OnFullScreen Triggers when the window enters fullscreen mode.

OnHide Triggered when the window gets hidden.

OnMaximize Triggers when the window is maximized.

OnMessage Triggers when a message has been sent from the window to the parent

window (= the form that contains the TElectronBrowserWindow instance).

OnMinimize Triggers when the window is minimized.

OnResize Triggers when the window is resized.

OnShow Triggers when the window is shown.

Multiple windows using forms

Forms that are added to the project can be used as a source for the page to be shown in the

window. In order to achieve this, a few steps have to be made:

1. Whenever a new form is added to the project, it needs to be registered in the initialization

section:

initialization

 RegisterClass(TForm2);

637

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

2. The form class needs to be assigned to the correct TElectronBrowserWindow instance. To do

this, first the unit that contains the form has to be added to the uses list.

For example: We would like to use the TForm2 from Unit2 in Unit1. Then in the uses list of Unit1

add Unit2.

After this, in the form’s OnCreate event we can assign the form class to the

TElectronBrowserWindow with the code below.

ElectronBrowserWindow1.FormClass := TForm2;

From now on, whenever ElectronBrowserWindow1.Show is called, it creates the window for us

automatically.

Multiple windows using other sources

An HTML file or a link to a website can also be used inside a TElectronBrowserWindow. In this

case the only necessary step is to call the URL load method in the OnCreate event of the form.

ElectronBrowserWindow1.LoadFromURL('https://www.tmssoftware.com/');

or

ElectronBrowserWindow1.LoadFromURL('/path_to_html/myFile.html');

If the application is targeted for multiple platforms, it’s best to use relative paths.

Showing a window

To show the window after its content had been set, simply call Show or ShowModal. The

expected behaviour is that showing a modal window will block the parent window until the

modal itself gets closed. On macOS this modal window is a sheet that is attached to the parent

window, and since it’s blocking the parent from closing, it also blocks the whole application

from closing. Keep in mind to always provide a way to the user to close the modal window.

TElectronTrayIcon

Description

Below is a list of the most important properties and events for TElectronTrayIcon. This

component allows to add a tray icon with an optional popup menu to the application.

Designtime Runtime

638

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TElectronTrayIcon

Property Description

IconPath: string Sets the path to the icon.

IconURL: string Base64 encoded string that represents the icon.

Menu: TElectronPopupMenu Sets the menu to be shown when the tray icon is clicked.

ToolTip: string Sets the tooltip text.

Events for TElectronTrayIcon

Property Description

OnClick Triggered when the mouse is clicked on the tray icon.

TElectronIPCCommunication

Description

Below is a list of the most important properties, methods and events for TElectronTrayIcon. This

component allows the communication between windows.

Properties for TElectronIPCCommunication

Property Description

Channel:

string

Sets the channel the IPCRenderer is going to listen to. If left blank, it listens to a

default channel that is also used by

TElectronBrowserWindow.SendMessage(AMessage: string).

Methods for TElectronIPCCommunication

Property Description

Send(Channel: string; AMessage: JSValue) Sends a message to the specified channel.

Send(Channel: string; AMessage: string) Sends a message to the specified channel.

SendToParent(AMessage: JSValue) Send a message to the parent window.

Events for TElectronIPCCommunication

Property Description

OnReceive Triggers when a message has been received on the default channel. If the

Channel property is set, then it triggers when a message arrives on that channel.

639

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Send message to parent

Sending a message to the parent window is as easy as dropping a TElectronIPCCommunication

onto the form and calling

ElectronIPCCommunication1.SendToParent('message');

Meanwhile on the parent side the sender form’s TElectronBrowserWindow.OnMessage event will

trigger when messages sent via the SendToParent method are arriving.

Send message to a channel

It’s possible to send a message to a defined channel. This way the communication is enabled

between every window and not just parent-child windows.

A specific channel can be defined, but it’s not required since every TElectronIPCCommunication

is listening to a default channel if no Channel is given.

Sending a message to another form is as simple as calling:

ElectronIPCCommunication1.Send('Form2', 'message');

When the Channel property is defined, then the TElectronIPCCommunication component is

listening for messages that are arriving on that channel. This allows further possibilites:

• Multiple messages can be distinguished: Multiple TElectronIPCCommunication

instances are dropped onto the form, and each of them are listening to a different

channel.

• Multicast: On multiple forms the TElectronIPCCommunication instances are listening for

the same channel.

Receiving messages

Whenever a message has arrived to the channel that’s being listened by the

TElectronIPCCommunication, the OnReceive event triggers.

The message it receives is defined as TReceivedValue. A message type check can be made

before proceeding with the processing of the message:

if AMessage.ValueType = jvtString then

begin

 WebMemo1.Lines.Add(AMessage.AsString);

end;

The following types are supported: String, Boolean, Integer, Object (TJSObject), Array (TJSArray)

and Float.

640

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronMySQLClientDataSet

Description

Designtime

The component TElectronMySQLClientDataSet makes it easy for an Electron application to

create and use MySQL databases by a familiar syntax of using ClientDataSet. It also allows a

seamless integration of a MySQL database with data-aware components like TWebDBGrid. All

the database operations can be done in the standard Delphi way through the

TElectronMySQLClientDataSet component.

Please follow the steps explained in the "Set up your project with local databases" section of this

documentation. After the initial setup, all you need to do is specify the TableName and

IndexName properties and add the field definitions either in design time or in code in a

standard Delphi syntax. Then connect it to a TElectronMySQLConnection component, connect a

DataSource and Data components to it and make the dataset active.

Todo List Demo

You can set up a database for the demo either locally by downloading and installing MySQL or

by using an online service. In case of an online service it's better to save your credentials

somewhere safe as you might not be able to retrieve them later. After the database has been

created you can use the following SQL command to create a table that matches the expected

syntax of our Todo List Demo:

CREATE TABLE tasks (

 id INT AUTO_INCREMENT PRIMARY KEY,

 status VARCHAR(10),

 descr TEXT,

 due_date DATETIME

);

Before you run the demo first you need to install the correct node module in the output folder

of the project:

641

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

1. Build the project and go to the output folder based on your configuration (Debug, Build-...).

2. Install the mysql node module:

npm install mysql

3. Now you'll need to build the project again before running it.

Set your credentials in the UMySQL_TodoList.pas unit:

electronMySQLConnection.Host := 'your_host_name';

//this is the default port, replace if yours is different

//electronMySQLConnection.Port := 3306;

electronMySQLConnection.DatabaseName := 'your_db_name';

Use your username and password at runtime.

BLOB demo

For detailed setup, refer to the Todo List Demo description.

SQL command to create the table:

CREATE TABLE files (

 id INT AUTO_INCREMENT PRIMARY KEY,

 file_name TEXT,

 file LONGBLOB

);

Set your credentials in the UMySQL_Blob.pas unit:

ElectronMySQLConnection1.Host := 'your_host';

ElectronMySQLConnection1.DatabaseName := 'your_db_name';

//ElectronMySQLConnection1.Port := 3306;

ElectronMySQLConnection1.User := 'your_user';

ElectronMySQLConnection1.Password := 'your_password';

Properties for TElectronMySQLClientDataSet

Property Description

IndexName Name of the primary key field of the table.

TableName Name of the table to connect to.

642

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronMySQLConnection

Description

Designtime

Connection component for the mysql node module. It's required to create a connection. You

can also use a single TElectronMySQLConnection component to access multiple tables via

multiple TElectronMySQLClientDataSet components.

TElectronPostgreSQLClientDataSet

Description

Designtime

The component TElectronPostgreSQLClientDataSet makes it easy for an Electron application to

create and use PostgreSQL databases by a familiar syntax of using ClientDataSet. It also allows a

seamless integration of a PostgreSQL database with data-aware components like TWebDBGrid.

All the database operations can be done in the standard Delphi way through the

TElectronPostgreSQLClientDataSet component.

Please follow the steps explained in the "Set up your project with local databases" section of this

documentation. After the initial setup, all you need to is specify the TableName and IndexName

properties and add the field definitions either in design time or in code in a standard Delphi

syntax. Then connect it to a TElectronPostgreSQLConnection component, connect a DataSource

and Data components to it and make the dataset active.

Todo List Demo

You can set up a database for the demo either locally by downloading and installing PostgreSQL

or by using an online service. In case of an online service it's better to save your credentials

somewhere safe as you might not be able to retrieve them later. After the database has been

created you can use the following SQL command to create a table that matches the expected

syntax of our Todo List Demo:

643

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

CREATE TABLE tasks (

 id SERIAL PRIMARY KEY,

 status VARCHAR(10),

 descr TEXT,

 due_date DATE

);

Before you run the demo, first you need to install the correct node module in the output folder

of the project:

1. Build the project and go to the output folder based on your configuration (Debug, Build-...).

2. Install the pg node module:

npm install pg

3. Now you'll need to build the project again before running it.

Set your credentials in the UPostgreSQL_TodoList.pas unit:

pgConnection.Host := 'your_host_name';

//this is the default port, replace if yours is different

//pgConnection.Port := 5432;

pgConnection.DatabaseName := 'your_db_name';

Use your username and password at runtime.

BLOB demo

For detailed setup, refer to the Todo List Demo description.

SQL command to create the table:

CREATE TABLE files (

 id SERIAL PRIMARY KEY,

 file_name TEXT,

 file BYTEA

);

Set your credentials in the UPostgreSQL_Blob.pas unit:

644

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

ElectronPostgreSQLConnection1.Host := 'your_host';

ElectronPostgreSQLConnection1.DatabaseName := 'your_db_name';

//ElectronPostgreSQLConnection1.Port := 5432;

ElectronPostgreSQLConnection1.User := 'your_user';

ElectronPostgreSQLConnection1.Password := 'your_password';

Properties for TElectronPostgreSQLClientDataSet

Property Description

IndexName Name of the primary key field of the table.

TableName Name of the table to connect to.

TElectronPostgreSQLConnection

Description

Designtime

Connection component for the pg node module. It's required to create a connection. You can

also use a single TElectronPostgreSQLConnection component to access multiple tables via

multiple TElectronPostgreSQLClientDataSet components.

TElectronFileWatcher

Description

Below is a list of the most important properties for TElectronFileWatcher. This component allows

to monitor a list of files for changes.

Properties for TElectronFileWatcher

Property Description

Files A container of TElectronFileWatch items

TElectronFileWatch

It has a FileName: string property for the filename and an OnChange event which triggers when

the watched file has been modified. The filenames can be relative paths, but please keep in mind

645

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

that relative paths might differ on each platform, especially after application packaging. If more

than one platform is targeted, then it’s recommended to set up the TElectronFileWatcher

programmatically and use the ElectronPath class to retreive common paths.

TElectronGlobalShortcut

Description

Below is a list of the most important properties and events for TElectronGlobalShortcut. This

component allows adding listeners for keyboard shortcuts that are recognized even when the

application is not in focus. Due to Electron limitation TElectronGlobalShortcut should only be

used in the main form.

Properties for TElectronGlobalShortcut

Property Description

ShortCut Sets the keyboard shortcut.

It’s enough to use Ctrl or Cmd only as under the hood it’s getting translated to Electron’s

CommandOrControl. On Linux Ctrl key shortcuts sometimes are not working as expected.

Events for TElectronGlobalShortcut

Property Description

OnShortcut Triggers when the defined shortcut is pressed on the keyboard.

TElectronStringList

Below is a list of the methods for TElectronStringList. This class allows reading from files and

writing to files.

Methods for TElectronStringList

Property Description

LoadFromFile(const FileName:

string)

Loads the contents of the file from the local file system into a

stringlist.

SaveToFile(const FileName: Writes the contents of the stringlist into a file on the local file

646

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

string) system.

Example 1: Open file contents using TElectronStringList and TElectronOpenDialog

procedure TForm1.OpenDialogCallback(FileNames: TJSElectronStringDynArray);

var

 sl: TElectronStringList;

begin

 if Length(FileNames) > 0 then

 begin

 sl := TElectronStringList.Create;

 try

 sl.LoadFromFile(FileNames[0]);

 MEditor.Lines.Assign(sl);

 finally

 sl.Free;

 end;

 end;

end;

procedure TForm1.WebButton1Click(Sender: TObject);

begin

 ElectronOpenDialog1.Execute(@OpenDialogCallback);

end;

Example 2: Save to file using TElectronStringList and TElectronSaveDialog

procedure TForm1.SaveDialogCallback(FileName: string);

var

 sl: TElectronStringList;

begin

 if FileName <> '' then

 begin

 sl := TElectronStringList.Create;

 try

 sl.Assign(WebMemo1.Lines);

 sl.SaveToFile(FileName);

 finally

 sl.Free;

 end;

 end;

end;

procedure TForm1.WebButton2Click(Sender: TObject);

begin

 ElectronSaveDialog1.Execute(@SaveDialogCallback);

end;

647

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronBinaryDataStream

Below is a list of the properties and methods for TElectronBinaryDataStream. This class allows

reading and writing files using binary data.

Properties for TElectronBinaryDataStream

Property Description

Base64: string Set or retrieve the stored data as a Base64 encoded string.

Text: string Set or retrieve the stored data as a string.

Methods for TElectronBinaryDataStream

Property Description

LoadFromFile(const FileName: string) Method to read data from a file from the local file system.

SaveToFile(const: FileName: string) Method to save data to a file on the local file system.

AsArrayBuffer: TJSArrayBuffer Function to return the stored data as a TJSArrayBuffer.

TElectronClipboard

Below is a list of the properties and methods for TElectronClipboard. This class allows reading

and writing clipboard data. Instead of creating a TElectronClipboard instance, ElectronClipboard

can be used.

Properties of TElectronClipboard

Property Description

AsHTML: string Sets or returns the data from the clipboard in HTML format.

AsImageURL: string Sets or returns the data from the clipboard in image data format.

AsRTF: string Sets or returns the data from the clipboard in RTF format.

AsText: string Sets or returns the data from the clipboard in plain text (string) format.

FormatCount:

Integer

Returns the number of formats that are available in the clipboard at that

moment.

Formats A list of the available formats.

Methods of TElectronClipboard

648

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Clear Method to clear the data from the clipboard.

HasFormat(Format: string):

Boolean

Returns true if the clipboard has data available in the given

format.

TElectronShell

Below is a list of available methods for TElectronShell. This class allows invoking native

functionalities of the operating system. Instead of creating a TElectronShell instance,

ElectronShell can be used.

Methods for TElectronShell

Property Description

Beep Method to play the beep sound.

OpenExternal(URL: string):

Boolean

Function that tries to open an external link. Returns true if it was

successful. Max 2081 characters on Windows, or the function

returns false.

OpenItem(FullPath: string) Function that tries to open an item on the operating system,

using the default application. Returns true if it was successful.

MoveItemToTrash(FullPath:

string)

Function that tries to move an item to the trash. Returns true if it

was successful.

ShowItemInFolder(FullPath:

string)

Function that tries to show an item in the folder it is located in.

Returns true if it was successful.

TElectronIPCRenderer

Below is a list of the available methods for TElectronIPCRenderer. This class allows listening to

channels and sending messages to channels. It’s used in the TElectronIPCCommunication

component. Instead of creating a TElectronIPCRenderer instance, ElectronIPCRenderer can be

used.

Methods for TElectronIPCRenderer

Property Description

Listen(Channel: string; Listener: Method to set a listener for a defined channel. The

649

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TIPCEventHandler) Listener will be invoked everytime a message arrives onto

the given channel. Multiple listeners can be assigned to

the same channel.

ListenOnce(Channel: string; Listener:

TIPCEventHandler)

Method to set a listener for a defined channel that will be

executed only once - when the first message arrives onto

the channel.

RemoveAllListeners(Channel: string) Method to remove all listeners on the defined channel.

Send(Channel: string; JSObject:

JSValue)

Method to send a message to the given channel.

Send(Channel: string; AMessage:

string)

Method to send a message to the given channel.

The listeners (= callbacks) passed to the main process will persist until the main process

garbage-collects them. Therefore it’s important to uninstall the listeners using the

‘RemoveAllListeners’ method. More information on this can be found in the Electron

documentation: https://electronjs.org/docs/api/remote

TElectronDragAndDrop

Below is a list of available methods for TElectronDragAndDrop. This class allows dragging items

out of an Electron application. For detailed information please take a look at the Drag and drop

part of the documentation. Instead of creating a TElectronDragAndDrop instance,

ElectronDragAndDrop can be used.

Property Description

ListenToDrag(IconPath:

string)

Method to listen for dragging events and set the icon path for the

dragging. On Windows an empty path might be accepted, on

other platforms it’s required to have a valid icon path.

ListenToDrag(Listener:

TIPCEventHandler)

Method to listen for dragging events. The icon and additional code

needs to be added in the Listener.

StartDrag(PathToItem:

string)

Method to set the file path to be dragged out of the application.

https://electronjs.org/docs/api/remote#passing-callbacks-to-the-main-process

650

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TElectronPath

Below is a list of the available methods for TElectronPath. This class allows to retrieve common

paths accross all supported platforms. Instead of creating a TElectronPath instance, ElectronPath

can be used.

Methods for TElectronPath

Property Description

GetAppData:

string

Funcion to retrieve the path to the per-user application data directory.

GetDesktop: string Function to retrieve the path to the desktop directory.

GetDocuments:

string

Function to retrieve the path to the Documents directory.

GetDownloads:

string

Function to retrieve the path to the Download directory.

GetExe: string Function to retrieve the path to the current executable file.

GetHome: string Function to retrieve the path to the user’s home directory.

GetUserData:

string

Function to retrieve the path to the application’s configuration files. By

default this means appData + the application name.

GetPictures: string Function to retrieve the path to the Pictures directory.

GetTemp: string Function to retrieve the path to the temporary directory.

GetVideos: string Function to retrieve the path to the Videos directory.

TElectronWindow

Below is a list of available methods for TElectronWindow. This class allows to control the page

that has been loaded into the window (for example: edit commands). Instead of creating a

TElectronWindow instance, ElectronWindow can be used.

Methods for TElectronWindow

651

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

CloseApp Method to invoke an application closing call.

CloseWindow Method to invoke a window closing call.

CloseDevTools Method to close the developer tools.

Copy Method that executes the copy editing command.

CopyImageAt(X, Y: NativeInt) Method that copies the image at the given position to the

clipboard.

Cut Method that executes the cut editing command.

Delete Method that executes the delete editing command.

DownloadURL(URL: string) Method that initiates the download of the resource at the URL

without navigating. It will prompt a save dialog.

GetURL: string Function that retrieves the current URL.

OpenDevTools Method to open the developer tools.

Paste Method that executes the paste editing command.

Redo Method that executes the redo editing command.

Reload Method for reloading the current window.

Replace(AText: string) Method that executes the replace editing command.

ReplaceMisspelling(AText:

string)

Method that executes the replaceMisspelling editing command.

SelectAll Method that executes the selectAll editing command.

ToggleDevTools Method to toggle the developer tools.

Undo Method that executes the undo editing command.

Unselect Method that executes the unselect editing command.

Other available methods

Property Description

CreateBlobFromFile(FileName: string):

TJSBlob

Function that creates a TJSBlob from a file using the

given file name.

CreateUint8ArrayFromFile(FileName:

string): TJSUint8Array

Function that creates a TJSUint8Array from a file using

the given file name.

DownloadToFolder(URL, Path: string) Method to download the resource from the given URL

to the given Path, without prompting a saving dialog.

652

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

GetElectronFileList(Source: TJSEvent):

TJSElectronFileList

Function to be used with the WEB components’ drag

and drop functionality. From the source it will create

an array of TJSElectronFile which equals to

TJSHTMLFile with an additional path property.

ShortCutToText(ShortCut: TShortCut):

string

Function that creates an Electron accepted shortcut

string from a TShortCut.

653

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMS WEB Miletus

Miletus enables developers to create desktop applications with TMS WEB Core.
Similaly to Electron it provides access to the local file system, shell dialogs, clipboard
and much more.

Your first TMS Web Miletus Application

To create a new Miletus application, select the "TMS Web Miletus Application" from the
wizard:

It generates a project similar to a TMS Web Application, with extra icon files and build

configurations. For each supported platform there is a Debug-Platform and Build-Platform

configuration. The difference between Debug and Build is the availability of the debugging tools.

In Build mode the debugging tools are disabled.

654

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The icon file can be changed through the project options:

655

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

You can now develop your application like you would normally do with a TMS Web Application.

656

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Debugging and accessing the Developer Tools

Windows

Debugging on Windows is identical to a TMS Web Application, it can be done through the

Developer Tools. When the application is deployed in Debug mode Miletus adds a default

menubar to the application if a TMiletusMainMenu has not been added to the main form. The

Developer Tools can be accessed with View > Toggle developer tools or via the F12 shortcut.

To force any window to have the Developer Tools opened after the given window is shown, use

the following code in the form's OnCreate event:

procedure TForm1.MiletusFormCreate(Sender: TObject);
begin
 OpenDevTools;
end;

Linux

657

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

To be able to debug on Linux, select the Debug-Linux64 build configuration, build your

application and copy the resulting application to your target machine.

After these steps, you can debug your application in a similar way as on Windows: Either

through the View > Toggle developer tools menu item or by calling the OpenDevTools method.

macOS

To be able to debug on MacOS on the target machine, open up a Safari instance and if you

haven't already, enable the Develop menu item: https://support.apple.com/guide/safari/use-the-

developer-tools-in-the-develop-menu-sfri20948

Select the Debug-MacOS64 build configuration, build your application and copy the resulting

application to your target machine.

Sign your application along with the provided .entitlements file, otherwise the necessary key for

debugging won't be picked up by the binary.

After that you'll be able to debug your running Miletus application by selecting Develop > Your

machine's name > main.html from your running Safari instance.

Deployment

Set the configuration to the correct Build-Platform target and Build the application. After that

copy the resulting application to the target machine if that differs from the development

machine. It's always recommended to sign the application afterwards.

macOS

After deployment if at application launch the message "“YourApp” cannot be opened because

the developer cannot be verified." is displayed, try Right click > Open which gives the option to

open the application despite the lack of application signatures.

Depending on how the application is copied to the target machine the necessary read, write and

execute permissions might be removed. If the error message "You do not have permission to

open the application" is shown try setting the correct permissions:

sudo chmod -R /path/to/YourApp.app

658

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Starting from Big Sur, on macOS ARM targets it is a requirement to sign the application. Miletus

applications come unsigned on all platforms, so on a macOS ARM target they always need to

be signed first:

codesign --force --deep --entitlements YourApp.entitlements --sign -

YourApp.app

If the code signing fails with the message "resource fork, Finder information, or similar detritus

not allowed", remove the extended attributes by running the following command and sign the

application afterwards:

xattr -cr ./path/to/YourApp.app

Before distribution sign your application with your Developer ID certificate.

Linux or Raspberry Pi with Raspberry Pi OS

Depending on how the application is copied to the target machine the necessary read, write and

execute permissions might be removed. If the application cannot be run due to missing

permissions try setting them:

sudo chmod -R 755 /path/to/YourApp

On Linux or Raspberry Pi, Miletus is using GTK3 and the WebKitGTK browser engine. If your

Linux system or Raspberry Pi does not have WebKitGTK installed, run the following command:

sudo apt install libwebkit2gtk-4.0-dev

Custom extensibility

It's possible to extend a Miletus application with custom native functionality through shared

libraries.

Loading and unloading a library

The LoadLibrary(ALibraryPath) and UnloadLibrary(ALibraryPath) methods can be used to load

and unload a library. LoadLibrary is a TJSPromise, and its return value can determine if the

library could be loaded:

//Mark as async

[asnyc]

procedure WebButton1Click;

//Implementation

procedure TForm1.WebButton1Click(Sender: TObject);

659

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

var

 b: Boolean;

const

 LIBPATH = 'path\to\MyLibrary.dll';

begin

 b := Await(Boolean, LoadLibrary(LIBPATH));

 if b then

 begin

 //The library could be loaded, call ProcNoParam procedure

 Await(JSValue, ExecProc(LIBPATH, 'ProcNoParam'));

 //And finally, unload the library

 UnloadLibrary(LIBPATH);

 end;

end;

Example of Miletus compatible library from Delphi

unit UMyLibrary;

interface

uses

 Classes;

procedure ProcNoParam; cdecl;

procedure ProcParam(AData: PChar); cdecl;

function FuncNoParam: PChar; cdecl;

function FuncParam(AData: PChar): PChar; cdecl;

exports

 ProcNoParam,

 ProcParam,

 FuncNoParam,

 FuncParam;

implementation

procedure ProcNoParam; cdecl;

begin

 //

660

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

end;

procedure ProcParam(AData: PChar); cdecl;

begin

 //

end;

function FuncNoParam: PChar; cdecl;

begin

 Result := '';

end;

function FuncParam(AData: PChar): PChar; cdecl;

begin

 Result := '';

end;

end.

Note: For Raspberry the shared library needs to be created from Lazarus.

Sending custom messages to a Miletus application

It's possible to send custom messages by implementing a RegisterCallback procedure in the

library.

type

 TCallback = procedure(AMessageID: Integer; AData: PChar); cdecl;

var

 MyCallback: TCallBack;

const

 MYID = 123;

procedure RegisterCallback(AFunction: Pointer); cdecl;

begin

 @MyCallback := AFunction;

 //For Lazarus:

 //MyCallback := TCallback(AFunction);

end;

661

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

procedure MyProcedure; cdecl;

begin

 //Do something and call MyCallback

 MyCallback(MYID, '{"Name": "My data", "Value": "This is my JSON formatted

data"}');

end;

To capture these messages, in the Miletus application use the

MiletusCommunication.OnCustomMessage event:

const

 MYID = 123;

procedure TForm1.MiletusFormCreate(Sender: TObject);

begin

 MiletusCommunication.OnCustomMessage := CustomTextMessage;

end;

procedure TForm1.CustomTextMessage(AMessageID: Integer; AMessage: string);

begin

 if AMessageID = MYID then

 begin

 //Do something with AMessageText

 //e.g. Create JSON object

 end;

end;

Drag and drop

Miletus provides support for drag and drop functionality. There's a difference between dragging

into and dragging out of an application. In both cases the dragging needs be detected by an

event.

From desktop to Miletus

Dragging something into the application is a feature that is supported by HTML5.

procedure TForm1.WebMemo1DragDrop(Sender, Source: TObject; X, Y: Integer);
var
 f: TJSHTMLFile;
begin
 f := TJSDragEvent(TDragSourceObject(Source).Event).dataTransfer.files[0];

662

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 //process the TJSHMTLFile futher...
end;

From Miletus to desktop

Dragging something out of an Miletus application is supported, but the file must already exist on

the local file system. If the file does not exist, it is up to the developer to create it on the fly

based on the contents from the application. If the file is present, then only the following code

needs to be called with the path to the existing file:

procedure TForm1.WebMemo1StartDrag(Sender: TObject;
 var DragObject: TDragObject);
begin
 StartFileDrag('path\to\file');
end;

Miletus components

TMiletusOpenDialog

Description

Below is a list of the most important properties and methods for TMiletusOpenDialog. This

component allows to display a native open dialog.

663

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

Properties for TMiletusOpenDialog

Property Description

DefaultExt:

string
Sets the default extension of files to pick

FileName:

string
Returns the filename with full path that has been opened.

Files: TStrings
A list of file paths. It can be accessed after the sync Execute or in the

Execute callback.

Filter: string Sets the file type filters.

InitialDir: string Sets the initial folder where to open files

Options A set of options.

664

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Title: string Sets the title of the open window.

Methods for TMiletusOpenDialog

Property Description

Execute
Function that synchronously shows the dialog. Keep in mind that the

web application will be frozen until the function resolves

Execute(AProc:

TMiletusDialogProc)

Method to show the open dialog asynchronously. The AProc

parameter is a method pointer for a method that is called when the

dialog is closed. Any result from the dialog is available through the

callback.

TMiletusSaveDialog

Description

Below is a list of the most important properties and methods for TMiletusSaveDialog. This

component allows to display a native save dialog.

665

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

Properties for TMiletusSaveDialog

Property Description

DefaultExt: string Sets the default file extension to pick

FileName: string Returns the filename with full path that has been opened.

Files: TStrings

Filter: string Sets the file type filters.

InitialDir: string Sets the initial folder where to save files

Options A set of options.

Title: string Sets the title of the open window.

666

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TMiletusSaveDialog

Property Description

Execute
Function that synchronously shows the dialog. Keep in mind that the

web application will be frozen until the function resolves

Execute(AProc:

TMiletusDialogProc)

Method to show the open dialog asynchronously. The AProc

parameter is a method pointer for a method that is called when the

dialog is closed. Any result from the dialog is available through the

callback.

TMiletusMessageBox

Description

Below is a list of the most important properties and methods for TMiletusMessageBox. This

component allows to display a native message dialog.

Designtime Runtime

Properties for TMiletusMessageBox

Property Description

Buttons: TStringList Sets the buttons.

Caption: string Sets the caption of the message box.

DialogType Sets the type of the dialog.

NoLink: Boolean

Tries to figure out the common buttons from the Buttons list (for

example: "Yes", "Cancel"). The rest will be turned into command

links.

667

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

Response: Integer Returns the index of the button that was clicked.

Text: string Sets the content of the dialog.

Title: string Sets the title of the dialog.

VerificationChecked:

Boolean
Sets and returns the checked status of the checkbox.

VerificationText: string Sets the checkbox text.

Methods for TMiletusMessageBox

Property Description

Execute(AProc:

TMiletusMessageBoxProc =

nil)

Method to show the message dialog. The AProc parameter is

a method pointer for a method that is optionally called if

assigned when the dialog is closed. Any result from the dialog

is available through the callback.

ExecuteSync

Method to show the message dialog synchronously. Keep in

mind that calling ExecuteSync will block the web application

from further running until the dialog is closed.

TMiletusErrorBox

Description

Below is a list of the most important properties and methods for TMiletusErrorBox. This

component allows to display a native error dialog.

Designtime Runtime

668

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Properties for TMiletusErrorBox

Property Description

Content: string Sets the content of the dialog.

Title: string Sets the title of the dialog.

Methods for TMiletusErrorBox

Property Description

Execute Method to show the error dialog.

TMiletusMainMenu

Description

This component allows to display a native menubar when the application is launched. Creating

a TMiletusMainMenu and adding TMainMenuItems to it is similar to VCL's TMainMenu.

Designtime Runtime

Updating a TMiletusMainMenu

The menu needs to be recreated and reassigned to the window after each modification. To

make this procedure simple, just call the following line after modifying a menu:

MiletusMainMenu1.EndUpdate;

TMiletusPopupMenu

Description

This component allows to display a popup menu. Creating a TMiletusPopupMenu and adding

TMenuItems to it is similar to VCL's TPopupMenu.

669

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime Runtime

Methods for TMiletusPopupMenu

Property Description

CloseMenu Metho to close the menu.

Popup(X, Y: Integer) Show the popup menu at X and Y coordinates.

Events for TMiletusPopupMenu

Property Description

OnPopup Event triggered when the popup menu opens.

Updating a TMiletusPopupMenu

The menu needs to be recreated and reassigned to the window after each modification. To

make this procedure simple, just call the following line after modifying a menu:

MiletusPopupMenu1.EndUpdate;

TMiletusNotificationCenter

Description

This component allows to show a notification on the operating system.

Designtime

670

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TMiletusNotificationCenter

Property Description

CreateNotification Function to create a notification object.

CreateNotification(const AName, AAlertBody:

string)
Function to create a notification object.

PresentNotification(const ANotification:

TMiletusNotification)
Show the notification.

TMiletusWindow

Description

Below is a list of the most important properties and methods for TMiletusWindow. This

component allows the creation of multiple application windows, which can be linked to forms or

other sources.

Designtime Runtime

Properties for TMiletusWindow

Property Description

671

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

FormClass: TFormClass Sets the form class of the TMiletusWindow.

Methods for TMiletusWindow

Property Description

Close Method to close the window.

Hide Method to hide the window.

LoadFromURL(URL:

string)

Method to load from the given URL. It can be a URL or a path to a

local file too.

Show Method to show the window.

ShowModal
Method to show the window as a modal It blocks the parent

window.

Events for TMiletusWindow

Property Description

OnClose Triggers when the window closes.

OnHide Triggered when the window gets hidden.

OnMaximize Triggers when the window is maximized.

OnMinimize Triggers when the window is minimized.

OnResize Triggers when the window is resized.

OnShow Triggers when the window is shown.

Multiple windows using forms

Forms that are added to the project can be used as a source for the page to be shown
in the window. In order to achieve this, a few steps have to be made:

1. The form class needs to be assigned to the correct TMiletusWindow instance. To do
this, first the unit that contains the form has to be added to the uses list.

For example: We would like to use the TForm2 from Unit2 in Unit1. Then in the uses list
of Unit1 add Unit2.

672

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

2. After this, in the form's OnCreate event we can assign the form class to the
TMiletusWindow with the code below.

3. MiletusWindow1.FormClass := TForm2;

From now on, whenever MiletusWindow1.Show is called, it creates the window for us

automatically.

Please be aware that each form has their own memory and there's no globally shared object

between them.

Multiple windows using other sources

An HTML file or a link to a website can also be used inside a TMiletusWindow. In this case the

only necessary step is to call the URL load method in the OnCreate event of the form.

MiletusWindow1.LoadFromURL('https://www.tmssoftware.com/');

Showing a window

To show the window after its content had been set, simply call Show or ShowModal. The expected

behaviour is that showing a modal window will block the parent window until the modal itself

gets closed.

Communication between forms

It is possible to send messages between forms. Follow these steps to enable your forms for

messaging:

1. Register your form with a unique name that you can refer to later.
2. procedure TForm1.MiletusFormCreate(Sender: TObject);
3. begin
4. RegisterForm('myFormId');
5. end;

6. Send a message to a registered form with the following call:
7. procedure TForm2.WebButton1Click(Sender: TObject);
8. begin
9. SendMessage('myFormId', 'My message');
10. end;

TMiletusTrayIcon

Description

Below is a list of the most important properties and events for TMiletusTrayIcon. This

component allows to add a tray icon with an optional popup menu to the application.

673

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

Properties for TMiletusTrayIcon

Property Description

IconURL: string Base64 encoded string that represents the ICO icon.

PopupMenu: TMiletusPopupMenu Sets the menu to be shown when the tray icon is clicked.

Hint: string Sets the tooltip/hint text.

Events for TMiletusTrayIcon

Property Description

OnClick Triggered when the mouse is clicked on the tray icon.

TMiletusClientDataSet

Designtime

The component TMiletusClientDataSet makes it easy for a Miletus application to create and use

databases by a familiar syntax of using ClientDataSet. It also allows a seamless integration of

multiple types of databases with data-aware components like TWebDBGrid. All the database

operations can be done in the standard Delphi way through the TMiletusClientDataSet

component.

Currently supported databases are: MS Access, MySQL, SQLite, PostgreSQL, MS SQL,

Firebird and Interbase.

Properties for TMiletusClientDataSet

674

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

DBDriver Database driver component

QueryText: string Query to return the records from the database.

TMiletusAccessDBDriver

MS Access database driver that needs to be connected to a TMiletusClientDataSet instance.

Designtime

TMiletusMySQLDBDriver

mySQL database driver that needs to be connected to a TMiletusClientDataSet
instance.

Designtime

TMiletusSQLiteDBDriver

SQLite database driver that needs to be connected to a TMiletusClientDataSet instance.

Designtime

TMiletusPostgreSQLDBDriver

PostgreSQL database driver that needs to be connected to a TMiletusClientDataSet instance.

675

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Designtime

TMiletusMSSQLDBDriver

SQLite database driver that needs to be connected to a TMiletusClientDataSet instance.

Designtime

TMiletusIBDBDriver

Interbase database driver that needs to be connected to a TMiletusClientDataSet instance.

Designtime

TMiletusFBDBDriver

Firebird database driver that needs to be connected to a TMiletusClientDataSet instance.

Designtime

676

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusFileWatcher

Description

Below is a list of the most important properties for TMiletusFileWatcher. This component allows

to monitor a list of files for changes.

Properties for TMiletusFileWatcher

Property Description

Files A container of TMiletusFileWatch items

TMiletusFileWatch

It has a FileName: string property for the filename and an OnChange event which triggers when

the watched file has been modified. It's recommended to set up the TMiletusFileWatcher

programmatically and use GetMiletusPath(APathType: Integer; var APath: string) to

retreive common paths.

TMiletusGlobalShortcuts

Description

Below is a list of the most important properties and events for TMiletusGlobalShortcuts. This

component allows adding listeners for keyboard shortcuts that are recognized even when the

application is not in focus. TMiletusGlobalShortcuts should only be used in the main form.

Properties for TMiletusGlobalShortcut

Property Description

ShortCut Sets the keyboard shortcut.

Events for TMiletusGlobalShortcut

Property Description

OnShortcut
Triggers when the defined shortcut is pressed on the

keyboard.

677

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusStringList

Below is a list of the methods for TMiletusStringList. This class allows reading from files and

writing to files. It's highly recommended to use the asynchronous load and save functions where

possible.

Methods for TMiletusStringList

Property Description

LoadFromFile(const FileName: string)

Loads the contents of the file from the local file

system into a stringlist synchronously. Keep in mind

that LoadFromFile will stop the code from futher

execution until resolved.

LoadFromFileAsync(const FileName:

string; AProc: TMiletusLoadFileProc)

Loads the contents of the file from the local file

system into a stringlist asynchronously.

SaveToFile(const FileName: string)

Writes the contents of the stringlist into a file on the

local file system synchronously. Keep in mind that

SaveToFile will stop the code from futher execution

until resolved.

SaveToFileAsync(const FileName: string)
Writes the contents of the stringlist into a file on the

local file system asynchronously.

Example 1: Open file contents using TMiletusStringList

procedure TForm1.WebButton1Click(Sender: TObject);
var
 sl: TMiletusStringList;
begin
 sl := TMiletusStringList.Create;
 sl.LoadFromFileAsync('path\to\file', procedure
 begin
 WebMemo1.Text := sl.Text;
 sl.Free;
 end);
end;

Example 2: Save to file using TMiletusStringList

procedure TForm1.WebButton1Click(Sender: TObject);
var
 sl: TMiletusStringList;
begin
 sl := TMiletusStringList.Create;

678

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 try
 sl.Text := WebMemo1.Text;
 sl.SaveToFileAsync('path\to\file');
 finally
 sl.Free;
 end;
end;

TMiletusBinaryDataStream

Below is a list of the properties and methods for TMiletusBinaryDataStream. This class allows

reading and writing files using binary data. It's highly recommended to use the asynchronous

load and save functions where possible.

Properties for TMiletusBinaryDataStream

Property Description

Base64: string
Set or retrieve the stored data as a Base64 encoded

string.

Text: string Set or retrieve the stored data as a string.

AsArrayBuffer: TJSArrayBuffer Set or retrieve the stored data as a TJSArrayBuffer.

Methods for TMiletusBinaryDataStream

Property Description

LoadFromFile(const FileName: string)
Method to read data from a file from the local file

system synchronously.

LoadFromFileAsync(const FileName:

string; AProc: TMiletusLoadFileProc)

Method to read data from a file from the local file

system asynchronously.

LoadFromFileRequest(const FileName:

string; AProc: TMiletusLoadFileProc)

Method to read data from a file from the local file

system through an HTTP request.

SaveToFile(const: FileName: string)
Method to save data to a file on the local file system

synchronously.

SaveToFileAsync(const FileName: string)
Method to save data to a file on the local file system

asynchronously.

SaveToFileRequest(const: FileName:

string)

Method to save data to a file on the local file system

through an HTTP request.

679

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusClipboard

Below is a list of the properties and methods for TMiletusClipboard. This class allows reading

and writing clipboard data. Instead of creating a TMiletusClipboard

instance, MiletusClipboard can be used.

Properties of TMiletusClipboard

Property Description

AsText: string Sets or returns the data from the clipboard in plain text (string) format.

Methods of TMiletusClipboard

Property Description

HasFormat(AFormat: Word):

Boolean

Returns true if the clipboard has data available in the given format.

Supported parameter values are NC_TEXT, NC_BITMAP,

NC_METAFILEPICT, NC_PICTURE and NC_COMPONENT

TMiletusShell

Below is a list of available methods for TMiletusShell. This class allows invoking native

functionalities of the operating system. Instead of creating a TMiletusShell

instance, MiletusShell can be used.

Methods for TMiletusShell

Property Description

Beep Method to play the beep sound.

OpenExternal(URL: string):

Boolean
Method to open an external link.

OpenItem(FullPath: string)
Method to open an item on the operating system, using the default

application.

MoveItemToTrash(FullPath:

string)
Method to move an item to the trash.

ShowItemInFolder(FullPath:

string)
Method to show an item in the folder it is located in.

680

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusINIFile

TMiletusINIFile allows to create/read/write INI files on the operating system. Below is a list of

available methods for TMiletusINIFile.

Methods for TMiletusINIFile

Property Description

DeleteKey(const Section, Ident: string) Method to delete a key with the given Ident from Section.

EraseSection(const Section: string) Method to delete the given Section.

SectionExists(const Section: string):

TJSPromise

Function to check if a given Section exists. The return

value of the TJSPromise is Boolean.

ValueExists(const Section, Ident: string):

TJSPromise

Function to check if a given Ident exists in a Section. The

return value of the TJSPromise is Boolean.

ReadBool(const Section, Ident: string;

Default: Boolean): TJSPromise

Function to read a Boolean value from the INI file. The

return value of the TJSPromise is Boolean.

ReadDate(const Section, Name: string;

Default: TDateTime): TJSPromise

Function to read a date value from the INI file. The return

value of the TJSPromise is TDateTime.

ReadDateTime(const Section, Name:

string; Default: TDateTime): TJSPromise

Function to read a datetime value from the INI file. The

return value of the TJSPromise is TDateTime.

ReadFloat(const Section, Name: string;

Default: Double): TJSPromise

Function to read a float value from the INI file. The return

value of the TJSPromise is Double.

ReadInt64(const Section, Ident: string;

Default: Int64): TJSPromise

Function to read an int64 value from the INI file. The

return value of the TJSPromise is Int64.

ReadInteger(const Section, Ident: string;

Default: Integer): TJSPromise

Function to read an integer value from the INI file. The

return value of the TJSPromise is Integer.

ReadString(const Section, Ident: string;

Default: string): TJSPromise

Function to read a string value from the INI file. The

return value of the TJSPromise is string.

ReadSection(const Section: string; Strings:

TStrings): TJSPromise

Function to read the given Section from the INI file into

Strings. The return value of the TJSPromise is nil.

ReadSections(Strings: TStrings):

TJSPromise

Function to read all the available sections from the INI

file into Strings. The return value of the TJSPromise is

nil.

681

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

ReadSectionValues(const Section: string;

Strings: TStrings): TJSPromise

Function to read the values from the given Section into

Strings. The return value of the TJSPromise is nil.

ReadSubSections(const Section: string;

Strings: TStrings; Recurse: Boolean =

False): TJSPromise

Function to read the subsections of the given Section

into Strings. The return value of the TJSPromise is nil.

ReadTime(const Section, Name: string;

Default: TDateTime): TJSPromise

Function to read a time value from the INI file. The return

value of the TJSPromise is TDateTime.

ReadBinaryStream(const Section, Name:

string; Value: TStream): TJSPromise

Function to read a binary value into the Value TStream.

The return value of the TJSPromise is Boolean.

WriteBool(const Section, Ident: string;

Value: Boolean)
Method to write a Boolean value to the INI file.

WriteDate(const Section, Name: string;

Value: TDateTime)
Method to write a date value to the INI file.

WriteDateTime(const Section, Name:

string; Value: TDateTime)
Method to write a datetime value to the INI file.

WriteFloat(const Section, Name: string;

Value: Double)
Method to write a Float value to the INI file.

WriteInt64(const Section, Ident: string;

Value: Int64)
Method to write an int64 value to the INI file.

WriteInteger(const Section, Ident: string;

Value: Integer)
Method to write an integer value to the INI file.

WriteString(const Section, Ident, Value:

String)
Method to write a string value to the INI file.

WriteTime(const Section, Name: string;

Value: TDateTime)
Method to write a time value to the INI file.

WriteBinaryStream(const Section, Name:

string; Value: TStream)
Method to write binary value into the INI file.

Example usage:

procedure TForm1.WebButton1Click(Sender: TObject); async;

682

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

var

 f: TMiletusIniFile;

 d: TDateTime;

begin

 f := TMiletusIniFile.Create(ParamStr(0) + '.INI');

 try

 d := await(TDateTime, f.ReadDate('MySection', 'MyDateValue', Now));

 WebMemo1.Lines.Add(DateTimeToRFC3339(d));

 finally

 f.Free;

 end;

end;

TMiletusRegistry

TMiletusRegistry allows to create/read/write/delete registry values on Windows. On macOS and

Linux it falls back onto an INI file that is automatically created next to the binary application if it

doesn't exists yet. Below is a list of available properties and methods for TMiletusRegistry.

Properties for TMiletusRegistry

Property Description

RootKey: TMiletusRegistryRootKey

Sets the root key. Accepted values are:

MILETUS_CLASSES_ROOT,

MILETUS_CURRENT_USER,

MILETUS_LOCAL_MACHINE,

MILETUS_USERS,

MILETUS_CURRENT_CONFIG

Access: LongWord
Sets the access rights. Accepted values are:

KEY_ALL_ACCESS, KEY_WRITE, KEY_READ

Methods for TMiletusRegistry

Property Description

CloseKey: TJSPromise
Function to close the key that is currently opened. The

return value of the TJSPromise is nil.

CreateKey(const Key: string): TJSPromise Function to create a key. The return value of the

683

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TJSPromise is Boolean.

DeleteKey(const Key: string): TJSPromise
Function to delete a key. The return value of the

TJSPromise is Boolean.

DeleteValue(const Name: string):

TJSPromise

Function to delete a value from a key. The return value

of the TJSPromise is Boolean.

KeyExists(const Key: string): TJSPromise
Function to check if Key exists under RootKey. The

return value of the TJSPromise is Boolean.

OpenKey(const Key: string; CanCreate:

Boolean): TJSPromise

Function to open a given Key under the RootKey. If Key

does not exists, and CanCreate is True, it will create

Key. The return value of the TJSPromise is Boolean.

ValueExists(const Name: string):

TJSPromise

Function to check if a value exists in a key. The return

value of the TJSPromise is Boolean.

ReadCurrency(const Name: string):

TJSPromise

Function to read a Currency value from the registry. The

return value of the TJSPromise is Currency.

ReadBinaryData(const Name: string; var

Buffer: TBytes; BufSize: Integer):

TJSPromise

Function to read binary value from the registry into

Buffer. The return value of the TJSPromise is Integer.

ReadBool(const Name: string):

TJSPromise

Function to read a boolean value from the registry. The

return value of the TJSPromise is Boolean.

ReadDate(const Name: string):

TJSPromise

Function to read a date value from the registry. The

return value of the TJSPromise is TDateTime.

ReadDateTime(const Name: string):

TJSPromise

Function to read a datetime value from the registry. The

return value of the TJSPromise is TDateTime.

ReadFloat(const Name: string):

TJSPromise

Function to read a float value from the registry. The

return value of the TJSPromise is Double.

ReadInteger(const Name: string):

TJSPromise

Function to read an integer value from the registry. The

return value of the TJSPromise is Integer.

ReadString(const Name: string):

TJSPromise

Function to read a string value from the registry. The

return value of the TJSPromise is string.

ReadTime(const Name: string): Function to read a time value from the registry. The

684

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

TJSPromise return value of the TJSPromise is TDateTime.

WriteCurrency(const Name: string; Value:

Currency)
Method to write a currency value to the registry.

WriteBinaryData(const Name: string; const

Buffer: TBytes; BufSize: Integer)
Method to write binary value from Buffer to the registry.

WriteBool(const Name: string; Value:

Boolean)
Method to write a boolean value to the registry.

WriteDate(const Name: string; Value:

TDateTime)
Method to write a date value to the registry.

WriteDateTime(const Name: string; Value:

TDateTime)
Method to write a datetime value to the registry.

WriteFloat(const Name: string; Value:

Double)
Method to write a float value to the registry.

WriteInteger(const Name: string; Value:

Integer)
Method to write a integer value to the registry.

WriteString(const Name, Value: string) Method to write a string value to the registry.

WriteExpandString(const Name, Value:

string)
Method to write an expanded string value to the registry.

WriteTime(const Name: string; Value:

TDateTime)
Method to write a time value to the registry.

Example usage:

procedure TForm1.WebButton1Click(Sender: TObject); async;

var

 reg: TMiletusRegistry;

 b: Boolean;

 s: string;

begin

 reg := TMiletusRegistry.Create;

 try

 reg.RootKey := MILETUS_CURRENT_USER;

685

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 b := await(Boolean, reg.OpenKey('SOFTWARE\tmssoftware\TMS Web

Core\Test1\', False));

 if b then

 begin

 s := Await(string, reg.ReadString('StringValue'));

 WebMemo1.Lines.Add(s);

 end;

 finally

 reg.Free;

 end;

Other available methods

Property Description

GetCursorPos: TPoint Returns the cursor position.

GetCursorPosP: TJSPromise

Promise based equivalent of GetCursorPos for cross-platform

support. The return value of the TJSPromise is a TPoint that

contains the on-screen mouse position.

GetMiletusPath(APathType:

Integer; var APath: string)

Retrieves the requested path. Accepted APathType values are:

NP_APPDATA, NP_APPPATH, NP_DESKTOP,

NP_DOCUMENTS, NP_DOWNLOADS, NP_EXE, NP_HOME,

NP_MUSIC, NP_USERDATA, NP_PICTURES, NP_TEMP and

NP_VIDEOS

GetMiletusPathP(APathType:

Integer)

Promise based equivalent of GetMiletusPath for cross-platform

support. The return value of the TJSPromise is a string that

contains the path.

GetOSVersionP: TJSPromise

Promise based function to return the OS information. The return

value of the TJSPromise is a TMiletusOSVersion record, which

contains the Platform, Architecture, Name, Build, Major and Minor

properties of the OS. TMiletusOSVersion.ToString contains the OS

version as a formatted string.

MiletusTerminate Method to terminate the application from any Miletus window.

OpenDevTools

Method to open the developer tools. Only works on Windows and

Linux. For macOS please refer to the Debugging and accessing the

Developer Tools part of the documentation.

686

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Property Description

StartFileDrag(APath: string) Method to start the file dragging at the given APath.

LoadLibrary(ALibraryPath:

string): TJSPromise

Dynamically loads a library by AName. This TJSPromise returns

with a Boolean value which indicates if the loading was successful.

UnloadLibrary(ALibraryPath:

string)
Dynamically unloads a library by AName.

ExecProc(ALibraryPath:

string; AProc: string):

TJSPromise

Call AProc procedure from ALibraryPath loaded library.

ExecProc(ALibraryPath:

string; AProc: string; AData:

string): TJSPromise

Overload of ExecProc(ALibraryPath, AProc) with AData parameter

which can be used to send some data over to the library.

ExecFunc(ALibraryPath:

string; AFunc: string):

TJSPromise

Call AFunc function from ALibraryPath loaded library. This

TJSPromise returns with a string value.

ExecFunc(ALibraryPath:

string; AFunc: string; AData:

string): TJSPromise

Overload of ExecFunc(ALibraryPath, AFunc) with AData parameter

which can be used to send some data over to the library. This

TJSPromise returns with a string value.

 Miletus Raspberry Pi components

The following components and GPIO methods will work on a Raspberry PI only.

TMiletusRaspberryI2C

I²C is a standard 2 wire protocol to communicate with devices. The Raspberry Pi offers out of

the box two I²C interfaces. There is SCLK and SDA signal, i.e. the clock signal and the data

signal that is open-collector based input / output. Communicating over I²C works via sending

first an 8bit address and read or write bit over the SDA signal and then either write or read data

bits. Below is a list of available properties, methods and events for TMiletusRaspberryI2C.

Properties for TMiletusRaspberryI2C

Property Description

I2CAddress: Integer Address of the I²C device

687

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Methods for TMiletusRaspberryI2C

Method Description

Open Open the connection

Close Close the connection

WriteByte(AAddress: Byte; AData: Byte) Write a byte to a register address

WriteByteP(AAddress: Byte; AData: Byte):

TJSPromise

Promise based equivalent of WriteByte

WriteAddress(AAddress: Byte)

WriteAddressP(AAddress: Byte): TJSPromise Promise based equivalend of WriteAddress

WriteBuffer(ABytes: array of Byte; ASize:

Integer)

Write a buffer of data to a register address

WriteBufferP(ABytes: array of Byte; ASize:

Integer)

Promise based equivalent of WriteBuffer

ReadByte(AAddress: Byte): TJSPromise Read a byte from a given register address

ReadSmallInt(AAddress: Byte): TJSPromise Read a SmallInt from a given register address

ReadBuffer(AAddress: Byte; ASize: Integer) Read a buffer of data from a given register

address

Events for TMiletusRaspberryI2C

Property Description

OnOpen Event triggered when the connection is

opened

OnClose Event triggered when the connection is closed

TMiletusRaspberrySPI

The SPI protocol (Serial peripheral interface) uses a 3-wire connection, a clock and the data-in

and data-out signal. Other than this, it is similar to I²C, meaning, it also uses an address and

reads and writes data serialized over this 2 data wires. Below is a list of available properties,

methods and events for TMiletusRaspberrySPI.

Properties for TMiletusRaspberrySPI

Property Description

PortNum: TMiletusRaspiSPIPortNum Select the SPI port. Possible values are spi0

and spi1

Methods for TMiletusRaspberrySPI

688

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Method Description

Open Open the connection

Close Close the connection

ReadTransfer(var ABuffer: TBytes; AWSize,

ARSize: Integer)

Read a buffer of data

WriteTransfer(ABuffer: TBytes; AWSize:

Integer)

Write a buffer of data

WriteTransfer(ACommand: SmallInt; ABuffer:

TBytes; ADCPin: Integer = -1; ACSPin: Integer

= -1)

Write ACommand followed by ABuffer. If

ADCPin and/or ACSPin is defined, the

corresponding GPIO pin(s) will change to

low/high: DC low -> CS low -> ACommand ->

CS high -> DC high -> CS low -> ABuffer ->

CS high.

WriteMemBuffer Write all data from

TMiletusRaspberryMemoryBuffer through SPI.

Events for TMiletusRaspberrySPI

Property Description

OnOpen Event triggered when the connection is

opened

OnClose Event triggered when the connection is closed

TMiletusRaspberryUART

Out of the box, the Raspberry Pi is also equipped with the good old serial port, or called UART.

For serial communications, the baud rate, the bit count and parity can all be set via properties of

TMiletusRaspberryUART. Below is a list of available properties and methods for

TMiletusRaspberryUART.

Properties for TMiletusRaspberryUART

Property Description

BaudRate: Integer Set the baud rate

PortNum: TMiletusRaspberryUARTPortNum Select the UART port. Possible values are

miniUART, firstPL011 and devUSB

Parity: TMiletusRaspberryUARTParity Select the parity. Accepted values are

upNone, upOdd, upEven, upMark and

upSpace. The default values is upNone

BitCount: Integer Number of bits in the communication

689

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

StopBit: TMiletusRaspberryUARTStopBit Select the number of stop bits. Accepted

values are sb1 (1), sb1andHalf (1.5) and sb2

(2).

USBDevice: string The USB device path to connect to. When

PortNum is set to devUSB.

For example: /dev/ttyUSB0

Methods for TMiletusRaspberryUART

Method Description

Open Open the connection

Close Close the connection

WriteBuffer(ABuffer: TBytes; ALength:

Integer): TJSPromise

Write a buffer of data

ReadBuffer(var ABuffer: TBytes; ALength:

Integer): TJSPromise

Read a buffer of data

CanRead(ATimeout: Integer): TJSPromise Check if data can be read from the port.

Resolves to a Boolean

CanWrite(ATimeout: Integer): TJSPromise Check if data can be written to the port.

Resolves to a Boolean

EnableRTSToggle(AValue: Boolean) Enable/disable RTS driven communication

WaitingData: TJSPromise Check the number of bytes waiting for reading.

Resolves to an Integer

SendingData: TJSPromise Check the number of bytes waiting for

sending. Resolves to an Integer

ModemStatus: TJSPromise Check the modem status code. Resolves to an

Integer

SetRTS(AValue: Boolean): TJSPromise Set the value of the RTS signal

GetCTS: TJSPromise Get the value of the CTS signal

SetDTR(AValue: Boolean) Set the value of the DTR signal

GetDSR: TJSPromise Get the value of the DSR signal

Events for TMiletusRaspberryUART

Property Description

OnOpen Event triggered when the connection is

opened

OnClose Event triggered when the connection is closed

TMiletusRaspberryMemoryBuffer

690

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusRaspberryMemoryBuffer is a class to read from and write to a memory buffer at shell

application level. Large amounts of data that would be unnecessary to transfer between the web

application and the native shell application can be stored here and used with SPI directly.

Method Description

LoadFromFile(AFileName: string) Load a file from the local file system into the

memory buffer.

SaveToFile(AFileName: string) Save the contents of the memory buffer into a

file on the local file system.

ReadBuffer(var ABuffer: TBytes; ALength:

Integer; APosition: Integer = 0)

Read from the memory buffer.

WriteBuffer(ABuffer: TBytes; ALength: Integer;

APosition: Integer = 0)

Write ABuffer to the memory buffer.

Clear Clear the contents of the memory buffer.

GPIO Methods

GPIO stands for General Purpose Input/Output. It's a standard interface used to connect

microcontrollers to other electronic devices. With the following methods the GPIO pins on the

Raspberry PI can be configured as input or output, read from and written to.

Method Description

GPIOConfig(AGPIOPin: Integer; AMode:

TMiletusRaspberryGPIOMode): TJSPromise

Configure a pin to a read or write pin.

Resolves to an Integer

GPIOWrite(AGPIOPin: Integer; AValue:

Integer): TJSPromise

Write a value (0 or 1) to the given pin.

Resolves to an Integer

GPIORead(AGPIOPin: Integer): TJSPromise Read the value from the given pin. Resolves to

an Integer

TMiletusUpdate

Below is a list of available methods for TMiletusUpdate. This class allows manage automatic

application updates through HTTP requests. Instead of creating a TMiletusUpdate instance,

`MiletusUpdate` can be used.

The application update process happens in several steps:

691

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

1. Obtaining the control file (`.INF`) from an HTTP/HTTPS based location.

2. Processing of the `.INF` file by verifying new files, new versions and downloading the

necessary update files.

3. Extracting the new versions where necessary and restarting the application if needed.

Setting the update distribution location

Set the `URL` property to where the `.INF` file is located.

If the update is located on a password protected website (via HTTPS), you can use the

`Username` and `Password` properties for HTTP authentication. If Username and Password

properties are left empty, no HTTP authorization header will be added to the request.

Control file

The update control file is an `.INI` organized file to control the update. The general structure of

an update control file as follows:

[update_platform]

keywords

[files_platform]

count=N

[file1_platform]

keywords

…

[fileN_platform]

keywords

In this structure the platform suffix should always correspond to the target platform:

• `win` for Windows

• `macos` for macOS

• `linux` for Linux

692

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

TMiletusUpdate will automatically scan the control file for the platform it is running on. This way

a single control file can be used to handle the updates for the 3 supported platforms at the same

time.

Update section

In the [update_platform] section the following keywords are supported:

Keyword Description

newfileversion Major,minor,release,build (`,` or `.` separated)

The value of newfileversion will be compared

to the file version of the file specified by

localversion. Linux platforms do not support

file versions.

newchecksum Integer value. The value of newchecksum will

be compared to the CRC32 checksum of the

file specified by localversion.

localversion To be used in combination with newfileversion

or newchecksum.

Files section

The number of new files are defined in the [files_platform] section with the count keyword.

For example, an update distribution of 3 files for Linux:

[files_linux]

count=3

File section

The [filesN_platform] sections contain the details of each update file.

Supported keywords are:

Keyword Description

693

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

newfileversion The value of `newfileversion` will be compared

to the file version of the file specified by

`targetdir` + `localversion`. Linux platforms do

not support file versions.

newsize The value of newsize will be compared to the

file size of the file specified by targetdir +

localversion.

newchecksum The value of newchecksum will be compared

to the CRC32 checksum of the file specified

by localversion.

url The URL from which the update file will be

downloaded. The file should always be a ZIP

compressed file.

Localversion Defines the local file to be updated.

targetdir Defines in which directory the local file is

located. If empty, the currect directory will be

used.

params Command line parameters to be used with the

application when it is restarted at the end of

the update process.

restartmessage If used and non-empty, this message will be

displayed in a confirmation dialog.

mandatory Can be optionally set to 0 or 1. 1 means that

the file is mandatory for the update process.

If no newversion, newfilesize, newsize or newchecksum keywords are present the udpate file

will always be downloaded.

The targetdir determines in which folder the localversion file is located. If left empty, the current

directory will be used. There are predefined prefixes that will be automatically replaced by the

correct path depending on the target platform. These prefixes are:

• {WIN} – Windows folder (Windows only)

• {SYS} – Windows System32 folder (Windows only)

• {SYSWOW64} – Windows SysWOW64 folder (Windows only)

• {PF} – Program files folder (Windows only)

• {APP} – Application folder

• {TMP} – Temporary files folder

• {DOC} – Documents folder

• {HOME} – Home/user folder

694

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Debugging

In case something is not working as desired, it is often convenient to check what steps were

executed. This can be traced by setting the EnableLogging property to True. During execution

the application will create a log file with a default name in the temporary files folders. If the file

path should be different from the default, it can be set through the LogFilename property. The

LogFilename property also accepts {PREFIXES} as detailed above.

Properties for TMiletusUpdate

Property Description

EnableLogging If set to True, the application will produce a

log file. This file is saved to the temporary files

folder by default.

LogFilename If LogFilename is not empty, it will be used for

the log file.

URL The URL on which the update control file is

located.

Username If the update is located on a protected website

(via HTTPS), the username can be set with

this property. If left empty, no HTTP

authorization header will be added to the

request.

Password If the update is located on a protected website

(via HTTPS), the password can be set with

this property. If left empty, no HTTP

authorization header will be added to the

request.

Methods for TMiletusUpdate

Method Description

DoUpdate: TJSPromise Starts the automatic update process. It will

check for new versions and update the

application. It does not restart the application

automatically. The promise is resolved after

695

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

finishing this process.

NewVersionAvailable: TJSPromise Can be used to check if there are any new

versions before updating. Resolved with a

Boolean value indicating if there is a new

version available.

Restart Restart the application after updating. Can be

called after DoUpdate.

696

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Custom control development

Under the TMS RADical Web umbrella, TMS WEB Core is the foundation framework. As one of

the goals of TMS RADical Web is to bring RAD to web development for Delphi developers, it is

only logical that using components to develop web applications is an essential part. While TMS

WEB Core already comes with a wide range of components out of the box, having an extensible

component framework is a key feature. In this article, we will have a look at building custom

components for TMS WEB Core.

TMS WEB Core components can be categorized in roughly 4 types:

- Non-visual components

- Visual controls wrapping a HTML element or hierarchy of HTML elements

- Visual controls using the FNC abstraction layer (that cross-framework, cross-platform and

web-enabled)

- Visual controls wrapping jQuery controls

Non-visual components

The good news here is that non-visual components for TMS WEB Core are identical to non-

visual components for VCL or FMX applications. In TMS WEB Core, the base classes

TComponent & TPersistent are available and new non-visual components can be inherited from

these base classes and properties, events, methods can be added. The non-visual component

can be added to web forms just like VCL non-visual components can be added to VCL forms.

Note though that the standard VCL non-visual components included in Delphi can't be used as-

is on web forms. After all, all this code needs to run directly in the browser. But already out of

the box, TMS WEB Core offers many equivalents to standard VCL non-visual components like

the TWebTimer for example being equivalent for TTimer or a TWebDataSource as equivalent

for TDataSource.

There is one key requirement to make your custom non-visual component available on the

Delphi component palette when a web project is opened and that is to decorate the component

with an attribute TMSWebPlatform (defined in WebLib.Controls.pas):

 [ComponentPlatforms(TMSWebPlatform)]

 TMyWebComponent = class(TComponent)

 private

 // your private variables & methods here

 protected

 // your protected methods here

 public

 // your public methods here

 published

697

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 // your published properties and events here

 end;

Visual controls wrapping HTML elements

The architecture for this type of controls is based on writing a Pascal class that wraps the HTML

element or element hierarchy. The Pascal wrapper class will do the following:

- create the HTML element(s) in the DOM or bind to existing HTML elements in the HTML file

associated with the web form

- bind the HTML element JavaScript events to Pascal class methods

- reflect Pascal class properties on HTML element(s) attributes

To create such component, it can inherit from TCustomControl that already includes much of

the required logic. Key virtual methods and essential properties defined in TCustomControl are:

 TCustomControl = class(TComponent)

 protected

 function CreateElement: TJSElement; virtual;

 function ContainerElement: TJSElement; virtual;

 procedure BindElement; virtual;

 procedure UpdateElementSize; virtual;

 procedure UpdateElementVisual; virtual;

 procedure UpdateElementData; virtual;

 procedure CreateInitialize; virtual;

 published

 property ElementID;

 property ElementClassName;

 end;

Override the CreateElement function to create the HTML element or HTML element hierarchy

needed for the control. This function returns a reference to the parent or container HTML

element for the control. If only a single HTML element will be needed in the custom control, this

is as simple as:

function TMyCustomControl.CreateElement: TJSElement;

begin

 Result := document.createElement('DIV');

end;

The parent or container element returned by the CreateElement function can be retrieved from

other places in the control code via the function ContainerElement.

698

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The CreateElement function will be called automatically from the base class when the control

ElementID is empty at the time the control parent is set. When ElementID is not empty, the

container element is retrieved from the DOM based on ElementID value, i.e. the control class

will use the HTML element returned by document.getElementById(ElementID).

By default, JavaScript event binding is done on the container element. The base class already

binds the JavaScript onwheel, onclick, onmousedown, onmouseup, onmousemove,

onmouseleave, onmouseenter, onkeydown, onkeyup, onkeypress, onfocus and onblur events.

The base class already maps these JavaScript events on virtual class methods with a signature

compatible with VCL, that are easy to override. These are for example the available virtual key

and mouse event related methods:

 TCustomControl = class(TComponent)

 protected

 procedure MouseUp(Button: TMouseButton; Shift: TShiftState; X,Y:

Integer); virtual;

 procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X,Y:

Integer); virtual;

 procedure MouseMove(Shift: TShiftState; X,Y: Integer); virtual;

 procedure DoMouseEnter; virtual;

 procedure DoMouseLeave; virtual;

 procedure MouseWheel(Shift: TShiftState; WheelDelta: Integer; var

Handled: Boolean); virtual;

 procedure DblClick; virtual;

 procedure KeyDown(var Key: Word; Shift: TShiftState); virtual;

 procedure KeyPress(var Key: Char); virtual;

 procedure KeyUp(var Key: Word; Shift: TShiftState); virtual;

 end;

So, from our custom control, all we need to do is override these virtual methods, so it is very

similar to writing VCL custom controls.

Three more important virtual methods that will typically be overridden are:

 procedure UpdateElementSize; virtual;

 procedure UpdateElementVisual; virtual;

 procedure UpdateElementData; virtual;

The UpdateElementSize procedure is supposed to do the necessary HTML element attribute

changes when the position and/or size of the control changes. The base class TCustomControl

will already handle this for the container element Top,Left,Width & Height. (when the control is

absolute positioned that is).

699

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

The UpdateElementVisual method is the place where typically Pascal class properties that

affect the visual appearance of controls, are mapped onto HTML element(s) attributes.

The UpdateElementData method is the place where properties that affect data connected to

controls is updated in the HTML element. To illustrate this, let's assume our custom control

mapping on a HTML DIV element has a color property to set background color of the DIV and a

text property for the text in the HTML DIV element. The corresponding code for this is:

uses

 Classes, WEBLib.Controls, Web;

TMyCustomControl = class(TCustomControl)

private

 FColor: TColor;

 FText: string;

 procedure SetColor(const AValue: TColor);

 procedure SetText(const AValue: string);

protected

 function CreateElement: TJSElement; override;

 procedure UpdateElementVisual; override;

 procedure UpdateElementData; override;

published

 property Color: TColor read FColor write SetColor;

 property Text: string read FText write SetText;

end;

function TMyCustomControl.CreateElement: TJSElement;

begin

 Result := document.createElement('DIV');

end;

procedure TMyCustomControl.SetColor(const AValue: TColor);

begin

 if (AValue <> FColor) then

 begin

 FColor := AValue;

 UpdateElementVisual;

 end;

end;

procedure TMyCustomControl.SetText(const AValue: string);

begin

 if (AValue <> FText) then

 begin

 FText := AValue;

 UpdateElementData;

700

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 end;

end;

procedure TMyCustomControl.UpdateElementVisual;

var

 el: TJSHTMLElement;

begin

 inherited;

 el := TJSHTMLElement(ContainerElement);

 el.style.setProperty('background-color', ColorToHTML(Color));

end;

procedure TMyCustomControl.UpdateElementData;

var

 el: TJSHTMLElement;

begin

 inherited;

 el := TJSHTMLElement(ContainerElement);

 el.innerHTML := Text;

end;

Finally, to finish this first basic custom control example, let's add a click handler. As the base

class already binds the container element 'onclick', this is as simple as:

TMyCustomControl = class(TCustomControl)

published

 property OnClick;

end;

For the sake of completeness, let's discuss also how to map control methods on HTML element

JavaScript events. This is done with the HTML element addEventListener() method.

Example:

TMyCustomControl = class(TCustomControl)

protected

 function HandleDoXXXX(Event: TEventListenerEvent): Boolean; virtual;

 procedure BindEvents; override;

end;

procedure TMyCustomControl.BindEvents;

begin

 inherited;

 Container.addEventListener('xxxx',@HandleDoXXXX);

701

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

end;

function TMyCustomControl.HandleDoXXXX(Event: TEventListenerEvent):

Boolean;

begin

 // code to be executed when Javascript event XXXX is executed

 Result := true;

end;

Assume the HTML event has a JavaScript event named XXXX, the control class method

HandleDoXXXX will be called when this JavaScript event is triggered.

Visual controls using the FNC abstraction layer

A second approach to create custom controls for TMS WEB Core is by inheriting from the base

class TTMSFNCCustomControl defined in the TMS FNC Core. The good news is that by doing

so, the control code will work for VCL applications, FMX applications, LCL applications and of

course also web applications. Technically, for a web application, an FNC web control will

internally create a HTML CANVAS element. It maps all needed JavaScript events on this

CANVAS to the control virtual methods and it offers an FNC TTMSFNCGraphics Pascal

wrapper class to perform the painting of these controls.

To get started, the FNC units we will use are:

 WEBLib.TMSFNCCustomControl : defines the base class TTMSFNCCustomControl

 WEBLib.TMSFNCGraphics : defines the class TTMSFNCGraphics for painting

 WEBLib.TMSFNCTypes : defines various types used with custom controls

 WEBLib.TMSFNCGraphicsTypes : defines various types for handling painting

The class interface can be defined as:

 TMyFNCCustomControl = class(TTMSFNCCustomControl)

 private

 FColor: TColor;

 FText: string;

 FDown: boolean;

 procedure SetColor(const AValue: TColor);

 procedure SetText(const AValue: string);

 protected

 procedure HandleMouseDown(Button: TTMSFNCMouseButton; Shift:

TShiftState; X, Y: Single); override;

 procedure HandleMouseUp(Button: TTMSFNCMouseButton; Shift:

TShiftState; X, Y: Single); override;

 procedure HandleKeyPress(var Key: Char; Shift: TShiftState);

702

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

override;

 procedure Draw(AGraphics: TTMSFNCGraphics; ARect: TRectF);

override;

 published

 property Color: TColor read FColor write SetColor;

 property Text: string read FText write SetText;

 end;

The implementation for the property setters is:

procedure TMyFNCCustomControl.SetColor(const AValue: TColor);

begin

 if (AValue <> FColor) then

 begin

 FColor := AValue;

 Invalidate;

 end;

end;

procedure TMyFNCCustomControl.SetText(const AValue: string);

begin

 if (AValue <> FText) then

 begin

 FText := AValue;

 Invalidate;

 end;

end;

To have the control draw itself, all we need to do is override the FNC control Draw() virtual

method.

procedure TMyFNCCustomControl.Draw(AGraphics: TTMSFNCGraphics; ARect:

TRectF);

begin

 inherited;

 if FDown then

 AGraphics.Fill.Color := gcGray

 else

 AGraphics.Fill.Color := Color;

 AGraphics.DrawRectangle(ARect);

 AGraphics.DrawText(10,10,FText);

end;

703

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Let's implement for this basic sample a key event handler that will add the character pressed to

the control text and the mouse down that will show the control in a different color.

procedure TMyFNCCustomControl.HandleKeyPress(var Key: Char; Shift:

TShiftState);

begin

 Text := Text + Key;

end;

procedure TMyFNCCustomControl.HandleMouseDown(Button:

TTMSFNCMouseButton; Shift: TShiftState; X, Y: Single);

begin

 FDown := true;

 Invalidate;

end;

procedure TMyFNCCustomControl.HandleMouseUp(Button:

TTMSFNCMouseButton; Shift: TShiftState; X, Y: Single);

begin

 FDown := false;

 Invalidate;

end;

Visual controls wrapping jQuery controls

Creating a Pascal wrapping class for a jQuery UI control has in fact several similarities with

creating a wrapping class for HTML elements as jQuery UI controls are exactly that, a hierarchy

of HTML elements. What is a bit different is that typically the jQuery control is created by calling

a JavaScript function that creates it. The jQuery object then typically exposes its own events

and our control needs to bind to these events. To facilitate this, the TMS WEB Core framework

offers a base class TjQueryCustomControl. This class adds the virtual method InitjQuery() that

is called when the jQuery control needs to be created and the function GetJQID function that

returns the unique jQuery ID for our control. The jQuery control will by default be hosted in a

HTML DIV element. What we learned from wrapping HTML elements, is that the virtual methods

UpdateElementVisual() / UpdateElementData() are what is called when property changes need

to be reflected in the control jQuery settings or data.

To create a Pascal wrapper class for a jQuery control, the minimal approach is as such:

 TmyJQueryControl = class(TjQueryCustomControl)

 protected

 procedure InitJQuery; override;

 end;

procedure TmyJQueryControl.InitJQuery;

begin

704

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 // create the jQuery control here

end;

To show the basic concepts, we demonstrate this with a minimal wrapper for the a nice jQuery

progress bar offered here: https://kimmobrunfeldt.github.io/progressbar.js/

Following the docs of this library, to create the jQuery progressbar, we need the following

JavaScript code for a half circle progressbar:

 var bar = new ProgressBar.SemiCircle(div, {options});

To update the position of the progressbar, we can use bar.animate(position); // with position a

value between 0 and 1.

So, our full control code becomes:

 TjQueryProgressBar = class(TjQueryCustomControl)

 private

 FPosition: double;

 FBar: TJSElement;

 procedure SetPosition(const Value: double);

 protected

 procedure InitJQuery; override;

 procedure UpdateElementVisual; override;

 published

 property Position: double read FPosition write SetPosition;

 end;

{ TjQueryProgressBar }

procedure TjQueryProgressBar.InitJQuery;

var

 eh: TJSElement;

https://kimmobrunfeldt.github.io/progressbar.js/

705

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

begin

 eh := ElementHandle;

 asm

 this.FBar = new ProgressBar.SemiCircle(eh, {

 strokeWidth: 6,

 easing: 'easeInOut',

 duration: 1400,

 color: '#FFEA82',

 trailColor: '#eee',

 trailWidth: 1,

 svgStyle: null

 });

 end;

end;

procedure TjQueryProgressBar.SetPosition(const Value: double);

begin

 if (FPosition <> Value) then

 begin

 FPosition := Value;

 UpdateElementVisual;

 end;

end;

procedure TjQueryProgressBar.UpdateElementVisual;

begin

 inherited;

 if IsUpdating then

 Exit;

 if not Assigned(FBar) then

 Exit;

 asm

 this.FBar.animate(this.FPosition);

 end;

end;

Note here the asm/end blocks in the code. As for reasons of simplicity, we have not taken the

effort to create a Pascal wrapper class for the ProgressBar jQuery object, we need to directly

access this jQuery object with JavaScript. It is in the asm/end block in our Pascal code that we

can directly write this JavaScript code. This code does not get compiled but is just directly

generated inline as-is. As you can see, we map a private variable FBar to the created jQuery

object created in the InitJQuery call and from the UpdateElementVisual override, this FBar

object is accessed to call its animate() function to update the value. Also noteworthy is that from

the asm/end block, we access the instance as "this".

706

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

After creating an instance of this control, we can simply add the following code to the button

click handler:

 WebjQueryProgressBar1.Position := 0.5;

And the result becomes:

707

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Appendix

Browser locale values

Code Language

Code Language

Code Language

Code Language

Code Language

af Afrikaans

hr Croatian

el Greek

pl Polish

sx Sutu

sq Albanian

cs Czech

gu Gujurati

pt Portuguese

sw Swahili

ar Arabic

(Standard)

da Danish

ht Haitian

pt-br Portuguese

(Brazil)

sv Swedish

ar-dz Arabic

(Algeria)

nl Dutch

(Standard)

he Hebrew

pa Punjabi

sv-fi Swedish

(Finland)

ar-bh Arabic

(Bahrain)

nl-be Dutch

(Belgian)

hi Hindi

pa-in Punjabi

(India)

sv-sv Swedish

(Sweden)

ar-eg Arabic

(Egypt)

en English

hu Hungarian

pa-

pk

Punjabi

(Pakistan)

ta Tamil

ar-iq Arabic

(Iraq)

en-

au

English

(Australia)

is Icelandic

qu Quechua

tt Tatar

ar-jo Arabic

(Jordan)

en-bz English

(Belize)

id Indonesian

rm Rhaeto-

Romanic

te Teluga

ar-

kw

Arabic

(Kuwait)

en-ca English

(Canada)

iu Inuktitut

ro Romanian

th Thai

ar-lb Arabic

(Lebanon)

en-ie English

(Ireland)

ga Irish

ro-

mo

Romanian

(Moldavia)

tig Tigre

ar-ly Arabic

(Libya)

en-

jm

English

(Jamaica)

it Italian

(Standard)

ru Russian

ts Tsonga

ar-

ma

Arabic

(Morocco)

en-nz English (New

Zealand)

it-ch Italian

(Switzerland)

ru-

mo

Russian

(Moldavia)

tn Tswana

ar-

om

Arabic

(Oman)

en-

ph

English

(Philippines)

ja Japanese

sz Sami

(Lappish)

tr Turkish

ar-qa Arabic

(Qatar)

en-za English (South

Africa)

kn Kannada

sg Sango

tk Turkmen

ar-sa Arabic

(Saudi

Arabia)

en-tt English

(Trinidad &

Tobago)

ks Kashmiri

sa Sanskrit

uk Ukrainian

ar-sy Arabic

(Syria)

en-

gb

English

(United

Kingdom)

kk Kazakh

sc Sardinian

hsb Upper

Sorbian

ar-tn Arabic

(Tunisia)

en-us English

(United

States)

km Khmer

gd Scots Gaelic

ur Urdu

ar-ae Arabic

(U.A.E.)

en-

zw

English

(Zimbabwe)

ky Kirghiz

sd Sindhi

ve Venda

708

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Code Language

Code Language

Code Language

Code Language

Code Language

ar-ye Arabic

(Yemen)

eo Esperanto

tlh Klingon

si Singhalese

vi Vietnamese

ar Aragonese

et Estonian

ko Korean

sr Serbian

vo Volapuk

hy Armenian

fo Faeroese

ko-

kp

Korean (North

Korea)

sk Slovak

wa Walloon

as Assamese

fa Farsi

ko-kr Korean (South

Korea)

sl Slovenian

cy Welsh

ast Asturian

fj Fijian

la Latin

so Somani

xh Xhosa

az Azerbaijani

fi Finnish

lv Latvian

sb Sorbian

ji Yiddish

eu Basque

fr French

(Standard)

lt Lithuanian

es Spanish

zu Zulu

bg Bulgarian

fr-be French

(Belgium)

lb Luxembourgish

es-ar Spanish

(Argentina)

be Belarusian

fr-ca French

(Canada)

mk FYRO

Macedonian

es-bo Spanish

(Bolivia)

bn Bengali

fr-fr French

(France)

ms Malay

es-cl Spanish

(Chile)

bs Bosnian

fr-lu French

(Luxembourg)

ml Malayalam

es-co Spanish

(Colombia)

br Breton

fr-mc French

(Monaco)

mt Maltese

es-cr Spanish

(Costa Rica)

bg Bulgarian

fr-ch French

(Switzerland)

mi Maori

es-do Spanish

(Dominican

Republic)

my Burmese

fy Frisian

mr Marathi

es-ec Spanish

(Ecuador)

ca Catalan

fur Friulian

mo Moldavian

es-sv Spanish (El

Salvador)

ch Chamorro

gd Gaelic (Scots)

nv Navajo

es-gt Spanish

(Guatemala)

ce Chechen

gd-ie Gaelic (Irish)

ng Ndonga

es-hn Spanish

(Honduras)

zh Chinese

gl Galacian

ne Nepali

es-

mx

Spanish

(Mexico)

zh-hk Chinese

(Hong

Kong)

ka Georgian

no Norwegian

es-ni Spanish

(Nicaragua)

zh-cn Chinese

(PRC)

de German

(Standard)

nb Norwegian

(Bokmal)

es-pa Spanish

(Panama)

zh-sg Chinese

(Singapore)

de-at German

(Austria)

nn Norwegian

(Nynorsk)

es-py Spanish

(Paraguay)

zh-tw Chinese

(Taiwan)

de-

de

German

(Germany)

oc Occitan

es-pe Spanish

(Peru)

709

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

Code Language

Code Language

Code Language

Code Language

Code Language

cv Chuvash

de-li German

(Liechtenstein)

or Oriya

es-pr Spanish

(Puerto

Rico)

co Corsican

de-lu German

(Luxembourg)

om Oromo

es-es Spanish

(Spain)

cr Cree

de-ch German

(Switzerland)

fa Persian

es-uy Spanish

(Uruguay)

fa-ir Persian/Iran

es-ve Spanish

(Venezuela)

TUILanguage

This is the list of possible languages and the suffix used for the HTML filename used when the

language is set:

 lAfar = 'aa'

 lAbkhazian = 'ab'

 lAvestan = 'ae'

 lAfrikaans = 'af'

 lAkan = 'ak'

 lAmharic = 'am'

 lAragonese = 'an'

 lArabic = 'ar'

 lAssamese = 'as'

 lAvaric = 'av'

 lAymara = 'ay'

 lAzerbaijani = 'az'

 lBashkir = 'ba'

 lBelarusian = 'be'

 lBulgarian = 'bg'

 lBihari = 'bh'

 lBislama = 'bi'

 lBambara = 'bm'

 lBengali = 'bn'

 lTibetan = 'bo'

 lBreton = 'br'

 lBosnian = 'bd'

 lCatalan = 'ca'

 lChechen = 'ce'

710

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 lChamorro = 'ch'

 lCorsican = 'co'

 lCree = 'cr'

 lCzech = 'cs'

 lOldSlavic = 'cu'

 lChuvash = 'cv'

 lWelsh = 'cy'

 lDanish = 'da'

 lGerman = 'de'

 lDivehi = 'dv'

 lDzongkha = 'dz'

 lEwe = 'ee'

 lEnglish = 'en'

 lEsperanto = 'eo'

 lSpanish = 'es'

 lEstonian = 'et'

 lBasque = 'eu'

 lPersian = 'fa'

 lFulah = 'ff'

 lFinnish = 'fi'

 lFijian = 'fj'

 lFaroese = 'fo'

 lFrench = 'fr'

 lWesternFrisian = 'fy'

 lIrish = 'ga'

 lGaelic = 'gd'

 lGalician = 'gl'

 lGuarani = 'gn'

 lGujarati = 'gu'

 lManx = 'gv'

 lHausa = 'ha'

 lHebrew = 'he'

 lHindi = 'hi'

 lHiriMotu = 'ho'

 lCroatian = 'hr'

 lHaitian = 'ht'

 lHungarian = 'hu'

 lArmenian = 'hy'

 lHerero = 'hz'

 lInterlingua = 'ia'

 lIndonesian = 'id'

 lInterlingue = 'ie'

711

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 lIgbo = 'ig'

 lSichuanYi = 'ii'

 lInupiaq = 'ik'

 lIdo = 'id'

 lIcelandic = 'is'

 lItalian = 'it'

 lInuktitut = 'iu'

 lJapanese = 'ja'

 lJavanese = 'jv'

 lGeorgian = 'ka'

 lKongo = 'kg'

 lKikuyu = 'ki'

 lKuanyama = 'kj'

 lKazakh = 'kk'

 lKalaallisut = 'kl'

 lCentralKhmer = 'km'

 lKannada = 'kn'

 lKorean = 'ko'

 lKanuri = 'kr'

 lKashmiri = 'ks'

 lKurdish = 'ku'

 lKomi = 'kv'

 lCornish = 'kw'

 lKirghiz = 'ky'

 lLatin = 'la'

 lLuxembourgish = 'lb'

 lGanda = 'lg'

 lLimburgan = 'li'

 lLingala = 'ln'

 lLao = 'lo'

 lLithuanian = 'lt'

 lLubaKatanga = 'lu'

 lLatvian = 'lv'

 lMalagasy = 'mg'

 lMarshallese = 'mh'

 lMaori = 'mi'

 lMacedonian = 'mk'

 lMalayalam = 'ml'

 lMongolian = 'mn'

 lMarathi = 'mr'

 lMalay = 'ms'

 lMaltese = 'mt'

712

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 lBurmese = 'my'

 lNauru = 'na'

 lNdebele = 'nb'

 lNepali = 'nd'

 lNdonga = 'ng'

 lDutch = 'nl'

 lNorwegian = 'no'

 lNavajo = 'nv'

 lChichewa = 'ny'

 lOccitan = 'oc'

 lOjibwa = 'oj'

 lOromo = 'om'

 lOriya = 'or'

 lOssetian = 'os'

 lPanjabi = 'pa'

 lPali = 'pi'

 lPolish = 'pl'

 lPushto = 'ps'

 lPortuguese = 'pt'

 lQuechua = 'qu'

 lRomansh = 'rm'

 lRundi = 'rn'

 lRomanian = 'ro'

 lRussian = 'ru'

 lKinyarwanda = 'rw'

 lSanskrit = 'sa'

 lSardinian = 'sc'

 lSindhi = 'sd'

 lNorthernSami = 'se'

 lSango = 'sg'

 lSinhala = 'si'

 lSlovak = 'sk'

 lSlovenian = 'sl'

 lSamoan = 'sm'

 lShona = 'sn'

 lSomali = 'so'

 lAlbanian = 'sq'

 lSerbian = 'sr'

 lSwati = 'ss'

 lSotho = 'st'

 lSundanese = 'su'

 lSwedish = 'sv'

713

TMS SOFTWARE

TMS WEB Core

DEVELOPERS GUIDE

 lSwahili = 'sw'

 lTamil = 'ta'

 lTelugu = 'te'

 lTajik = 'tg'

 lThai = 'th'

 lTigrinya = 'ti'

 lTurkmen = 'tk'

 lTagalog = 'tl'

 lTswana = 'tn'

 lTonga = 'to'

 lTurkish = 'tr'

 lTsonga = 'ts'

 lTatar = 'tt'

 lTwi = 'tw'

 lTahitian = 'ty'

 lUighur = 'ug'

 lUkrainian = 'uk'

 lUrdu = 'ur'

 lUzbek = 'uz'

 lVenda = 've'

 lVietnamese = 'vi'

 lWalloon = 'wa'

 lWolof = 'wo'

 lXhosa = 'xh'

 lYiddish = 'yi'

 lYoruba = 'yo'

 lZhuang = 'za'

 lChinese = 'zh'

 lZulu = 'zu'

