TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

DEVELOPERS GUIDE

September 2019

Copyright © 2016 - 2019 by tmssoftware.com bvba
Web: https://www.tmssoftware.com

Email: info@tmssoftware.com

https://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Index
1] 1o o 11 Tox 1o o PSSR 4
L€ o I o T o] 0= 5 (1= PSSR 5
OPtIONIS s 7
(@] (o =T a1 K= Ui [0 o I TP PPPTTPRP 13
S 171 o PSS 15
eIl PrOPEITIES .. a e e e e e e e e e e e e 18
V= o 1 K ST PPPPPPRR 23
CUSTOM CII DIAWING .. a eaaens 31
L1011 o) ¢ L= | I TP 32
Grid cell Merging / SPITINGvvue e e e e e e e e e e e e e er e e eaaes 40
10111 0o PP PPPPPPPPPPPPN 42
10T R = 1T o] = Vol TSP 46
o 11 (] o PP PP PPPPPPPPPP 49
Y= 1T 1o o 54
(O 1 (ol U] F= 1o 1T 57
SOOI s 69
L€ o8] o] oo [PPSR 72
(0701 [¥] g 0] g I 01T 6715 (= [od = TSRS 76
L0} 11T 1] 1= 78
Y= 21T g To 1] o 1= PP 79
11T €] o [P PPPPP P PP PPPPPPPPPP 90
HTML formatted text, cell anchors, highlighting and marking in cells.............ccccccoeeiiiiiiiiinnnn. 94
General FireMonkey component usage guidliNgS...........coooiiiiiiiiiiiii e 101
VISUAL PAIT. .. 101
N [oT g Ry T U= T o T T PP 101
NE=TaaT e To [odo]01Y7=T o 11 o) o IR PP PP PPPPPPPPPPPP 101
Y TING e 102
L0 a1 o0 1= o1 105
SIS . 106
DS 1@ 1= o T TR 107
GIOUPDEIMO ...ttt e e e ettt e et e e e e ettt e e bbb e e e e e e et e e nnbb e e e e eaeeernee 108
(11T g1 g o | =] 4o T PP PP PP PPPPPPPPP 110
L CETo | =T = =T o oo RS 111
CliPDOAITIDEMIO ...t 112
Yo 11 1] o =7 o o NSRRI 113
(011 [@o] 11 7085 = o oo J U SRPPRPRRR 114
[=To 110l o D= o oo TP PPPPPPPPPPPP 115
=T 0 |1 o |1 o o P 117
SEYINGDEIMIO ...ttt 118

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

RTFIODEIMO ...ttt e ettt e e e e e et et e bbb r e e e e e et eeetebaa e e eeeaas 119
(=Y aploT=Ta o =To (@] g1 (o] 57 =T o T S 120
[1011 a1 | B 7=T 0 Lo PP PP PP PPPPPPPPPPP 121
(Y72 =TT g To T30 [=T 0 o PSSR 122
LiveBIiNdiNgS LOOKUP TEMOceviiiiiiiiiiiiiiiiiieieee ettt 135

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Introduction

The TMS FMX Grid offers a fully cross-platform, high-performing, versatile and feature packed
grid for the Embarcadero cross-platform framework FireMonkey. As such, it is designed for use
with Win32, Win64, macOS, iOS and Android operating systems. It is from the ground up
designed to respect the philosophy of style-able controls. At the same time, it is sufficiently
similar to the VCL TAdvStringGrid to make developers used to TAdvStringGrid quickly familiar
and up & running.

,
AR R R R AL AL A

w
= m = om

IMPORTANT NOTICE:

If the FireMonkey framework is new to you, please see the chapter “General FireMonkey
component usage guidelines” that offers an introduction that is recommended to read before
you start working with the TMS FMX Grid. Another interesting source of information is
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey Application Platform

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Grid properties

ColumnCount: integer: Gets or sets the number of columns displayed in the grid.

Columns: TTMSFMXGridColumns: A collection of columns to allow designtime / runtime
customization and persistence of grid cell layout / types and behavior such as sorting and
editing. More information about the columns collection can be found in the “Columns” chapter.

DefaultColumnWidth: single: The default width of a column. When new columns are added to
the grid, the width will default to this value. The width of a column can be changed per column
with grid.ColumnWidths[ACol]: single.

DefaultRowHeight: single: The default height of a row. When new rows are added to the grid,
the height will default to this value. The height of a row be changed per row with
grid.RowHeights[ARow]: single.

FixedColumns: integer: Gets or sets the amount of fixed columns in the grid. Fixed columns
are columns that remain visible at all times, that do not scroll along with the grid when scrolling
horizontal and that get a separate appearance, the fixed cell appearance.

FixedFooterRows: integer: Gets or sets the amount of fixed footer rows. Footer rows are rows
that are positioned at the bottom side of the grid, remain visible at all times, do not scroll along
with the grid when scrolling vertical and that get a separate appearance, the fixed cell
appearance.

FixedRightColumns: integer: Gets or sets the amount of fixed right columns. Right columns
are columns which are positioned at the right side of the grid, remain visible at all times and do
not scroll along with the grid when scrolling horizontal.

FixedRows: integer: Gets or sets the amount of fixed rows in the grid. Fixed rows are rows
which remain visible at all times and do not scroll along with the grid when scrolling vertical.

LeftCol: integer: Gets or sets the index of the first visible normal column that is selectable. Use
this property to programmatically control the horizontal scroll position in the grid.

Options: The various options available in the grid. (Explained in “Options” chapter)
RowCount: integer: Gets or sets the amount of rows in the grid.

ScrollMode: TTMSFMXGridScrollMode: Gets or sets the type of scrolling. There are 2 types of
scrolling: cellscrolling and pixelscrolling. With cellscrolling is selected, the scrolling is based on
entire columns or rows. A complete row or column is moved depending on the scroll direction.
With pixelscrolling is selected, the scrolling is based on the total width and height of the cells
allowing you to scroll more precisely and having cells partially visible.

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

SelectionMode: TTMSFMXGridSelectionMode: Gets or sets the type of selection with mouse
or keyboard that is allowed in the grid. The selection varies from single to multiple cells, column
and row selections, disjunct selections.

smNone: Hides selection, all other interaction remains active

smSingleCell: Selects a single cell. When changing selection, the previous cell state returns to
normal.

smSingleRow: Selects a complete row. When changing selection, the previous row state returns
to normal.

smSingleColumn: Selects a complete column. When changing selection, the previous column
state returns to normal.

smCellRange: Enables selecting multiple cells. When performing a shift-click, the range
between the previous cell and current cell is selected. A range of cells can also be selected
when holding and dragging the mouse over the grid.

smRowRange: Enables selecting multiple rows. When performing a shift-click, the range
between the previous row and current row is selected. A range of rows can also be selected
when holding and dragging the mouse over the grid.

smColumnRange: Enables selecting multiple columns. When performing a shift-click, the range
between the previous column and current column is selected. A range of columns can also be
selected when holding and dragging the mouse over the grid.

smDisjunctRow: Has the same functionality as smRowRange, and with the ability to distinct
select rows with the ctrl key.

smDisjunctColumn: Has the same functionality as smColumnRange and with the ability to
distinct select columns with the ctrl key.

smDisjunctCell: Has the same functionality as smCellRange and with the ability to distinct select
cells with the ctrl key.

TopRow: integer: Gets or sets the first normal visible row that is selectable. This property can
be used to programmatically control the vertical scroll position in the grid.

UseColumns: Boolean: public property used to toggle between persisted column data through
the columns collection at designtime/runtime (UseColumns = true) or dynamically created data
at runtime (UseColumns = false). More information about the Columns collection can be found
in the “Columns” chapter.

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Options

The options persistent class property hierarchically exposes many of the grid’s settings for
different areas of usage:

Bands
BandRowCount: integer: The amount of alternative colored rows (bands). The
appearance of
the band row is controlled by the style.
Enabled: Boolean: Enables banding on the grid. When not enabled, all rows have the
normal appearance.
NormalRowCount: integer: The amount of normal colored rows.

Borders
CellBorders: TTMSFMXGridBorders: Sets which borders (vertical, horizontal or all) are
visible on normal cells.
FixedCellBorders: TTMSFMXGridBorders: Sets which borders (vertical, horizontal or
all) are visible on fixed cells.

Clipboard
AllowColGrow: Boolean: Automatically adds the amount of columns if necessary when
pasting data of more cells than can fit into the grid.
AllowRowGrow: Boolean: Automatically adds the amount of rows if necessary when
pasting data of more cells than can fit into the grid.
Enabled: Boolean: Enables copy & paste shortcuts (Ctrl-X, Ctrl-V, Ctrl-C) at runtime
IgnoreReadOnly: Boolean: Enables or disables a paste or cut operation for readonly
cells.
PasteAction: TTMSFMXGridClipboardPasteAction: 2 options: overwrites the data of the
cells within range of the clipboard data, or inserts new rows and columns from the
focused cell

Editing
AutoComplete: Boolean: Enables autocompletion in the edit field when the editortype is
set to use an edit or an edit with button (etEdit, etEditBtn inplace editor types) and adds
a possibility to display the autocomplete list with a popup or directly in the edit area.
AutoCompleteltems: TStringList: The items that appear when autocompletion is
enabled.
AutoHistory: Boolean: Automatically adds the text when editing is finished to the
AutoCompleteltems list.
Enabled: Boolean: Enables or disables editing in the grid.
AutoPost: Livebindings only, automatically posts the edited data to the database when
the dataset is in edit mode.
AutoCancel: Livebindings only, automatically cancels the dataset when in edit mode.

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Filtering

Footer

DropDown: Boolean: Shows a dropdown button on the fixed row that is set with
DropdownFixedRow: integer: Selects the fixed row where the filter dropdown appears
in case there are more than one fixed row. By default, the filter dropdown appears in the
first fixed row (0)

DropDownHeight: integer: Gets or sets the height of the filter dropdown list.
DropDownWidth: integer: Gets or sets the width of the filter dropdown list.
MultiColumn: boolean: allows automatic multicolumn filtering.

Rows: TTMSFMXGridFilterRows: Filtering applies to all cells in a specific filtered column
or only the normal cells, which exclude summary, fixed and node cells. By default, only
normal row cell values are used in the filter operation.

Visible: Boolean: When true, shows the footer area of the grid.

Grouping

AutoCheckGroup: Boolean: When true and rows, including the group header rows have
checkboxes, a click on the group header row’s checkbox, will check/uncheck all rows
within the group.

AutoSelectGroup:Boolean: When true, a click on the group header row will perform a
selection of all rows within the group. For this automatic selection of rows within a group
to work, the SelectionMode should be either smCellRange or smDisjunctRow
GroupCalcFormat: string: sets the format to use to display a group calculation result in
the group summary row.

MergeHeader: Boolean: when true, the header row of a group is automatically merged.
MergeSummary: Boolean: when true, the summary row of a group is automatically
merged.

ShowGroupCount: Boolean: when true, the number of rows within a group is
automatically displayed in the group header.

Summary: Boolean: when true, when grouping is applied, a summary row is
automatically added for each group.

Header

10

Visible: Boolean: When true, shows the header area of the grid.

AlwaysQuotes: Boolean: When true, all text is exported within double quotes when
exporting to CSV files. When false, only cell text that contains a space character or the
delimiter character is surrounded by double quotes.

Delimiter: Char: Gets or sets the delimiter character used to export/import CSV files.
When Delimiter equals #0, the grid will try to determine the used column delimiter itself
and will use the default ‘,” delimiter to export, otherwise it will use the specified Delimiter.
QuoteEmptyCells: Boolean: When true, an empty cell is exported as “, otherwise it is
exported as just empty text.

XMLEnNncoding: string: Gets or sets the XML encoding attribute for the generated XML
file during export. By default, XMLEncoding is: ISO-8859-1

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

SaveVirtualCellData: Saves data set in OnGetCellData to format of choice when
exporting.

HTMLEXxport
BorderSize: integer: sets the HTML border size of the HTML table exported from the
grid.
CellPadding: integer: sets the HTML cell padding used in the HTML table exported from
the grid.
CellSpacing: integer: sets the HTML cell spacing used in the HTML table exported from
the grid.
ConvertSpecialChars: Boolean: when true, special characters like &, “, ... will be
exported as HTML special characters & , " etc...
Exportimages: Boolean: when true, images used in the grid will be exported as
separate set of images in the subfolder \Images where the HTML file is generated.
FooterFile: string: specifies a HTML file that will be included as footer in the generated
HTML file.
HeaderFile: string: specifies a HTML file that will be included as header in the generated
HTML file.
NonBreakingText: Boolean: exports spaces in cell text as to ensure there is no
automatic text breaking in the exported HTML.
PrefixTag: string: prefix that is rendered just before the HTML table.
SaveColors: Boolean: when true, all colors are exported to HTML.
SaveFonts: Boolean: when true, all font settings per cell are exported to HTML.
Show: Boolean: when true, the generated HTML file is automatically shown with the
default viewer on the operating system after generation with grid.SaveToHTMLY().
SuffixTag: string: suffix that is rendered after the HTML table.
Summary: string: sets the HTML summary tag attribute text.
TableStyle: string: sets the HTML table attributes
Width: Boolean: sets the width as % of the generated HTML table.
XHTML: Boolean: when true, generates HTML table according to XHTML spec.

Keyboard
AllowCellMergeShortCut: Boolean: When true, this enables the shortcuts Ctrl-M and
Ctrl-S to perform merging & splitting of selected cells.
ArrowKeyDirectEdit: Boolean: Enables or disables direct editing when navigating with
the arrowkeys left / right / up / down in the editor. When the up / down key is pressed the
previous / next row cell is selected in the same column. When left / right key is pressed
the previous / next column cell is selected in the same row. When pressing the left / right
key the selection is only changed when the cursor is at the end of the text or the
beginning of the text.
DeleteKeyHandling: TTMSFMXGridDeleteKeyHandling Enables or disables deleting a
row in the grid.
EnterKeyDirectEdit: Boolean: Enables or disables direct editing when pressing the
enter key in the previous cell and when EnterKeyHandling property is set.
EnterKeyHandling: TTMSFMXGridEnterKeyHandling:Sets the way of handling the
enter key after editing. After pressing the enter key you can move to the next column or

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

row, and optionally choose if the columncount / rowcount needs to be increased when
pressing enter at the end of the column / row.

InsertKeyHandling: TTMSFMXGridinsertKeyHandling: Enables or disables inserting a
row in the grid.

PageScrollSize: integer: Sets the amount of cells that are scrolled when pressing
pagedown or pageup. The PageScrollSize property is 0 by default which means that the
PageScrollSize is automatically calculated based on the size of the grid and the size of
the cells.

TabKeyDirectEdit: Boolean: Enables or disables direct editing when pressing the tab
key in the previous cell.

TabKeyDirection: TTMSFMXGridTabKeyDirection:Sets the direction when pressing the
tab key on a cell. The next cell will be located the next column or the next row.
TabKeyHandling: TTMSFMXGridTabKeyHandling:Sets what the tab key handling
should do when at the end of a row / column or when at the beginning or end of the grid.
Here the tab key can move to the next control in the application, remain inside the grid or
use a mixed mode where the next control is focused if the tab key is pressed on the last
cell / first cell of the grid depending on the Direction and if the shift key is pressed.

Lookup
CaseSensitive: Boolean: Enables or disables case sensitive lookup.
Enabled: Boolean: Enables or disables lookup. When lookup is enabled, editing must be
disabled in order to function properly.
Incremental: Boolean:Adds the typed character to an internally used lookup string that
is used to search after the correct cell inside the focused column. When Incremental is
false, the internal lookup string is set empty each time a key is pressed. The lookup will
then only search for text in cells starting with the last typed character.

Mouse
AutoDragging: Boolean: Enables or disables auto dragging when performing column
dragging / row dragging. When enabled the grid performs automatic dragging, in the
direction where the mouse is going, when the mouse is outside the grid. The further the
mouse is removed from the edges the faster the scrolling will occur.
AutoScrolling: Boolean: Enables or disables auto scrolling. When enabled the grid
performs automatic scrolling, in the direction where the mouse is going, when the mouse
is outside the grid. The further the mouse is removed from the edges the faster the
scrolling will occur.
AutoScrollingInterval: integer: Sets the interval of the timer that takes care of the
automatic scrolling.
AutoScrollingSpeed: integer: Sets the speed of the automatic scrolling.
ColumnDragging: Boolean: Enables column dragging. When pressing and dragging a
column, the cursor changes and a column can be swapped with a different column.
ColumnSizing: Boolean: Enables column sizing. When hovering with the mouse over
the normal grid cells. The cursor will change if the column can be sized. This can also be
controlled with events.
DirectComboDrop: Boolean: Enables direct combo drop when clicking on a cell and the
editor is set to a combo type editor
DirectEdit: Boolean: Enables direct editing when clicking on a cell. When DirectEdit is
false.The cell must be selected first and then clicked again to allow editing.

10

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

FixedColumnSizing: Boolean: Enables fixed column sizing. When hovering with the
mouse over the fixed grid cells. The cursor will change if the column can be sized. This
can also be controlled with events.

FixedRowsSizing: Boolean: Enables fixed row sizing. When hovering with the mouse
over the fixed grid cells. The cursor will change if the row can be sized. This can also be
controlled with events.

RowDragging: Boolean:Enables row dragging. When pressing and dragging a row, the
cursor changes and a row can be swapped with a different row.

RowsSizing: Boolean: Enables row sizing. When hovering with the mouse over the fixed
grid cells. The cursor will change if the row can be sized. This can also be controlled
with events.

TouchScrolling: Boolean: Enables or disables touch scrolling. With touch scrolling, the
area of the grid can be used to scroll. This can only be used in combination with single
cell, row or column selectionmode.

TouchScrollingSensitivity: single: The sensitivity of the touch scrolling.
WheelScrollSize: integer: The amount of cells that are scrolled when using the mouse-
wheel to navigate.

Printing
DescriptionColor: Color of the font used when printing a description on a page.
DescriptionFont: The font used when printing a description on a page.
Description: string: The description used on a page.
DescriptionPosition: TTMSFMXGridPrintPosition: The position of the description.
PageNumberColor: Color of the font used when printing a pagenumber on a page.
PageNumberFont: The font used when printing a pagenumber on a page.
PageNumberFormat: string: The format of the page number.
PageNumberPosition: TTMSFMXGridPrintPosition: The position of the page number.
PrintCellBackGround: Boolean: Sets if the cell background must be painted or not and
whether only the fixed and normal cell background needs to be drawn or the cell
background as is.
PrinterOrientation: TPrinterOrientation: Sets the page orientation of the printer.
PrintMargins: TBounds: Sets the margins used for drawing the grid. The grid
automatically calculates the amount of pages necessary to print the complete grid or a
selection of it.
RepeatFixedColumns: Boolean: Repeats the fixed columns on each page.
RepeatFixedRows: Boolean: Repeats the fixed rows on each page.
TitleColor: Color of the font used when printing a title on a page.
TitleFont: The font used when printing a title on a page.
Title: string: The title used on a page.
TitlePosition: TTMSFMXGridPrintPosition: the position of the title.

Rendering
Mode: the mode used to render the cells in the grid. By default all cells that contain
children, controls are rendered

Sorting
BlankPosition: TTMSFMXGridSortBlankPosition: determines where empty (blank) cells
should be positioned during sorting, ie. blFirst as first cells in ascending sorts or blLast

11

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

as last cells in ascending sorts.

Columns: TTMSFMXGridSortColumns: determines what columns will be sorted. By
default, scAll is set, meaning that when sorting is performed, the cells in all columns will
be reordered by the sort. When set to scNormal, fixed column cells will not be affected
by the sort. When set to scSingle, only the cells of the column for which the sort is
performed will be reordered.

FixedColumns: Boolean: when true, fixed column header cells can be clicked as well to
trigger a sort.

IgnoreBlanks: Boolean: when true, sorting will ignore spaces inside the text for

comparisation

IgnoreCase: Boolean: When true, perform sorting always without case sensitivity.
Mode: TTMSFMXGridSortingMode: selects whether sorting by clicking on fixed column
header cells is possible or not and whether it triggers a single column or multi column
sort.

MultiColumn: boolean: When true, multiple columns can be defined as sort criteria. The
primary sort column is set with a simple click, additional secondary sort columns are set
with shift click.

URL
Color: TAlphaColor: sets the color hyperlinks in the grid.
Full: Boolean: when true, the hyperlink is displayed with its protocol identifier. When
false, the protocol identifier is hidden, the URL without protocol identifier is shown in
URL color and optionally underlined in the grid cell.
Open: Boolean: when true, automatically open the hyperlink when click in the default
browser.
Show: Boolean: when true, automatically show hyperlinks (i.e. text with prefix http://,
file://, ftp://, nntp://, mailto: as hyperlinks.
Underline: Boolean: when true, automatically show hyperlinks in cells underlined
Scrolling

VerticalScrollBarVisible: Boolean: Shows or hides the vertical scrollbar.
HorizontalScrollBarVisible: Boolean: Shows or hides the horizontal scrollbar.

12

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Organisation

In its basic layout, a grid is a matrix of cells with mainly fixed cells (not editable) and normal
cells. A fixed cell will not scroll along with normal cells and thus remain visible on any of the 4
sides of the grid. This number of fixed rows and/or columns on the 4 sides of the grid is
controlled by properties: grid.FixedRows, grid.FixedColumns, grid.FixedFooterRows,
grid.FixedRightColumns. In addition to fixed, non scrolling rows and/or columns, the grid can
also perform column freezing. These are columns or rows of normals cells that will not scroll
along with the other columns or rows in the grid. The number of freeze columns and rows is set
with grid.FreezeColumns, grid.FreezeRows. Cells are accessible via
grid.Cells[Column,Row]:string and the selected cell(s) can be set with properties:

grid.Selection := CellRange (StartCol,StartRow,EndCol,EndRow) ;
grid.FocusedCell := Cell (Col,Row) ;

The grid features several selection modes: single cell selection, single row selection, single
column selection, cell range selection, row range selection, column range selection, disjunct row
selection, disjunct cell selection and disjunct column selection. The selection mode is chosen
with the property:

grid.SelectionMode: TTMSFMXGridSelectionMode;

The scroll position in the grid can be programmatically set or retrieved via the properties
grid.LeftCol: integer, grid. TopRow: integer.

Note that scrolling in the grid can be performed in two ways: cell scrolling and pixel level
scrolling. In cell scrolling mode, the minimum quantity of a scroll is an entire column or row, in
pixel scrolling mode, scrolling is per pixel and can thus be done on sub cell level. The scrolling
mode is controlled by the property:

grid.ScrollMode = (smCellScrolling, smPixelScrolling)

When navigating through the grid, the grid will automatically scroll when selecting a cell that is
partially visible and bring it in view. When clicking and dragging the mouse outside of the grid
normal cells area, the grid will start an autoscroll operation which will scroll with a delta that is
automatically calculated based on the distance of the mouse to the last position inside the grid.

This automatic scrolling and some additional properties to control speed and interval can be set
under grid.Options.Mouse.

The size of columns & rows is controlled by grid.ColumnWidths[ColumnIndex]: single,

grid. RowHeights[RowlIndex]: single and it can be configured that the user can resize columns or
rows at runtime with: grid.Options.Mouse.ColumnSizing,
grid.Options.Mouse.FixedColumnSizing, grid.Options.Mouse.RowSizing,
grid.Options.Mouse.FixedRowSizing.

13

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

The amount of displayed columns and rows are set with grid.ColumnCount: integer and
grid.RowCount: integer properties.

Rows and columns can be inserted / deleted by pressing the Insert / Delete key on the
keyboard. Note that when a row is inserted or deleted from the user interface, the events
OnCanlinsertRow, OninsertRow, OnCanDeleteRow,OnDeleteRow are triggered. The
OnCanlnsertRow, OnCanDeleteRow events occur before the actual insert or delete happens
and have the extra parameter Allow: Boolean that can be set to false to disallow a specific row
insert or delete.

Programatically, following methods are available inserting, deleting columns or rows but also to
move and swap columns or rows:

grid.InsertRow(ARow: integer): insert a new row at row ARow

grid.InsertRows(ARow, NumRows: integer): insert NumRows rows at row ARow
grid.DeleteRow(ARow: integer) : remove row with index ARow from the grid
grid.DeleteRows(ARow, NumRows: integer): remove NumRows rows at row ARow.
grid.InsertColumn(ACaol: integer): insert a new column at column ACol
grid.DeleteColumn(ACol: integer): remove column with index ACol from the grid
grid.MoveRow(FromRow, ToRow: integer): move row from index FromRow to index ToRow
grid.MoveColumn(FromCol, ToCol: integer): move column from index FromCol to index ToCol
grid.SwapRows(Row1,Row2: integer): swap content of Rowl and Row2
grid.SwapColumns(Col1,Col2: integer): swap content of Coll and Col2

The keyboard interaction can be modified with the grid.Options.Keyboard.InsertKeyHandling
and grid.Options.Keyboard.DeleteKeyHandling properties.

Columns and Rows can be moved to another position by clicking on the fixed column / row and
dragging them to a different position. When dragging, a visual copy is made of the column and
is then moved transparently on the grid. When releasing the column or row is swapped with the
column or row on the new position. The Column and row dragging can be enabled in the
grid.Options.Mouse.ColumnDragging and grid.Options.Mouse.RowDragging properties.

14

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Styling

The TMS FMX Grid offers a completely style-able look and feel. When dropping the component
on the form you will notice various elements that are all separately style-able. To apply a
different style, right-click the component and click “Edit Custom Style” or “Edit Default Style”
depending if you want to apply the new style to all new grid instances or only to the current
selected grid. More on styling can be found in the “FireMonkey Styles” chapter.

o) A TMSFMXGrid15tylel: TLayout ao x
A
= 1) » grideontainer: TRectangle ao x
3) |
— 2) gridhorizontalserollbar: TScrollBar a0 x
| 3)grid'v'erti:als:rallbar:“S:r:uIIBar ao x
A gridwrapper: TLayout ao x
4 grideells: TLayout ao x
5] gridheader: TRectangle aoe x
6) gridfooter: TRectangle ao x
1) 3)5 7) normalcelllayout: TIMSFXGridCell ao x
4) | 8) selectedcelllayout: TTMSFIMXGridCell 8o x
| 9)focusedeelllayout: TIMSFMXGridCell a8o x
10) groupedcelliayout: TTIMSFMXGridCell ao x
11)summarycelllayout: TTMSFMXGridCell ao x
12]ﬁx dselectedcelllayout: TTMSFMXGridCell @ X
S)ﬁx deelllayout: TIMSFMXGridCell 8o x
14)indexedsorttext: TText a0 x
6) v]lnd xedsortlayout: TRectangle a0 x
<[2) - 16) sorttext: TText a0 x
o 17 sortlayout: TRectangle ao x
15) 14):1aau sort indicator w Fced DropDownButton image
) olumndraglayout: TRectangle a0 x
Mormal 7 Band 20) TG o 21)
17)-* TEsmn A]ro vdraglayout: TRectangle aoe x
TLabel aoe x
- Tlabel © X
8} Fixed 13] 18) Column Drag Layout _) &
20) bandcelllayout: TTMSFMXGridCell ao x
TLabel a8o x
9) | Fixed/ Selected 19) Row Drag Layout 21)fixedcelidropdownbitmap: TTMSFMXEBitmap @ @ X
g y
12)
m e 11}

1) The container of the grid that contains all elements.
2) The horizontal scrollbar of the grid.

3) The vertical scrollbar of the grid.

4) The container of the cells.

5) The header of the grid.

6) The footer of the grid.

7) The normal cell layout.

8) The layout of a cell that is selected.

9) The layout of a cell that is selected and focused.

10) The layout for a header row when using grouping.
11) The layout for a summary row when using grouping.
12) The layout for a fixed cell that indicates where a normal cell is selected.
13) The layout for a fixed cell.

15

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

14) The indexed sort indicator text displayed when using indexed sorting.

15) The indexed sort indicator layout.

16) The normal sort indicator text displayed when using normal sorting.

17) The normal sort indicator layout.

18) The drag layout when performing a column drag operation.

19) The drag layout when performing a row drag operation.

20) The layout for the alternate rows when using banding.

21) The bitmap used in the dropdown when using filtering and the dropdown button is visible on
a fixed cell.

Each element can also be accessed programmatically with a function grid.GetDefault*. If an
item is not accessible by the grid directly, you can access it by using
grid.FindStyleResource(‘style name of the element’).

TMSFMXGridil. GEEDEfa'.JltI

function GetDefaultIndexedSortFill: TBrush;

function GetDefaultSortStroke: TBrush;

function GetDefaultIndexedSortStroke; TBrush;

function GetDefaultSortFont: TFont;

function GetDefaultIndexedSortFont: TFont;

function GetDefaultSortFontFill: TBrush;

function GetDefaultIndexedSortFontFill; TBrush;

function GetDefaultGrouplayout{AControl; TControl = nil); TTMSFMXGridCell;
function GetDefaultSummaryLayout{AControl: TControl = nil); TTMSFMXGridCell;
function GetDefaulthormalLayout{AControl: TControl = nil): TTMSFMXGridCell;
function GetDefaultselectedLayout{AContral: TControl = nil): TTMSFMXGridCell;
function GetDefaultFixedLayout{AControl: TContral = nil): TTMSFMYGridCell;
function GetDefaultFocusedLayout{AControl; TControl = nil): TTMSFMYGridCell;
function GetDefaultFicedselectedLayout{AControl: TControl = nil): TTMSFMEGridCell;
function GetDefaultBandLayout(aControl: TContral = nil): TTMSFMXGridCell;
function GetDefaultDropDownBitmap: TTMSFMYBitmap;

Note: Modifications can be done programmatically in the form’s OnCreate of the application only
after the grid.UpdateStyle is called. This is necessary to force the FireMonkey framework to load
the correct style template for the grid first. When the app is running, the grid.UpdateStyle call is
not necessary since the grid has already loaded the style.

Below is a sample of a grid that is styled, showing the cell layout and the result:

16

tmssoftware:com

Maormal Band

Focused Fixed / Selected

Grouped Summary

____ml

TMS SOFTWARE
TMS FMX Grid

DEVELOPERS GUIDE

17

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Cell Properties

Cells[Col,Row: Integer]: string

Sets the text of a cell. Col & row are the visual column & row coordinates of the cell.
Healla Warld!

Floats[Col,Row: Integer]: double

Gets or sets the value of a cell as a double.

AllCells[Col,Row: Integer]: string

Similar behavior as Cells[Col, Row: Integer]: TCellData

This accesses the cells with column & row coordinates irrespective of column or row hiding.
Coordinates are real column, row coordinates.

StrippedCells[Col,Row: Integer]: string

Returns the text of a cell with all HTML formatting removed.

AllFloats[Col,Row: Integer]: double

Gets or sets the value of a cell as a double. This accesses the cells with column & row

coordinates irrespective of column or row hiding where grid.Floats[Col,Row] access the value
based on displayed cell coordinates.

454

ColumnWidths[Col: Integer]: single

Gets or sets the width of a column. When no column width is set for a column, the width is set to
DefaultColumnWidth.

Heallz Werld!
RowHeights[Row: Integer]: single

Gets or sets the height of a row. When no row height is set for a row, the height is set to
DefaultRowHeight

18

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Hello Werld!

Colors[Col,Row: Integer]: TAlphaColor

Sets a background color on the cell.

Helle Werld!

Note that it is also possible to set the cell color dynamically via the event OnGetCellLayout.

procedure TForm4.TMSFMXGridlGetCellLayout (Sender: TObject; ACol, ARow:

Integer;
Alayout: TTMSFMXGridCellLayout; ACellState: TCellState);
begin
if (ACol = 3) and (ARow >= TMSFMXGridl.FixedRows) then
ALayout.Fill.Color := claRed;
end;

Angles[Col,Row: Integer]: single

Sets an angle of the text in a cell in degrees.

CellControls[Col,Row: Integer]: TFMXObject

Adds any FireMonkey control to a cell.

Buttonl

HorzAlignments[Col,Row: Integer]: TTextAlign

Changes the horizontal text alignment in a cell.
Hellz Warld!

19

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Note that is also possible to dynamically set the cell text alignment via the event
OnGetCellLayout:

procedure TForm4.TMSFMXGridlGetCellLayout (Sender: TObject; ACol, ARow:
Integer;
Alayout: TTMSFMXGridCellLayout; ACellState: TCellState);
begin
if ARow < TMSFMXGridl.FixedRows then
AlLayout.TextAlign := TTextAlign.taCenter;
end;

VertAlignments[Col,Row: Integer]: TTextAlign

Changes the vertical text alignment in a cell.

Hello Werld!

FontSizes[Col,Row: Integer]: single

Changes the size of the font of the text in a cell.

Hello World!

FontStyles[Col,Row: Integer]: TFontStyles

Changes the style of the font of the text in a cell.

Fleeibog i

FontNames[Col,Row: Integer]: string

Changes the name of the font of the text in a cell.
Hette Wortit!

FontColors[Col,Row: Integer]: TAlphaColor

20

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Changes the color of the font of the text in a cell.

Note that the cell font can also be set dynamically with the event OnGetCellLayout. In this
sample, the font is set red for negative values in the grid:

procedure TForml.TMSFMXGridlGetCellLayout (Sender: TObject; ACol, ARow:

Integer;

Alayout: TTMSFMXGridCellLayout; ACellState: TCellState);
var

cv: Double;
begin

if (ACol >= TMSFMXGridl.FixedColumns) and (ARow >= TMSFMXGridl.FixedRows)
then

begin
cv := TMSFMXGridl.AllFloats[ACol,ARow];
if cv < 0 then
ALayout.FontFill.Color := claRed
else
Alayout.FontFill.Color := claGreen;
end;
end;

ReadOnlys[Col,Row: Integer]: boolean

Sets a cell readonly, which means that the cell is no longer editable via the user-interface. The
equivalent event for dynamically controlling this is OnGetCellReadOnly.

Objects[Col,Row: Integer]: TObject

Adds a reference to an object that can be used to link to a cell. Note that the application is
responsible for the lifetime of the object and should as such destroy the object when needed. All
the grid provides is a reference to any TObject instance.

Comments[Col,Row: Integer]: string

Adds a comment cell to the grid, when clicking on the comment triangle, a popup is shown with

the comment that has been added to a cell. By default the comment is indicated by a red
triangle in the top right corner of the cell.

21

tmssoftware:com

|He lo Woeorld Comment |

X

CommentColors[Col,Row: Integer]: TAlphaColor

Sets the color of the comment triangle.

b |

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

22

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Events

OnCustomCompare:Event called when format type is set to ssCustom through the
OnSortFormat: Event triggered during sorting to allow to dynamically specify what sort method
the grid should use for a specific column. By default, the grid tries to automatically determine the
type of data in cells and can as such detect regular text, numbers and dates.

OnlOProgress:Event called when exporting or importing data to indicate the progress of the
operation.

OnRawCompare: Event called when format type is set to ssRaw through the OnSortFormat
event. This allows defining at application level the compare method to use for a sort operation.

OnCellsChanged: Event called when the values of a cell change for example as result of a
clipboard cut / paste action, a file import etc...

OnClipboardBeforePasteCell: Event called before pasting the data in the cell. The event
passes a Value parameter that can be modified per cell as well as an Allow parameter to allow
the text to be inserted in the cell.

OnClipboardAfterPasteCell: Event called after pasting the data in the cell. Here the value is
passed after the data has been pasted from the clipboard.

OnClipboardPaste: Event called when pasting the data in the range of selected cells. Through
this event the selection can be retrieved.

OnNeedFilterDropDown: Event called when applying filtering, to allow / disallow filtering on a
column. By default the dropdown is shown by setting grid.options.filtering.dropdown := True.
Through this event, the dropdown can additionally be hidden for specific columns.

OnNeedFilterDropDownData: Event called to fetch the data displayed in the filter list. When
the dropdown is active and the filtering can be applied (retrieved through an optional
combination of grid.options.filtering.dropdown and the OnNeedFilterDropDown event), the data
can be modified, items can be added to and removed from the filtering display list.
OnFilterSelect:Event called when clicking on an item in the filter list.

OnLoadCell:Event called when loading data into the grid. Allows to dynamically modify a cell
value after it was retrieved from a file, for example to decrypt data.

OnSaveCell:Event called when saving data from the grid. Allows to dynamically modify the
value that will be stored in a file during a save, for example to encrypt data.

OnSelectCell: Event called before selecting a cell, to specify if a cell can be selected or not with
an var Allow: Boolean parameter.

23

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

OnGetCellClass: Event called to return the type of cell that is used inside the grid. Allows to
customize the type of any cell in the grid. There are some predefined cell types that can be used
and that implement controls such as a checkbox, radio button and bitmap.

The sample code below adds a grid cell with a bitmap. With the OnGetCellProperties the cell
can be casted to the cellclasstype defined in the OnGetCellClass event to change properties
and to add a bitmap.

procedure TForm738.TMSFMXGridLiveBindinglGetCellClass (Sender: TObject;
ACol,
ARow: Integer; var CellClassType: TFmxObjectClass);

begin
if (ACol = 4) and (ARow = 3) then
CellClassType := TTMSFMXBitmapGridCell;
end;

OnGetCellControl: Event called to get the control that is added inside the cell. This event
differs from the OnGetCellClass event in such way that it is an additional control that can be
added and doesn'’t replace the original cell. The default cell type is TTMSFMXGridCell. Through
this event, a control reference that already exists (is placed on the form) can be displayed in the
cell. Note that all controls are client-aligned inside the cell.

OnGetCellData: Event called when loading the data that is displayed inside the cell. Allows to
dynamically change the text displayed in a cell or to implement virtual cells.

OnGetCellProperties: Event called to apply additional properties dynamically to the cell.
Through this event, properties can be applied that are unique per column, row or cell. This event
is called simultaneously with the OnGetCellAppearance, but to keep a clean overview it is
recommended to apply all non-cell visual related properties through this event.

OnGetCellAppearance: Event called to apply additional appearance settings dynamically to the
cell. The Cell object parameter can be casted to the TTMSFMXGridCell type or depending on
the type of cell added, casted to a different implementation type of TTMSFMXGridCell such as
TTMSFMXCheckGridCell or TTMSFMXBitmapGridCell. With this event, the layout can be
modified of the cell per state that can be retrieved through the ACellState parameter.

procedure TForml.TMSFMXGridlGetCellAppearance (Sender: TObject;
ACol, ARow: Integer; Cell: TFmxObject; ACellState: TCellState);

begin
case ACellState of
csNormal: (Cell as TTMSFMXGridCell) .Layout.Fill.Color := claRed;
csFocused: (Cell as TTMSEMXGridCell) .Layout.Fill.Color := claBlue;
csFixed: (Cell as TTMSFMXGridCell) .Layout.Fill.Color := claGreen;

csFixedSelected: (Cell as TTMSEFMXGridCell) .Layout.Fill.Color :=
claOrange;
csSelected: (Cell as TTMSFMXGridCell) .Layout.Fill.Color :=
claLime;
end;

24

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

end;

OnGetCellLayout: A more simple version of the event OnGetCellAppearance, called to apply
additional appearance settings to the cell. Here the ALayout parameter is a direct reference to
(Cell as TTMSFMXGridCell).Layout property.

OnGetCellMergelnfo: Event called to get the merge information of a cell. Used to display
merged cells.

OnGetCellReadOnly: Event called to set a cell read-only. With the AReadOnly parameter a cell
can be set readonly, this means that the cell data cannot be changed by editing, or by pasting
data inside the cell.

OnGetRowlsBand: Event called to set if a row is alternate and needs to use the banding
layout. The banding layout can be found in the stylebook when editing the custom or default
style.

OnCanlnsertRow: Event called if a row can be inserted in the grid or not.

procedure TForml.TMSFMXGridlCanInsertColumn (Sender: TObject;
ACol: Integer; wvar Allow: Boolean);

begin

Allow := ACol = 5; //allows inserting when the active row is 4 and
the inserted row will be inserted on column index 5
end,

OnCanAppendRow: Event called if a row can be appended (added) to the grid or not.

procedure TForml.TMSFMXGridlCanAppendRow (Sender: TObject;
ARow: Integer; wvar Allow: Boolean);
begin
Allow := ACol <= 11; //allows appending one column
end,

OnCanAppendColumn: Event called if a column be appended (added) to the grid or not.
Example with 10 columns:
procedure TForml.TMSFMXGridlCanAppendColumn (Sender: TObject;
ACol: Integer; var Allow: Boolean);
begin
Allow := ACol <= 11; //allows appending one column
end;,

OnCanDeleteRow: Event called if a row can be deleted in the grid.

Example with 10 columns:

25

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure TForml.TMSFMXGridlCanDeleteRow (Sender: TObject;
ACol: Integer; var Allow: Boolean);
begin
Allow := ARow > 4; //does not allow deleting the first 5 rows
end,
OnlnsertRow: Event called after a row is inserted.
OnAppendRow: Event called after a row is appended.
OnAppendColumn: Event called after a column is appended.
OnDeleteRow: Event called after a row is deleted.

OnCellAnchorClick: Event called if a cell with an anchor is clicked.

OnGetCellEditorCustomClassType: Event called to specify a custom class type for an inplace
editor that is not directly supported by the grid.

Sample with column index 4 and row index 2 returns a custom editor of TTreeview type.

procedure TForml.TMSFMXGridlGetCellEditorType (Sender: TObject;
ACol, ARow: Integer; var CellEditorType: TTMSFMXGridEditorType) ;

begin
if (ACol = 4) and (ARow = 2) then
CellEditorType := etCustom;
end;

procedure TForml.TMSFMXGridlGetCellEditorCustomClassType (
Sender: TObject; ACol, ARow: Integer;
var CellEditorCustomClassType: TFmxObjectClass) ;

begin
if (ACol = 4) and (ARow = 2) then
CellEditorCustomClassType := TTreeView;
end;

OnGetCellEditorType: Event called to specify the type of an inplace editor. If the type is set to
etCustom, the OnGetCellEditorCustomClassType event is called.

OnCellEditGetData: Event called to predefine the value set in the inplace editor.

Cellstring that is set in the inplace editor is ‘Hello World’.

procedure TForml.TMSFMXGridlCellEditGetData (Sender: TObject; ACol,
ARow: Integer; CellEditor: TFmxObject; wvar CellString: string);

begin
CellString := ‘Hello World’;

26

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

end;

OncCellEditValidateData: Event called to validate the value coming from the inplace editor.
After the OnCellEditGetData is called and the cellstring is set in the edit, this event is called
when the editing stops. The value that comes from the editor and is ready to be inserted in the
cell can be validated and modified through this event.

OnCellEditSetData: Event called to set the data in the cell. Through this event when validation
returns true, the value can be modified one last time before the data is inserted in the cell.

OnCellEditGetColor: Event called to predefine the color set in the inplace editor. Similar to the
OnCellEditGetData, this event passes a color parameter that can be changed before the color is
passed to the editor. This event is only used when setting the correct editor type in the
OnGetCellEditorType. The etColorPicker and etColorComboBox are editor types that will trigger
this event instead of the Data variant.

OnCellEditValidateColor: Event called to validate the color coming from the inplace editor. In
the same way as the data variant, the selected color can be validate and modified.

OnCellEditSetColor: Event called to set the color in the cell. When validation is true, the value
is used as a background color for the cell. The color of the cell can be retrieved with
grid.Colors[ACol, ARow: Integer]: TAlphaColor;

OnCellEditDone: Event called when editing is finished.

OnGetCellEditorProperties: Event called before the inplace editor is shown to apply additional
properties. Depending on the chosen editor type in the OnGetCellEditorType event, the
CellEditor parameter must be casted to the correct editor class type. Below is a list for the
supported editor types:

et*Edit: all: TTMSFMXEdit class type.

et*EditBtn: TTMSFMXEditBtn class type

etComboBox: TComboBox class type

etComboEdit: TComboEdit class type

etSpinBox: TSpinBox class type.

etDatePicker: TCalendarBox class type.

etDateEdit: TCalendarEdit class type.

etColorPicker: TComboColorBox class type.

etColorComboBox: TColorComboBox class type.

etTrackBar: TTrackBar class type.

etArcDial: TArcDial class type.

etCustom: class type passed through OnGetCellEditorCustomClassType

OnGetCelllsFixed: Event called to return if a normal cell is fixed or not. When this event returns

true for a normal cell, the cell cannot be selected or modified and has the fixed cell layout
applied.

27

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

OnFixedCellBitmapClick: Event called when clicking on a bitmap of a fixed cell. The return
type for the OnGetCellClass is TTMSFMXBitmapGridCell.

OnFixedCellButtonClick: Event called when clicking on a button of a fixed cell. The return type
for the OnGetCellClass is TTMSFMXFixedGridCell and the showbutton property set through
OnGetCellProperties is true.

OnFixedCellDropDownButtonClick: Event called when clicking on the dropdownbutton of a
fixed cell. The return type for the OnGetCellClass is TTMSFMXFixedGridCell and the
showdropdownbutton property set through OnGetCellProperties is true and the
OnNeedFilterDropDown event allows showing the dropdown button on a fixed cell.

OnFixedCellCheckBoxClick: Event called when clicking on the checkbox of a fixed cell. The
return type for the OnGetCellClass is TTMSFMXFixedGridCell and the showcheckbox property
set through OnGetCellProperties is true or a checkbox has been added to the header with
grid.AddHeaderCheckBox(Col, Row: Integer; State: Boolean);

OnFixedCellSpinBoxChange: Event called when the value of the spinbox has changed of a
fixed cell. The return type for the OnGetCellClass is TTMSFMXFixedGridCell and the
showspinbox property set through OnGetCellProperties is true.

OncCellBeforeDraw: Event called before the cell is drawn. Through this event custom drawing
can be done, before the actual content of the cell is drawn, for example to draw a different
background or to add additional painting under the background and text. With the AllowDraw
parameter set to false the complete cell is not drawn, with the ADrawBackGround parameter set
to false the background is not drawn and the same applies to the ADrawText parameter. The
ARect is the full cell rectangle and the ATextRect parameter is the rectangle for the text, taking
optionally enabled cell controls in to calculation.

procedure TForml.TMSFMXGridlCellBeforeDraw (Sender: TObject; ACol, ARow:
Integer;
ACanvas: TCanvas; var ARect, ATextRect: TRectF; wvar ADrawText,
ADrawBackGround, AllowDraw: Boolean);
begin
AllowDraw := False;
end;

OncCellAfterDraw: Event called after the cell is drawn. Event that can be used in the same way
as the OnCellBeforeDraw event, but after all cell content is drawn, here there are no Allow
parameters because the cell is already been painted. Through this event, additional painting can
be done above all the already painting cell content.

OncCellBitmapClick: Event called when clicking on the bitmap of a cell. The return type for the

OnGetCellClass is TTMSFMXBitmapGridCell or the cell has been added with grid.AddBitmap or
grid.AddBitmapName procedures.

28

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

OncCellButtonClick: Event called when clicking on the button of a cell. The return type for the
OnGetCellClass is TTMSFMXButtonGridCell.

OnCellRadioButtonClick: Event called when clicking on the radiobutton of a cell. The return
type for the OnGetCellClass is TTMSFMXRadioGridCell or the cell has been added with
grid.AddRadioButton or grid.AddRadioButtonColumn procedures.

OnCellShowPopup: Event called when showing the popup of a cell. The return type for the
OnGetCellClass is TTMSFMXFixedGridCell or TTMSFMXCommentGridCell and the cell has
filtering enabled in case of TTMSFMXFixedGridCell or has set a comment in case of
TTMSFMXCommentGridCell and the popup is shown by clicking the dropdown button or the
comment triangle.

OnCellHidePopup: Event called when hiding the popup of a cell.

OnCellCheckBoxClick: Event called when clicking on the checkbox of a cell. The return type
for the OnGetCellClass is TTMSFMXCheckGridCell or the cell has been added with
grid.AddCheckBox, grid.AddCheckBoxColumn or grid. AddHeaderCheckBox procedures.
OnCellCommentClick: Event called when clicking on the comment triangle of a cell. The return
type for the OnGetCellClass is TTMSFMXCommentGridCell or the cell has been added with
grid.Comments[ACol, ARow: Integer].

OnCellSortClick: Event called when the fixed sort column is clicked. The return type for the
OnGetCellClass is TTMSFMXFixedGridCell, sorting is enabled and the fixed cell has been
clicked to apply sorting.

OnCellNodeClick: Event called when clicking on the node of a cell. The return type for the
OnGetCellClass is TTMSFMXNodeGridCell or the cell has been added with grid.AddNode.

OncCanSizeColumn: Event called when a column is about to be sized. Set Allow parameter to
false if sizing of a specific column needs to be blocked.

OnCanSizeRow: Event called when a row is about to be sized. Set Allow parameter to false if
sizing of a specific row needs to be blocked.

OnColumnSize: Event called while the column is being sized. The NewWidth parameter can be
modified when sizing to limit the size of the column.

OnRowsSize: Event called while the row is being sized. The NewHeight parameter can be
modified when sizing to limit the size of the row.

OnColumnSized: Event called when the column is done sizing.
OnRowsSized: Event called when the row is done sizing.

OnColumnSorted: Event called when the column is sorted.

29

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

OnCanSortColumn: Event called when a column is about to be sorted. Set the Allow
parameter to false if sorting of a specific column should be blocked.

OnCellClick: Event called when a cell is clicked.

OnFixedCellClick: Event called when a fixed cell is clicked.

OnPrintBegin: Event called when printing begins.

OnPrintNewPage: Event called when printing starts a new page.

OnPrintDrawCell: Event called when printing a cell on the page.

OnPrintBeforeDrawCell: Event called before printing a cell on the page. This event has
identical parameters as the OnCellBeforeDraw but is separated to avoid interference with the
grid when printing.

OnPrintAfterDrawCell: Event called after printing a cell on the page. This event has identical
parameters as the OnCellAfterDraw but is separated to avoid interference with the grid when
printing.

OnPrintProgress: Event called during printing with the current progress in percentage.
OnPrintEnd: Event called when the printing has ended.

OnPrintEndPage: Event called when the printing has ended a page.

OnPrintDrawTitle: Event called when drawing the title. The Allow parameter can be used to
disable drawing a title, as well as the AText parameter to modify the text that is drawn.

OnPrintDrawDescription: Event called when drawing the description. The Allow parameter can
be used to disable drawing a title, as well as the AText parameter to modify the text that is
drawn.

OnPrintDrawPageNumber: Event called when drawing the page number. The Allow parameter
can be used to disable drawing a title, as well as the AText parameter to modify the text that is
drawn.

OnPrintBeforeDraw: Event called before the printing starts drawing.

OnPrintAfterDraw: Event called after the printing has done drawing.

30

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Custom Cell Drawing

Each cell supports custom drawing via an event and with event parameters to optionally disable
the background, text, as well as a reference to the Canvas and the rectangle. With the events
OnCellBeforeDraw and OnCellAfterDraw you can custom draw on a cell, or complete column /
row of choice that can be retrieved by using the Row and Column parameters. Below is a
sample that draws a diagonal line as a background which replaces the default background of a
cell on location 3, 3.

procedure TForml.TMSFMXGridlCellBeforeDraw (Sender: TObject; ACol,
ARow: Integer; ACanvas: TCanvas; wvar ARect, ATextRect: TRectF; wvar
ADrawText,
ADrawBackGround, AllowDraw: Boolean);

begin
if (ACol = 3) and (ARow = 3) then
begin
ADrawBackGround := False;
ACanvas.Stroke.Color := claRed;

ACanvas.DrawLine (ARect.TopLeft, ARect.BottomRight, 1);
end;
end;

31

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Custom Cell Class

When dropping a default grid on the form, you will notice fixed and normal cells. Based on the
design philosophy of firemonkey, we have decided that each cell is a separate control instead of
painting all cells on a canvas. The basic implementation supports a fill, stroke and a text. For a
normal default cell, the cell class type is TTMSFMXGridCell. A fixed cell implements and inherits
all features from the base cell and adds the possibility to add controls that will help you in terms
of filtering, checking a complete column or additional functionality that you can provide with the
various events that are implemented. The fixed cell class is TTMSFMXFixedGridCell and is
used when the grid detects a cell is fixed. The default grid cell can be changed to a different
type through events or with the correct procedures in the grid. The grid cell already supports a
number of different classes that are listed below.

The cell class type can be set dynamically via the event OnGetCellClass or various methods are
provided to set this programmatically. Using the OnGetCellClass, actually any type of
FireMonkey class can be used as cell class. The grid already offers a number of predefined cell
classes for the most common uses and events like OnGetCellLayout can deal with these built-in
classes to properly set cell properties as color, font, alignment. When using a class type not
known to the grid, it will be required to dynamically control properties such as color, font, etc...
via the OnGetCellProperties and cast the parameter Cell: TFmxObiject to the type specified for
the cell.

Example: specifies that a checkbox is used for column 3:

procedure TForm4.TMSFMXGridlGetCellClass (Sender: TObject; ACol, ARow:

Integer;
var CellClassType: TFmxObjectClass);
begin
if (ARow >= TMSFMXGridl.FixedRows) and (ACol = 3) then
CellClassType := TTMSEFMXCheckGridCell;
end;

The equivalent code to programmatically add checkboxes is:

var
i: integer;
begin
for i := TMSFMXGridl.FixedRows to TMSFMXGridl.RowCount - 1 do
TMSFMXGridl .AddCheckBox (3,1, false) ;
end;

To dynamically change a property of such checkbox cells when needed, the code that could be
used is:

procedure TForml.TMSFMXGridlGetCellProperties (Sender: TObject; ACol,
ARow: Integer; Cell: TFmxObject);
begin
if (ACol = 3) and (ARow >= TMSFMXGridl.FixedRows) and (Cell is
TTMSFMXCheckGridCell) then

32

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

begin
(Cell as TTMSFMXCheckGridCell) .CheckBox.IsChecked := true;
end;
end;

TTMSFMXGridCell

Basic implementation of a grid cell, with a fill, stroke and text properties.
jikx §
TTMSFMXRadioGridCell

Inherits from TTMSFMXGridCell and adds the capability to display a radiobutton.
D11
The methods to add & remove radiobuttons are:
TMSFMXGrid.AddRadioButton(Col,Row,Index: integer; State: boolean = false);
Adds a radiobutton in cell Col,Row belonging to group Index. The State parameter sets the

default state of the radiobutton.

TMSFMXGrid.AddRadioButtonColumn(Col,Index: integer);
Adds a column of radiobuttons as group Index

TMSFMXGrid.RemoveRadioButton(Col,Row: integer);
Removes the radiobutton from cell Col,Row

TMSFMXGrid.IsRadioButton(Col,Row: integer): boolean;
Returns true when the cell contains a radiobutton

TMSFMXGrid.RadioButtonState(Col,Row: integer): boolean;
Returns the state of a radiobutton in cell Col,Row

Index parameter: The index of a radio group to which the radiobutton belongs
State parameter: Sets the radiobutton in a checked or unchecked state.

Examples:

TMSFMXGridl .AddRadioButton (1, 1, 4, True):;
TMSFMXGridl .AddRadioButtonColumn (1, 1) ;

33

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TTMSFMXCheckGridCell
Inherits from TTMSFMXGridCell and adds the capability of displaying a checkbox.

011

The methods to add & remove checkboxes are:

TMSFMXGrid.AddHeaderCheckBox(Col,Row: integer; State: boolean = false);
Adds a checkbox in a fixed column header cell. A column header checkbox will toggle the
checkbox state of all checkboxes in a column when it is clicked.

TMSFMXGrid.AddCheckBox(Col,Row: integer; State: boolean = false);
Add a checkbox to cell Col,Row.

TMSFMXGrid.AddCheckBoxColumn(Col: integer);
Add checkboxes in all cells of column Col.

TMSFMXGrid.RemoveCheckBox(Col,Row: integer);
Remove the checkbox in cell Col,Row.

TMSFMXGrid.IsCheckBox(Col,Row: integer): boolean;
Returns true when the cell Col,Row contains a checkbox.

TMSFMXGrid.CheckBoxState[Col,Row: integer]: boolean
Gets or sets the checkbox state of cell Col,Row

TMSFMXGrid.AddDataCheckBox(Col,Row: integer; State: boolean = false);

Adds a data checkbox to cell Col,Row. A data checkbox cell is a cell with a checkbox where the
checked state of the checkbox reflects the text value of the cell. When the text value of the cell
equals TMSFMXGrid.CheckTrue, it will be displayed as checked. When the text value of the cell
equals TMSFMXGrid.CheckFalse, it will be displayed as unchecked. To get or set the checkbox
state of this checkbox type, use:

TMSFMXGrid.Cells[Col,Row] := TMSFMXGrid.CheckTrue.
or

if TMSFMXGrid.Cells[Col,Row] = TMSFMXGrid.CheckTrue then
Il checkbox is true

34

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.AddDataCheckBoxColumn(Col: integer);
Adds data checkboxes in all cells of column Col.

Examples:

TMSFMXGridl .AddCheckBox (1, 1, True);
TMSFMXGridl .AddCheckBoxColumn (1) ;
TTMSFMXButtonGridCell

Inherits from TTMSFMXGridCell and adds the capability of displaying a button.
Lt | 21
The methods to add & remove buttons in the grid are:

TMSFMXGrid.AddButton(Col,Row: integer; AText: string; AWidth: integer = 24);
Adds a button to the grid at cell Col,Row with caption text AText and width AWidth.

TMSFMXGrid.IsButton(Col,Row: integer): boolean;
Returns true when cell Col,Row contains a button

TMSFMXGrid.RemoveButton(Col,Row: integer);
Removes the button from cell Col,Row

When clicked, the button in the cell triggers the event OnCellButtonClick.

TTMSFMXProgressGridCell

Inherits from TTMSFMXGridCell and adds the capability of displaying a progressbar.
-
Progressbar values are between 0 and 100.

The methods to add & remove progress bars in the grid are:

TMSFMXGrid.AddProgressBar(Col,Row: Integer; Value: Single);
Adds a progress bar with position Value in the grid cell Col,Row.

TMSFMXGrid.AddDataProgressBar(Col,Row: Integer);

Adds a data progress bar in the grid cell Col,Row. The value of the progressbar is controlled by
the value set in grid.Cells[Col,Row].

35

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.SetProgressBarValue(Col,Row: Integer; Value: single);
Sets the value of a progressbar in cell Col,Row.

TMSFMXGrid.GetProgressBarValue(Col,Row: integer): single;
Retrieves the value of a progressbar in cell Col,Row.

TMSFMXGrid.IsProgressBar(Col,Row: Integer): boolean;
Returns true when cell Col,Row contains a progress bar.

TMSFMXGrid.RemoveProgressBar(Col,Row: Integer);
Removes the progressbar from cell Col,Row.

Examples:
TMSFMXGridl .AddProgressBar (1, 1, 50);
TTMSFMXCommentGridCell

Inherits from TTMSFMXGridCell and adds the capability of display a comment in a popup. Also
adds an indicator in the topright corner.

ikx } 211
The comment text and comment indicator triangle color can also be controlled by properties:

TMSFMXGrid.Comments[Col,Row]: string;
TMSFMXGrid.CommentColors[Col,Row]: TAlphaColor;

When the comment text is an empty string, no comment triangle will be displayed.

Examples:

TMSFMXGridl.Comments[1l, 1] := ‘Hello World!’;
TMSFMXGridl.CommentColors[1l, 1] := claRed;

TMSFMXGridl.Comments[2, 2] := ‘'; // remove comment from cell 2,2

TTMSFMXFixedGridCell

Inherits from TTMSFMXGridCell and adds several capabilities such as showing a sorting
indicator, a filter dropdown button, a column header checkbox.

1:1

TTMSFMXRotatedTextGridCell

36

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Inherits from TTMSFMXFixedGridCell and adds the capability to rotate the text.

My
o

The angle of rotation in a rotated text cell is controlled by the property:

TMSFMXGrid.Angles[Col,Row]: single;

TTMSFMXNodeGridCell

Inherits from TTMSFMXGridCell and adds the capability of displaying a node with which several
rows can be collapsed or expanded.

(=
The methods to deal with nodes in the grid are:

TMSFMXGrid.AddNode(Row, Span: Integer);
Adds a node that spans Span rows in cell 0,Row.

TMSFMXGrid.RemoveNode(Row: Integer);
Removes a node from cell 0,Row.

TMSFMXGrid.IsNode(Row: Integer): boolean;
Returns true when cell 0,Row contains a node.

TMSFMXGrid.SetNodeState(Row: Integer; State: TNodeState);
Sets the state of the node in cell 0,Row as opened or closed.
TNodeState = (nsClosed, nsOpen);

TMSFMXGrid.GetNodeState(Row: integer): TNodeState;
Returns the state of a node in cell 0,Row with TNodeState = (nsClosed, nsOpen);

TMSFMXGrid.SetNodeSpan(Row: Integer; Span: Integer);
Changes the number of rows a node at cell 0,Row spans.

TMSFMXGrid.GetNodeSpan(Row: Integer): Integer;
Retrieves the number of rows a hode spans.

TMSFMXGrid.GetNode(Row: Integer): TCellNode;
Gets the node object used in cell 0,Row.

TMSFMXGrid.OpenNode(Row: Integer);
Opens (expands) all rows within the span of node at cell 0,Row.

37

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.CloseNode(Row: Integer);
Closes (collapses) all rows within the span of node at cell 0,Row.

TMSFMXGrid.OpenAllNodes;
Opens all nodes in the grid.

TMSFMXGrid.CloseAllNodes;
Closes all nodes in the grid.

TTMSFMXContainerGridCell

Inherits from TTMSFMXGridCell and adds the capability of adding a control reference to the
cell.

| Buttonl |

The controls can be set to a container cell via the property: TMSFMXGrid.CellControls[Col,Row:
Integer]: TFMXObject

To remove a control from a cell, set TMSFMXGrid.CellControls[Col,Row] to nil.

TTMSFMXBitmapGridCell

Inherits from TTMSFMXGridCell and adds the capability of displaying a bitmap.

-

11

Note that a bitmap represents here any graphic format that the FireMonkey framework supports
and is not limited to the Windows bitmap formay only. The FireMonkey TBitmap is format
agnostic and supports BMP,PNG,GIF,JPEG,ICO files.

The methods to deal with cell bitmaps in the grid are:

TMSFMXGrid.AddBitmap(Col,Row: Integer; AName: string);
Adds a bitmap with name AName from the assigned BitmapContainer to cell Col,Row

TMSFMXGrid.AddBitmap(Col,Row: Integer; ABitmap: TBitmap);
Adds a bitmap instance ABitmap to cell Col,Row

TMSFMXGrid.AddBitmapFile(Col,Row: Integer; AFileName: string);
Adds a bitmap from file AFileName to cell Col,Row

TMSFMXGrid.CreateBitmap(Col,Row: Integer): TBitmap;

Creates a new bitmap instance that is added to cell Col,Row. The bitmap instance can be used
to load images from another source.

38

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.AddDataBitmap(Col,Row: Integer);
Adds a data bitmap to cell Col,Row. The bitmap that will be displayed in the cell will depend on
the text value in the cell that is used as hame in the assigned BitmapContainer

TMSFMXGrid.RemoveBitmap(Col,Row: Integer);
Remove the bitmap from cell Col,Row.

TMSFMXGrid.IsBitmap(Col,Row: integer): boolean;
Returns true when the cell Col,Row contains a bitmap.

TMSFMXGrid.GetBitmap(Col,Row: integer): TBitmap;
Returns the bitmap instance in cell Col,Row.

TMSFMXGrid.SetBitmapName(Col,Row: integer; AName: string);
Sets/updates the name of the bitmap referring to the assigned BitmapContainer that was added
before with the method AddBitmap()

TMSFMXGrid.GetBitmapName(Col,Row: integer): string;
Returns the name of a bitmap referring to the assigned BitmapContainer.

39

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

Grid cell merging / splitting

The grid supports merging and splitting cells programmatically as well as with the keyboard.
To merge a range of cells simple call

grid.MergeCells
grid.MergeSelection

THSFMXGridl .MergeCells

[procedure MergeCells(Col: Integer; Row: Integer; ColCount: Integer; RowCount: Integer);

THMSFMXGridl. HergeSelectinﬂ;

[procedure Mergeselection(ASelection: TCelRange);
Sample:

TMSFMXGridl .MergeCells (2, 3, 3, 2);
TMSFMXGridl .MergeSelection (TMSFMXGridl.CellRange (2, 3, 3, 2));

A
21 31 41 51
12 22 32 4.2 52
13 53
23
14 5
15 25 35 45 55
16 26 36 46 56
17 27 37 457 57
1.8 28 38 48 S8
19 2:9 3.9 49 g T
4 | | 3

To split the merged cells, you can use the procedure grid.SplitCell. The parameters passed in
the procedure need to be the base cell of the range of merged cells.

TMSFMXGridl. SplitCEl].I

[procedure SplitCell{Col; Integer; Fow: Integer);

Sample:

TMSFMXGridl.SplitCell (2, 3);

40

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

When enabled via grid.Options.Keyboard.AllowCellMergeShortCuts, the following shortcuts
invoke a merge & split of the selected cells:

CTRL + M: merge a selection of cells.
CTRL + S: split a merged cell.

41

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Printing

Printing the grid can be done in several ways and with several modes. Below is a list of print
procedures that can be used to print the grid. The grid also supports printing on a canvas or an
image.

THSEMXGridl.Print

Print{ACanvas: TCanvas = nil);
procedure PrintPageSelection(ASelection: TCellRange; APagelndex: Integer = 1; ACanvas: TCanvas = ni; AResetPosition: Boolesn = False; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPageSelectionToImage(ASelection: TCellRange; AfileMame: string; APagelndex: Integer = 1; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPagesSelection(ASelection: TCellRange; APagelndexes: array of Integer; ACanvas: TCanvas = nil; AResetPosition; Boolean = False; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPageFromToSelection{ASelection: TCelRange; APageFrom: Integer; APageTo: Integer; ACanvas: TCanvas = nil; AResetPosition: Boolean = False; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPage(APagelndex: Integer = 1; ACanvas: TCanvas = nil; AResetPosition: Boolean = False; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPages(APagelndexes: array of Integer; ACanvas: TCanvas = nil; AResetPosition: Boolean = False; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintPageFromTo{APageFrom: Integer; APageTo: Integer; ACanvas; TCanvas = nil; AResetPosition: Boolean = False; AWidth: Integer = -1; AHeight: Integer =-1);
procedure PrintPageToImage(AFleName: string; APagelndex: Integer = 1; AWidth: Integer = -1; AHeight: Integer = -1);
procedure PrintSelection(ASelection: TCellRange; ACanvas: TCanvas = ni; AResetPosition: Boolean = False; AWidth: Integer = -1; AHeight: Integer = -1);

Print: Prints the complete grid.

PrintPageSelection: Prints the selection from the grid on a specific page.
PrintPageSelectionTolmage: Prints the selection from the grid on a specific page on an image.
PrintPagesSelection: Prints the selection from the grid on multiple selected pages.
PrintPageFromToSelection: Prints the selection from the grid on a specific range of pages.
PrintPage: Prints a specific page from the grid.

PrintPages: Prints a range of pages from the grid.

PrintPageFromTo: Prints a range of pages from the grid.

PrintPageTolmage: Prints a specific page from the grid to an image.

PrintSelection: Prints a specific selection from the grid.

Other than with these procedures, the grid can also be connected to a
TTMSFMXGridPrintPreview.

When calling TTMSFMXGridPrintPreview .Execute, the grid will automatically show the first
page in the preview window. Navigating can be done with the buttons. The print buttons
automatically starts the printing progress of the selected range (all, current page or page range).

42

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

g R
i@ Print Preview @M

Print Range
® All Pages
_) Current Page

7) Pages

prnt |[ok

Each printing operation is accompied by several events that can be used to track print progress,
perform custom drawing on the printer canvas and custom drawing on the printed cell. Events
are also triggered when starting new page or ending an existing page as well as drawing the
description, title and pagenumber.

Below is a sample that shows the output of the title that is drawn with a different font and color.

TMSFMXGridl .Options.Printing.Description := 'Printing : Hello World!';
TMSFMXGridl .Options.Printing.DescriptionPosition := ppToplLeft;

procedure TForml.TMSFMXGridlPrintDrawDescription (Sender: TObject;
APagelIndex: Integer; ACanvas: TCanvas; var ARect: TRectF; var AText:

string;
var Allow: Boolean);
begin
ACanvas.Font.Size := 20;
ACanvas.Fill.Color := claRed;
end;

43

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

File Edit Yiew Comments Forms Tocols Help

Printing : Hello World !

0:0 1:0 2:0 3:0 4:0
n 0:1 1:1 2:1 31 41
0:2 1:2 2:2 3:2 4:2
& 0:3 1:3 2:3 3:3 4:3
0:4 1:4 2:4 3:4 414

To customize the description title or pagenumber per page, you can use the OnPrintNewPage:

procedure TForml.TMSFMXGridlPrintNewPage (Sender: TObject; APagelndex:

Integer;
APrinter: TPrinter);
begin
TMSFMXGridl.Options.Printing.Description := 'Printing : Hello World
! on page ' + inttostr (APagelndex) ;
end;

0:66 1:66 2:66 3:66 4:66

Printing : Hello World ! on page 2

0:67 1:67 2:67 3:67 4:67

D:68 1:68 2:68 3:68 4:68

To custom draw a cell, or add additional information to a cell when printing, you can use the
event OnPrintDrawCell:

procedure TForml.TMSFMXGridlPrintDrawCell (Sender: TObject;
APageIndex: Integer; ACanvas: TCanvas; ARect: TRectF; ACol, ARow:

Integer;
ACell: TFmxObject; var Allow: Boolean);
begin
if (ACol = 3) and (ARow = 2) then
begin
ACanvas.Fill.Color := claRed;
ACanvas.FillRect (ARect, 10, 10, AllCorners, 1);
end;
end;

44

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

File Edit VYiew Comments Forms Tools Help

[
I Printing : Hello World ! on page 1
= 0:0 1:0 2:0 3:0 4:0
0:1 1:1 2:1 3:1 4:1
0:2 1:2 2:2 4:2
0:3 1:3 2:3 3:3 4:3

The progress of printing can be displayed using the OnPrintProgress event that is passed
through as a parameter in percentage

procedure TForml.TMSFMXGridlPrintProgress (Sender: TObject;
APageIndex: Integer; APrinter: TPrinter; APrintProgress: Single);
begin
ProgressBarl.Value := APrintProgress;
end;

45

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Find & Replace

The grid has built-in support for finding and replacing text with an extensive parameter set and
is accompanied by a separate TTMSFMXFindDialog and TTMSFMXReplaceDialog. Below is a
sample how to implement this.

Drop a TTMSFMXFindDialog on the form. Add data to the grid and execute the find dialog.
When pressing enter in the comboedit control the OnFind event is executed automatically.

In the OnFind event, you can use the grid.Find function to find the text that is entered in the
comboedit.

procedure TForml.ButtonlClick (Sender: TObject) ;
begin

TMSFMXFindDialogl .Execute;
end;

procedure TForml.FormCreate (Sender: TObject) ;
begin

TMSFMXGridl.ColumnCount := 100;

TMSFMXGridl .RowCount := 100;

TMSFMXGridl .LinearFill;
end;

procedure TForml.TMSFMXFindDialoglFind (Sender: TObject) ;
var
res: TPoint;

begin
res := TMSFMXGridl.Find(Point (1, 1), TMSFMXFindDialogl.FindText,
[fnAutoGoto]) ;

if (res.X <> -1) and (res.Y <> -1) then
TMSFMXFindDialogl.Close;
end;

46

tmssoftware:com

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

11 21 3-1r L L5 I iy L8 LG -
12 22 3 Q) Find
1:3 2:3 3)
] Find what: [2:5 v] Fird
14 24 3 :
15 I:' 3' [[] Case sensitive [Whole word Only
' Expression Wrap at the end of file
16 26 3 O & O wrap
18 28 31 gzalol)
1 (® Down) up
19 25 3
1:10 >0 3’W

TMSFMXGridl.Find

Find(StartCell: TPoint; s: string; FindParams: TFindParams): TPoint;

The StartCell parameter is the cell from where the searching must start.
The FindParams option set can be used to search for uppercase, the direction in which to

search and many more.

Drop a TTMSFMXReplaceDialog on the form. Add data to the grid and execute the replace

dialog. When pressing enter in the comboedit control the OnFind even
automatically.

In the OnReplace event, you can use the grid.Replace function to find

t is executed

the text that is entered in

the comboedit and replace it with the text entered in the second comboedit.

procedure TForml.ButtonlClick (Sender: TObject) ;
begin

TMSFMXReplaceDialogl.Execute;
end;

procedure TForml.FormCreate (Sender: TObject);
begin
TMSFMXGridl.ColumnCount := 100;
TMSFMXGridl .RowCount := 100;
TMSFMXGridl.LinearFill;
end;

procedure TForml.TMSFMXReplaceDialoglReplace (Sender:
var

res: Integer;
begin

TObject) ;

47

[= e B e e e e e = =

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

res := TMSFMXGridl.Replace (TMSFMXReplaceDialogl.FindText,
TMSFMXReplaceDialogl.ReplaceText, [fnAutoGoto, fnMatchFull]);
if (res <> 0) then
TMSFMXReplaceDialogl.Close;
end;

11 21 EH I

i@ Replace ==
13 23 3l | Findwhat: |22 v i
14 24 Replace with: [Hello World ! T] Replace
15 25 .
e re |:| Case sensitive |:| Whale word Only Replace &l

' ' |:| Expression |:| Wrap at the end of file
17 27
Direction

18 2:8 : '.'_.:.\.' Down '/:\' Up
3 23 Replace all range
1:10 210 . .,’_.:f_. Current File () Selection [Mare H Close
111 211 3 =

TMSFMXGridl.Replacd

Replace(Crigstr: string; MewStr: string; FindParams: TFindParams): Integer;

48

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Editing

By default the grid supports editing, this can be turned on and off with
grid.Options.Editing.Enabled. The default editor is a TTMSFMXEdit which is an control
descending from TEdit and that adds a range of new features that offer a more user-friendly
experience for grid editing.

To start editing, click on a selected cell to display the inplace editor or press F2 or start typing
any key:

' 35| 4

Under grid.Options.Keyboard, grid.Options.Mouse, grid.Options.Editing there are various
properties that can be used to customize the way the editing occurs, from direct editing to
navigating from edit to edit with the arrow keys, as well as enterkeyhandling to jump to the next
row or column,

These are the different type of editors available in the grid:

etEdit, etNumericEdit, etSignedNumericEdit, etFloatEdit, etSignedFloatEdit, etUppercaseEdit,
etMixedCaseEdit, etLowerCaseEdit, etMoneyEdit, etHexEdit, etAlphaNumericEdit,
etValidCharsEdit, etEditBtn, etNumericEditBtn, etSignedNumericEditBtn, etFloatEditBtn,
etSignedFloatEditBtn, etUppercaseEditBtn, etMixedCaseEditBtn, etLowerCaseEditBtn,
etMoneyEditBtn, etHexEditBtn, etAlphaNumericEditBtn, etValidCharsEditBtn, etComboBox,
etCombokEdit, etSpinBox, etDatePicker, etDateEdit, etColorPicker, etColorComboBox,
etTrackBar, etArcDial, etCustom.

To change an editor type for a specific cell, column or row, implement the OnGetCellEditorType
event:

procedure TForml.TMSFMXGridlGetCellEditorType (Sender: TObject; ACol,
ARow: Integer; var CellEditorType: TTMSFMXGridEditorType) ;

begin
if (ACol = 4) and (ARow = 3) then
CellEditorType := etColorPicker;
end;

49

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

11 21 31 41 51 6:1 71
12 22 32 7:2
13 23 33 73
14 24 34

15 2:5 35

16 2:6 36

17 27 37

18 28 38

19 29 39

1:10 2110 3:10

Choosing a color will automatically access the grid.Colors to set the background color of the
cell:

Additional settings can be made to the inplace editor via the OnGetCellEditorProperties.
Changing the background color and the font color of the default inplace editor:

procedure TForml.TMSFMXGridlGetCellEditorProperties (Sender: TObject;
ACol,
ARow: Integer; CellEditor: TFmxObject);

begin
(CellEditor as TTMSFMXEdit) .FontFill.Color := claWhite;
((CellEditor as TTMSFMXEdit) .FindStyleResource ('background') as
TRectangle) .Fill.Color := claGreen;
end;
47|

The built-in inplace editors can also be accessed separately with:

TMSFMXGridl.Cel]]

property CellEdit: TTMSFMXEdit;

property CellEditBtn; TTMSFMXEditEtn;

property CellComboBox: TComboBox;

property CellComboEdit: TComboEdit;

property CellspinBox: TSpinBox;

property CellDatePicker: TCalendarBox;
property CellDateEdit: TCalendarEdit;

property CellColorPicker: TComboColorBox;
property CelliColorComboBox: TColorComboBox;
property CellTrackBar: TTrackBar;

property CellarcDial: TArcDial;

for the editor types listed above.

50

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

The possibility exists to use a custom editor. To implement this, etCustom must be set to the var
parameter in the OnGetCellEditorType event. For this sample we have used a TTreeView item

in a cell that has a modified columnwidth and rowheight:

TMSFMXGridl.ColumnWidths[4] := 150;
TMSFMXGridl .RowHeights[4] := 100;

procedure TForml.TMSFMXGridlGetCellEditorType (Sender: TObject; ACol,
ARow: Integer; var CellEditorType: TTMSFMXGridEditorType) ;

begin
CellEditorType := etCustom;

end;

To specify which editor the custom type is, the OnGetCellEditorCustomClassType must be
implemented, returning the editor type of choice.

procedure TForml.TMSFMXGridlGetCellEditorCustomClassType (Sender:
TObject;

ACol, ARow: Integer; wvar CellEditorCustomClassType:
TFmxObjectClass) ;
begin

CellEditorCustomClassType := TTreeView;
end;

Additional properties, items, appearance can be added to the custom editor in the
OnGetCellEditorProperties event.

procedure TForml.TMSFMXGridlGetCellEditorProperties (Sender: TObject;
ACol,
ARow: Integer; CellEditor: TFmxObject);

var
tParent, tGroup, tltem: TTreeViewltem;

begin
tParent := TTreeViewItem.Create (CellEditor):;
tParent.Text := 'Fruits';

CellEditor.AddObject (tParent) ;

tGroup := TTreeViewltem.Create (CellEditor);
tGroup.Text := 'Red Fruits';
tParent.AddObject (tGroup) ;

tItem := TTreeViewlItem.Create (CellEditor);
tItem.Text := 'StrawBerry';
tGroup.AddObject (tItem) ;

tItem := TTreeViewItem.Create (CellEditor):;
tItem.Text := 'Cherry';
tGroup.AddObject (tItem) ;

51

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

tGroup := TTreeViewltem.Create (CellEditor);
tGroup.Text := 'Green Fruits';
tParent.AddObject (tGroup) ;

tItem := TTreeViewItem.Create (CellEditor);
tItem.Text := 'Apple';
tGroup.AddObject (tItem) ;
tItem := TTreeViewItem.Create (CellEditor);
tItem.Text := 'Lime';
tGroup.AddObject (tItem) ;

end;

When clicking in the cell to start the editor, the treeview is shown.

33 43 53
A Fruits A
4 Red Fruits I

34 StrawBerry 53
Cherry _
4 Green Fruits v

35 45 35

In the OnCellEditDone event, we can set the cell text to the selected item text of the treeview.

procedure TForml.TMSFMXGridlCellEditDone (Sender: TObject; ACol, ARow:

Integer;
CellEditor: TFmxObject);
begin
TMSFMXGridl.Cells[ACol, ARow] := (CellEditor as
TTreeView) .Selected.Text;
end;

Intercepting the value from and setting the value in the edit can be done with the
OnCellEditGetData, OnCellEditSetData and OnCellEditValidateData.

With the OnCellEditGetData, the data can be intercepted that is passed from the cell to the edit
box to set a different text, or append additional text to the cellstring.

procedure TForml.TMSFMXGridlCellEditGetData (Sender: TObject; ACol,
ARow: Integer; CellEditor: TFmxObject; war CellString: string);
begin
CellString := 'hello world !';
end;

52

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

38 |hello world | 5:3

When the editing is finished the OnCellEditValidateData is called, which can be used to allow /
disallow the value to be added in the cell or make additional modifications before the cellstring is
allow to be inserted in the cell.

After the validation is true, the OnCellEditSetData is called, which actually inserts the data in the
cell. Again, the cellstring can be modified before the string is inserted in the cell.

Editing can be started by calling grid.Edit. The Focused cell will then be set in edit mode and the

chosen editor will be shown. To stop editing call grid.StopEdit to persist the value in the cell or
call grid.CancelEdit to revert the value back to the value before editing started.

53

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Selection

The selection in the grid is controlled by the property TTMSFMXGrid.SelectionMode. This
property determines how cells can be selected in the grid with the mouse and keyboard. The
selection varies from single to multiple cells, column and row selections, disjunct selections.

smNone: Hides selection, all other interaction remains active

smSingleCell: Selects a single cell. When changing selection, the previous cell state returns to
normal.

smSingleRow: Selects a complete row. When changing selection, the previous row state returns
to normal.

smSingleColumn: Selects a complete column. When changing selection, the previous column
state returns to normal.

smCellRange: Enables selecting multiple cells. When performing a shift-click, the range
between the previous cell and current cell is selected. A range of cells can also be selected
when holding and dragging the mouse over the grid.

smRowRange: Enables selecting multiple rows. When performing a shift-click, the range
between the previous row and current row is selected. A range of rows can also be selected
when holding and dragging the mouse over the grid.

smColumnRange: Enables selecting multiple columns. When performing a shift-click, the range
between the previous column and current column is selected. A range of columns can also be
selected when holding and dragging the mouse over the grid.

smDisjunctRow: Has the same functionality as smRowRange, and with the ability to distinct
select rows with the ctrl key.

smDisjunctColumn: Has the same functionality as smColumnRange and with the ability to
distinct select columns with the ctrl key.

smDisjunctCell: Has the same functionality as smCellRange and with the ability to distinct select
cells with the ctrl key.

For the selection modes smSingleCell, smSingleRow, smSingleColumn, smCellRange, the
property grid.Selection: TCellRange gets or sets the current selected cells. To select for
example in the mode smCellRange the cells range 2,2 to 4,4, this can be programmatically set
with:

TMSFMXGridl1.Selection := CellRange(2,2,4,4);

To select a single cell in the mode smSingleCell, the selected cell can be set with:
TMSFMXGrid1.Selection := CellRange(3,3,3,3);

When the SelectionMode property is smDisjunctRow, two ways are possible to get and set the
selected rows:

property grid.RowSelect[Rowlndex]: Boolean

54

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

With this property, the selected state of row RowlIndex is get or set. A possible way to test for all
selected rows as such is:

var
i: integer;

begin
for i := 0 to TMSFMXGridl.RowCount - 1 do
begin

if TMSFMXGridl.RowSelect|[i] then
// do something with the selected row
end;
end;

The property grid. RowSelectionCount returns the total number of selected rows in
smDisjunctRow selection mode.

An alternative way to get the list of selection rows is by looping through grid.
RowSelectionCount and check the index of the selected row returned with grid.

The code to handle this is:

var
i: integer;
begin
for i := 0 to TMSFMXGridl.RowSelectionCount - 1 do
begin
rowindex := TMSFMXGridl.SelectedRow[i];
// do something with the selected row rowindex here
end;
end;

The same applies when the selection mode is smDisjunctColumn with properties
grid.ColumnSelect[columnindex]: Boolean, grid.ColumnSelectionCount: integer and
grid.SelectedColumn[index]: integer.

Finally, for the selection mode smDisjunctCell, the selection state of a particular cell is returned
with grid.CellSelect[col,row: integer]: Boolean;

The total number of selected cells is returned via grid.CellSelectionCount: integer and it is also
possible to loop through the list of all selected cells via grid.SelectedCell[Index: integer]: TCell.
In this case, to loop through all selected cells becomes:

var
i: integer;
c: TCell;

begin
for i := 0 to TMSFMXGridl.CellSelectionCount - 1 do

55

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

begin
c := TMSFMXGridl.SelectedCell[i];
// do something with the selected cell
TMSFMXGridl.Cells[c.Col, c.Row] := TMSFMXGridl.Cells[c.Col, c.Row] + '*';
end;
end;

In combination with the SelectionMode, the grid also supports selection when clicking / dragging
on the fixed cells. This can be enabled with grid.Options.Mouse.FixedCellSelection.

fcsAll: Enables clicking on the left top most fixed cell and selects all cells in the grid in
combination with smCellRange.

fcsRow: Enables clicking and dragging on the fixed columns / fixed right columns in combination
with smSingleRow.

fcsColumn: Enables clicking and dragging on the fixed rows / fixed footer rows in combination
with smSingleColumn.

fcsRowRange: Enables clicking and dragging on the fixed columns / fixed right columns in
combination with smRowRange.

fcsColumnRange: Enables clicking and dragging on the fixed rows / fixed footer rows in
combination with smColumnRange.

If columndragging, rowdragging or sorting is enabled, the fixed cell selection mode is
automatically disabled.

56

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Calculations

The grid has built-in methods to perform calculations. Functions are available to perform
calculations on all rows or a selected range of rows within a column. These functions generate a
result when called. Another type of built-in calculations are column calculations for which the
result is displayed in a footer row and for which results are updated as soon as a cell’s value
changes through editing.

Built-in column calculation functions:

TMSFMXGrid.ColumnSum(ACaol: integer; FromRow: integer = -1; ToRow: Integer = -1): Double;
Calculate the sum of values in a column. By default, the sum of all normal cell values is
calculated. When the FromRow/ToRow parameters are used, a selected range of rows can be
choosen.

TMSFMXGrid.ColumnAvg(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1): Double;
Calculates the average cell value of cells within a column.

TMSFMXGrid.ColumnMin(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1): Double;
Calculates the minimum cell value of cells within a column.

TMSFMXGrid.ColumnMax(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1): Double;
Calculates the maximum cell value of cells within a column.
TMSFMXGrid.ColumnDistinct(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1):
Double;

Counts the number of distinct cell valuess within a column.
TMSFMXGrid.ColumnStdDev(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1):
Double;

Calculates the number of standard deviation of cell values within a column.
TMSFMXGrid.ColumnCustomCalc(ACol: integer; FromRow: integer = -1; ToRow: Integer = -1):
Double;

Performs a custom calculation of values in a column. Calling this method triggers the event
OnColumnCalc that should return a result via the var parameter Res.

Built-in automatic column calculations in the footer row:

With the property ColumnCalculation[Col], it can be set what type of calculation result should be
displayed in a fixed footer row cell. Possible values are:

ccNone: no result should be displayed in the fixed footer cell

ccSum: column sum should be displayed in the fixed footer cell

ccAvg: column average should be displayed in the fixed footer cell

ccCount: column’s row count should be displayed in the fixed footer cell

ccMin: column’s minimum value should be displayed in the fixed footer cell

57

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

ccMax: column’s maximum value should be displayed in the fixed footer cell

ccCUSTOM: a custom column calculation result should be displayed in the fixed footer cell
ccDistinct: number of distinct values in the column should be displayed in the fixed footer cell
ccStdDev: column standard deviation should be displayed in the fixed footer cell

When the cell values are updated programmatically, the column calculations can be
programmatically updated for one column or for all columns. This can be done with:

TMSFMXGrid.UpdateCalculations;
TMSFMXGrid.UpdateCalculation(Columnindex: integer);

Example:
The grid is initialized with:

begin
TMSFMXGridl.RowCount := 20;
TMSFMXGridl.FixedFooterRows := 1;
TMSFMXGridl.RandomFill (false, 100) ;
TMSFMXGridl.ColumnCalculation[1l] := ccSUM;
TMSFMXGridl.ColumnCalculation[2] := ccAVG;
TMSFMXGridl.ColumnCalculation[3] ccMIN;
TMSFMXGridl.ColumnCalculation[4] ccMAX;
TMSFMXGridl.UpdateCalculations;

end;

and shows upon starting the application:

671 41,61111111 5 99 L

58

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

When performing editing in the grid cells, the column calculations in the fixed footer row will be
automatically updated.

59

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Import / Export

The grid can save and load its data in many different formats explained here:

internal: Saves and loads grid cell data and column widths in a proprietary format
CSV: Saves and loads grid cell data in comma separated file

XLS: Saves and loads grid cell data to an Excel file

XML: Saves the grid cell data to XML file

ASCII: Saves cell data to ASCII file

Fixed: Saves and loads the cell data to fixed length column text files

HTML Saves the cell data to a HTML file

stream: Saves and loads cell data to a stream

RTF: Saves the grid as rich text file

Files

procedure SaveToFile (FileName: String; Unicode: boolean = true);
procedure LoadFromFile (FileName: String);

SaveToFile saves cell data and column widths to a proprietary file format. LoadFromFile loads
cell data and column widths from a proprietary file format. When Unicode = true, the file
generated has the BOM marker of a unicode file.

Streams

procedure SaveToStream(Stream: TStream) ;
procedure LoadFromStream (Stream: TStream) ;

SaveToStream saves cell data and column widths to a stream. LoadFromStream loads cell data
and column widths from a stream.

Example: copying grid information from grid 1 to grid 2 through a memorystream:

var
ms: TMemoryStream;

begin
ms := TMemoryStream.Create;
Gridl.SaveToStream (ms) ;
ms.Position := 0; // reset stream pointer to first position
Grid2.LoadFromStream (ms) ;
ms.Free;

end;

CSV files

60

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure SaveToCSV (FileName: String; Unicode: boolean = true);

procedure LoadFromCSV (FileName: String; MaxRows: integer= -1);
procedure AppendToCSV (FileName: String);
procedure InsertFromCSV (FileName: String; MaxRows: integer= -1);

SaveToCSV saves cell data to a CSV file. LoadFromCSV loads cell data from a CSV file.
AppendToCSV appends cell data to an existing CSV file. InsertFromCSV inserts cell data
loaded from the CSV file as extra rows in the grid. Note that LoadFromCSV & InsertFromCSV
have a default parameter MaxRows. Without this parameter, all rows in the CSV file are loaded
in the grid. When the 2nd parameter MaxRows is used, this sets the maximum number of rows
that will be loaded.

Several properties affect the CSV methods:

Grid.Options.IO.Delimiter: Char;

This specifies the delimiter to use for saving and loading with CSV files. By default the Delimiter
is set to #0. With Delimiter equal to #0, an automatic delimiter guess is used to load data from
the CSV file. To save to a CSV file, the ; character is used as separator when delimiter is #0.
Setting the delimiter to another character than #0 forces the CSV functions to operate with this
delimiter only

Grid.Options.IO.QuoteEmptyCells: Boolean;

When true, an empty cell in the CSV file is saved as “’, otherwise no characters are written to
the CSV file.

Grid.Options.IO.AlwaysQuotes: Boolean;

When true, every cell value is saved with prefix and suffix quotes, otherwise quotes are only
used if the cell data contains the delimiter character. Note that when the cell data contains
quotes, the data is written with doubled quotes to the file.

By default, when loading data in the grid, data is being loaded from the first normal cell, i.e. by
default this is cell 1,1 (as by default there is one fixed row and one fixed column). To override
this default behavior and make the grid load data at any arbitrary cell, this can be done with the
public property

TMSFMXGrid.IOOffset: TPoint

As such, to start loading data from the first cell 0,0, set

TMSFMXGrid.IOOffset := Point (0,0)

before calling the LoadFromCSV method.

Fixed column width text files

procedure SaveToFixed(FileName: string;positions: TIntList);

61

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure LoadFromFixed (FileName:string;positions:TIntList; DoTrim:
boolean = true; MaxRows: integer = -1);

SaveToFixed saves cell data and column widths to a text file with fixed column lengths.
LoadFromFixed loads cell data and column widths from a text file with fixed column lengths. The
TIntList parameter is a list of integer values specifying the character offsets where a column
starts in the file.

Example: loading from a fixed file

var
Il: TIntList;
begin
Il := TIntList.Create(0,0);
I1.Add (0); // first column offset

I1.Add (15); // second column offset
I1.Add (30); // third column offset
I1.Add (40); // fourth column offset
Grid.LoadFromFixed (“myfile.txt™,11);
Il.Free;

end;

Note that LoadFromFixed has two additional default parameters: DoTrim & MaxRows. When
DoTrim is false, spaces before or after words are not removed. Without MaxRows, all rows in
the text file are loaded in the grid. When the last parameter MaxRows is used, this sets the
maximum number of rows that will be loaded.

HTML files

procedure SaveToHTML (FileName: String);
procedure AppendToHTML (FileName: String);

SavetoHTML saves the cell data to a HTML file and uses the grid.Options.HTML for various
settings that control the export. The cell data is saved to a HTML table. AppendToHTML
appends the cell data to an existing HTML file.

XML files

procedure SaveToXML (FileName: String; ListDescr,
RecordDescr:string;FieldDescr:TStrings) ;

Saves the cell data in an XML file with following structure:

<ListDescr>

<RecordDescr>

<FieldDescr[0]>Cell 0,0</FieldDescr[0]>
<FieldDescr[1]>Cell 1,0</FieldDescr[1l]>

62

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

<FieldDescr[2]>Cell 2,0</FieldDescr[2]>
</RecordDescr>

<RecordDescr>
<FieldDescr [0
<FieldDescr |1
<FieldDescr|[2
</RecordDescr
</ListDescr>

]>Cell 0,1</FieldDescr[0]>
]>Cell 1,1</FieldDescr[1]>
]>Cell 2,1</FieldDescr[2]>
>

Example:

This code snippet save a grid with 5 columns to XML and uses the text in the column headers
as field descriptors in the XML file:

var
sl: TStringList;
i: integer;

begin
sl := TStringlList.Create;
for i := 0 to grid.ColCount - 1 do

sl.Add (grid.Cells[I,0]);
grid.SaveToXML (,,mygrid.xml"%, ,xmllist", ,xmlrecord%, sl);
sl.Free;
end;

A extra property that is used for exporting to XML file is grid.Options.|O.XMLEncoding that
defaults to '1SO-8859-1'. This property can be used to set a different XML encoding attribute that
is saved to the XML file.

ASCII files

procedure SaveToASCII (FileName: string);
procedure AppendToASCII (FileName: String);

SaveToASCII saves the cell data to an ASCII file, automatically using column widths to fit the
widest data in cells available. A difference with fixed column width files is also that
SaveToASCII will correctly split cell contents across multiple lines.

AppendToASCIl is identical to SaveToASCII, except that it appends the data to an existing file.
XLS files

With the TTMSFMXGridExcellO component directly reading and writing Excel .XLS files without
the need to have Excel installed on the machine is easier than ever.

To use TTMSFMXGridExcellO for XLS file import or export, follow these steps:

e drop TTMSFMXGrid on a form as well as the component TTMSFMXGridExcellO

63

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

e Assign the instance of TTMSFMXGrid to the Grid property of the TTMSFMXGridExcellO
component

e You can set TTMSFMXGridExcellO properties to control the Excel file read / write
behaviour but in most cases default settings will be ok.

e To import an Excel file, use:

TMSFMXGridExcelIO.XLSImport (FileName) ;

or

TMSFMXGridExcelIO.XLSImport (FileName, SheetName) ;

e To export the contents of TTMSFMXGrid to an XLS file use:

TMSFMXGridExcelIO.XLSExport (Filename) ;

or

TMSFMXGridExcelIO.XLSExport (FileName, SheetName) ;
Properties of TTMSFMXGridExcellO

Many properties are available in TTMSFMXGridExcellO to customize importing & exporting of
Excel files in the grid.

AutoResizeGrid: Boolean;
When true, the dimensions of the grid (ColCount, RowCount) will adapt to the number of
imported cells.

DateFormat: string;
Sets the format of dates to use for imported dates from the Excel file. When empty, the default
system date formatting is applied.

GridStartCol, GridStartRow: integer;
Specifies from which top/left column/row the import/export happens

Options.ExportCellFormats: Boolean;

When true, cell format (string, integer, date, float) is exported, otherwise all cells are exported
as

strings.

Options.ExportCellMargings: Boolean;
When true, the margins of the cell are exported

Options.ExportCellProperties: Boolean;
When true, cell properties such as color, font, alignment are exported

64

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Options.ExportCellSizes: Boolean;
When true, the size of the cells is exported

Options.ExportFormulas: Boolean;
When true, the formula is exported, otherwise the formula result is exported

Options.ExportHardBorders: Boolean;
When true, cell borders are exported as hard borders for the Excel sheet

Options.ExportHiddenColumns: Boolean;
When true, hidden columns are also exported

Options.ExportHTMLTags: Boolean;
When true, HTML tags are also exported, otherwise all HTML tags are stripped during export

Options.ExportImages: Boolean;
When true, images in the grid are also exported

Options.ExportOverwrite: Boolean;
Controls if existing files should be overwritten or not during export

Options.ExportOverwriteMessage: Boolean;
Sets the message to show warning to overwrite existing files during export

Options.ExportPrintOptions: Boolean;
When true, the print options are exported to the XLS file

Options.ExportShowGridLines: Boolean;
When true, grid line setting as set in TAdvStringGrid is exported to the XLS sheet

Options.ExportShowInExcel: Boolean;
When true, the exported file is automatically shown in the default installed spreadsheet after
export.

Options.ExportSummaryRowBelowDetail: Boolean;
When true, summary rows are shown below detail rows in the exported XLS sheet

Options.ExportWordWrapped: Boolean;
When true, cells are exported as wordwrapped cells

Options.ImportCellFormats: Boolean;
When true, cells are imported with formatting as applied in the XLS sheet

Options.ImportCellProperties: Boolean;
When true, cell properties such as color, font, alignment are imported

Options.ImportCellSizes: Boolean;

65

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

When true, the size of cells is imported

Options.ImportClearCells: Boolean;
When true, it will clear all existing cells in the grid before the import is done

Options.ImportFormulas: Boolean;
When true, the formula is imported, otherwise only a formula result is imported

Options.ImportImages: Boolean;
When true, images from the XLS sheet are imported

Options.ImportLockedCellsAsReadOnly: Boolean;
When true, cells that are locked in the XLS sheet will be imported as read-only cells

Options.ImportPrintOptions: Boolean;
When true, print settings as defined in the XLS sheet will be imported as grid.PrintSettings

Options.UseExcelStandardColorPalette: Boolean;

When true, colors will be mapped using the standard Excel color palette, otherwise a custom
palette will be included in the XLS sheet.

TimeFormat: string;

Sets the format of cells with a time. When no format is specified, the default system time format
is applied.

X1lsStartCol, XlsStartRow: integer;
Sets the top/left cell from where the import/export should start

Formatting Excel cells when exporting from with TTMSFMXGridExcellO

By default there is no automatic conversion between the numeric formats in TTMSFMXGrid and
Excel since they use different notations. Assume you have the number 1200 in the grid,
formatted as "$1,200" .

If you set TTMSFMXGridExcellO.Options.ExportCellFormat to true, the cell will be exported as
the string "$1,200" to Excel. It will look fine, but it will not be a "real" number, and can not be
used in Excel formulas. If you set TTMSFMXGridExcellO.Options.ExportCellFormat to false, the
cell will be exported as the number 1200. It will be a real number, that can be added later in
Excel, but it will look like "1200" and not "$1,200"

To get a real number that is also formatted in Excel you need to set ExportCellFormat := false,
and use the OnCellFormat event in TTMSFMXGridExcellO, and set the desired format for the
cell there.

For example, to have 1200 look like "$1,200" for the numbers in the third column, you could use
this event:

66

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure TMainForm.AdvGridExcelIOlCellFormat (Sender: TAdvStringGrid;
const GridCol, GridRow, XlsCol, XlsRow: Integer; const Value:
WideString;var Format: TFlxFormat) ;
begin

if (GridCol
end;

3) then Format.Format:='S$ #,##0';

The string you need to write in "Format.Format" is a standard Excel formatting string. It is
important to note that this string must be in ENGLISH format, even if your Windows or Excel is
not in English. This means that you must use "." as decimal separator and "," as thousands
separator, even if they are not the ones in your language.

For information on the available Formatting string in Excel you can consult the Excel
documentation, but there is normally a simple way to find out:
Let's imagine that we want to find out the string for a number with thousands separator and 2
decimal places. So the steps are:

e Open an empty Excel file, right click a cell and choose "Format Cells"

e Once the window opens, choose the numeric format you want. Here we will choose a
numeric format with 2 decimal places and a thousand separator

e Once we have the format we want, we choose "Custom" in the left listbox. There is no
need to close the dialog.

XLSX files

TMS Grid filters is a component based interface between TTMSFMXGrid and TMS Flexcel to
allow to import and export in the .XLSX file format. Free download of the interface components
can be found at: http://www.tmssoftware.com/site/advgridfilters.asp

RTF files

With the component TTMSFMXRTFIO, the grid can be exported as a table in rich text formatted
file. Drop an instance of TTMSFMXRTFIO on the form and assign the grid to
TTMSFMXRTFIO.Grid. Call TTMSFMXRTFIO.ExportRTF(FileName) and a rich text file will be
created. Following options are available:

ConvertHTML: Boolean: when true, will convert a cell in the grid that has HTML formatting to a
rich text formatted cell. When false, the HTML formatted cell text will be exported as plain text
ExportBackground: Boolean: when true, the background color is exported to the rich text file
ExportBorders: Boolean: when true, grid borders are exported

ExportCellProperties: Boolean: when true, cell properties such as color, font, alignment are
exported to the rich text file

ExportHiddenColumns: when true, both visible & hidden columns are exported

Exportimages: when true, images added in cells are exported

ExportMsWordFeatures: when true, the rich text file can contain MS Word specific RTF
attributes for a more accurate rendering that might be incompatible with other word processors.

67

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

ExportOverwrite: specifies the method to use when exporting to a file that already exists
ExportOverwriteMessage: sets the message for the message box that will be displayed when
exporting to a file that already exists

ExportSelectedCells: when true, only selected cells in the grid are exported
ExportShowInWord: when true, opens the generated RTF file in the default application
associated with the RTF extension.

Footer: string: sets optional footer rich text

Title: string: sets optional title rich text

Advanced topics on exporting & importing

To apply transformations on cell data for loading and saving it is easy to create a descendent
class from TTMSFMXGrid and override the SaveCell and LoadCell methods. In these
overridden methods a transformation such as encryption or decryption can be applied. The
basic technique is:

TEncryptedGrid = class (TTMSFMXGrid)
protected
function SaveCell (ACol,ARow: Integer) :string; override;
procedure LoadCell (ACol,ARow: Integer; Value: string); override;
end;

function TEncryptedGrid.SaveCell (ACol,ARow: Integer): string;
begin

Result := Encrypt (GridCells[ACol,ARow]) ;
end;

procedure TEncryptedGrid.LoadCell (ACol,ARow: Integer; Value: string);

begin
GridCells[ACol,ARow] := Decrypt (Value);
end;
As such, when using methods like SaveToCSV, SaveToASCI|, ... the information will be

exported in encrypted format automatically.

68

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Sorting

The grid supports 2 types of sorting: normal sorting and indexed sorting. In normal sorting
mode, the grid sorts the data ascending or descending on a specified column. In indexed sorting
multiple columns can be marked and sorted ascending or descending. In both modes, the
sorted column is marked with a triangle that is displayed with a number in indexed mode. The
sort column can be set programmatically or by clicking on a fixed column header cell.

By default sorting is disabled. Enabling sorting can be done by setting the mode:

grid.Options.Sorting.Mode := gsmNormal;
or
grid.Options.Sorting.Mode := gsmIndexed;

In normal mode, when clicking on a column, or setting grid.SortColumn := 3 an indicator
appears that indicates a column is sorted in ascending order.

=

31

82 1 72
15 1 34
74 2 74

Clicking the same column again, changes the order to descending.

93 e
43 93 a7
13 97 71
26 97 76

Setting the sorting mode to gsmindexed will show a yellow triangle with an index number
instead of a blue rectangle.

By default, the grid will automatically guess the data format of a cell to determine the compare
method to use. It will detect regular strings, numbers and dates. Additional control over the
compare methods to use per column is available via the event OnSortFormat:

TTMSFMXGridSortFormatEvent = procedure (Sender: TObject; Col: Integer;
var SortFormat: TSortFormat; wvar APrefix, ASuffix: string) of object;

69

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

The TSortFormat type is:

ssAutomatic: try to automatically guess the column data type to control the compare method
ssAlphabetic: cells contain text, compare with case sensitivity

ssAlphabeticNoCase: cells contain text, compare without case sensitivity

ssNumeric: cells in column contain a number, sort based on numeric comparisons

ssDate: cells in column contain a date, sort based on date comparisons

ssHTML.: cells in column contain HTML formatted text, compare cells based on text without
HTML tags

ssCheckBox: cells in column contain checkboxes, using compare of boolean values
ssCustom: a custom compare will be performed via the event OnCustomCompare

ssRaw: a custom compare will be performed via the event OnRawCompare.

The parameters APrefix, ASuffix allow to set a text as either prefix or suffix that will be ignored
in the comparison. If the cell text is for example displaying a currency symbol like: 125.00%$, by
setting ASuffix to ‘$’, the comparison can be based just on the numeric data 125.00.

Custom sorts
Two events, OnCustomCompare and OnRawCompare are used to allow implementing custom
compare routines when the sort format style is specified as ssCustom or ssRaw.

The OnCustomCompare is triggered for each compare of two string values and expects the
result to be set through the Res parameter with values:

-1: Strl < Str2
0: Strl = Str2
1: Strl > Str2
The OnRawCompare event is defined as:

TRawCompareEvent = procedure (Sender:TObject; ACol,Rowl,Row2: Integer;
var Res: Integer) of object;

It allows comparing grid cells [ACol,ARow1] and [ACol,ARow2] in any custom way and returning
the result in the Res parameter in the same way as for the OnCustomCompare event.

Example: comparing cell objects instead of cell text with OnRawCompare

As for each cell, an object can be assigned with the grid.Objects[Col,Row]: TObject property, it
is easy to associate a number with each cell through:

Grid.Cells[Col,Row] := ,I am text™; // cell text
Grid.Objects|[Col,Row] := TObject (1234); // associated number

Through the OnRawCompare event, a sort can be done on this associated number instead of
the cell text.

70

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure TTMSEFMXGridOnRawCompare (Sender: TObject; ACol, Rowl, RowZ2:
Integer; wvar Res: Integer);

var
cl,c?2: Integer;
begin
cl := integer (TMSFMXGridl.Objects[ACol,Rowl]) ;
c?2 := integer (TMSFMXGridl.Objects[ACol,Row2]) ;
if (cl = c¢2) then
Res := 0
else
if (¢l > c2) then
Res := 1
else
Res := -1;
end;

Finally, two events that can be useful for sorting are: OnCanSortColumn and OnCellSortClick.
The event OnCanSortColumn is triggered when a fixed column header cell is clicked just before
an actual sort is performed. The event informs about the column clicked and passes the
parameter Allow. By setting it to false, no actual sort is performed. The event OnCellSortClick is
triggered after the sort on a specific column is done. While sorts in average sized grids is mostly
instantanous, note that these two events could be used to set for example the mouse cursor as
wait cursor from the OnCanSortColumn event and reset it to default cursor from the
OnCellSortClick event when sorting very large grids.

To perform indexed sorting programmatically, add the columns that will be used as sort criteria
to the grid.Sortindexes list. The first added column to the list is the first sort criteria, the second
column added is the second criteria etc. For each sort column added, the sort order can be set
with the second parameter of the Addindex method. Call grid.Sortindexed after filling the
Sortindexes list to perform the sorting.

TMSFMXGridl.SortIndexes.Clear;
TMSFMXGridl.SortIndexes.AddIndex (3, sdAscending);
TMSFMXGridl.SortIndexes.AddIndex (4, sdDescending) ;
TMSFMXGridl.SortIndexed;

To perform sorting on a single column click on the fixed column header of choice.To perform
indexed sorting from the UlI, click the first fixed column header cell to set the primary sort
column and after this, hold shift and click on the additional columns a sort criteria needs to be
set for. A regular click removes all the indexes and sets the primary sort column again.

& 1
47 70 99
77 68 29 97
3 38 74 96

71

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Note that when the grid is grouped, the sorting is automatically performed within groups. Sorting
within groups can be based on a single column or can use indexed sorting as well. If it is
needed that groups itself are resorted, perform an ungroup, perform the sort wanted and then
regroup. To programmatically perform a sort in a grouped grid, call
TMSFMXGrid.SortGrouped(Column, Direction). To programmatically perform an indexed sort in
a grouped grid, add the indexes of columns to sort on first to the Sortindexes collection and then
call TMSFMXGrid.SortGroupedindex;

TMSFMXGridl.SortIndexes.Clear;
TMSFMXGridl.SortIndexes.AddIndex (5, sdDescending) ;
TMSFMXGridl.SortIndexes.AddIndex (2, sdAscending);
TMSFMXGridl.SortGroupedIndexed;

Grouping

TTMSFMXGrid has built-in single level automatic grouping and grouped sorting. This makes it
easy to add grouping features with a few lines of code. Grouping means that identical cells
within the same column are removed and shown as a grouping row for the other cells in the
rows.

Example:

United States New York 205000
United States Chicago 121200
United States Detroit 250011
Germany Kdln 420532
Germany Frankfurt 122557
Germany Berlin 63352

Grouped on the first column this becomes:
- United states

New York 205000
Chicago 121200

Detroit 250011
- Germany

Koln 420532
Frankfurt 122557
Berlin 63352

Grouped sorting on the first column becomes:

- United states

Chicago 121200
Detroit 250011
New York 205000

72

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

- Germany

Berlin 63352
Frankfurt 122557
Koln 420532

This is an overview of the grouping methods:

procedure Group (ColIndex:integer) ;
procedure UnGroup;

The Group method groups based on the column Colindex. It automatically adds the expand /
contract nodes. When expand / contract nodes are available, the normal sort when a column
header is clicked changes to inter group sorting.

Note that the column for grouping can only start from column 1, since column 0 is the
placeholder for the expand / contract nodes.

To undo the effect of grouping, the UnGroup method can be used.

Example: loading a CSV file, applying grouping and performing a grouped sort
// loading CSV file in normal cells
TMSFMXGridl.LoadFromCSV ('cars.csv');

TMSFMXGridl.ColWidths[0] := 20;

// do grouping on column 1
TMSFMXGridl.Group (1) ;

// apply grouped sorting on (new) column 1
TMSFMXGridl.SortGrouped(l, sdAscending) ;

When a grouped view is no longer necessary, it can be removed by:

TMSFMXGrid.UnGroup;
Extra grouping features

Some extra capabilities for more visually appealing grouping can be set through the property
grid.Options.Grouping. Through this property it can be enabled that group headers are
automatically set in a different color and that cells from a group header are automatically
merged. In addition, a group can also have a summary line. A summary line is an extra row
below items that belong to the same group. This summary line can be used to put calculated
group values in. The color for this summary line can also be automatically set as well as cell
merging performed on this. See the grid.Options.Grouping description for all details.

Group calculations

73

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TTMSFMXGrid has built-in function to automatically calculate group sums, average, min, max,
count. The group results are set in the group header row if no summary row is shown, otherwise
the group summary row is used by default. Group calculations are performed per column.

Available functions:

grid.GroupSum (AColumn: Integer);
Calculates column sums per group

grid.GroupAvg (AColumn: Integer);
Calculates column averages per group

grid.GroupMin (AColumn: Integer);
Calculates column minimum per group

grid.GroupMax (AColumn: Integer)
Calculates column minimum per group

grid.GroupCount (AColumn: Integer);
Calculates number of rows in a group for each group

grid.GroupDistinct (AColumn: Integer);
Calculates number of distinct rows in a group for each group

grid.GroupStdDev (AColumn: Integer);
Calculates standard deviation of values in column AColumn within a group for each group

grid.GroupCustomCalc (AColumn: Integer);
Allows to perform a custom calculation of group data with the event OnGroupCalc

If there is a need for a special group calculation that is not available in the standard group
calculation functions, the method grid.GroupCustomCalc can be used. For each group in the
grid, this will trigger the event

grid.OnGroupCalc (Sender: TObject; ACol, FromRow, ToRow: Integer; var
Res: Double);

The meaning of the parameters is: ACol : column to perform calculation for FromRow: first row
in the group ToRow: last row in the group Res: variable parameter to use to set the result

In this sample, the grid is initialized with random number, is grouped on column 1 and for the
first column in the grouped grid the standard deviation is calculated:

procedure TForml.TMSFMXGridlGroupCalc (Sender: TObject; ACol, FromRow,
ToRow: Integer; var Res: Double);
var
i: integer; d, m, sd: double;
begin
// calculate mean

74

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

Hh
(o}
2}
'_l -
|

:= FromRow to ToRow do
m := m + TMSFMXGridl.Floats[ACol,1i];
m :=m / (ToRow - FromRow + 1);

// calculate standard deviation

sd := 0;
for i := FromRow to ToRow do
begin
sd := sd + sqr (TMSFMXGridl.Floats[ACol,i] - m);
end;
sd := sd / (ToRow - FromRow) ;
Res := sqgrt(sd);
end;

75

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Column persistence

The grid offers various helper functions to deal in code with moving columns & sizing columns
from the Ul and persisting column width, column position and column visibility.

Following methods are available for this:
procedure SetColumnOrder;

It is important to note that all column movement tracking is done with respect to a reference
column ordering. The reference column ordering is assumed to be the order of the columns
when grid.SetColumnOrder is called. This internally initializes the sequence of the columns as
the first column being column 0, the 2" column being column 1, etc... All further column moving
will be tracked against this ordering. As such, call grid.SetColumnOrder when the grid is
initialized with data and the required grid.ColumnCount is set.

procedure ResetColumnOrder;

Calling grid.ResetColumnOrder moves the columns back to the initial sequence, i.e. the
sequence when grid.SetColumnOrder was called. Irrespective of how the user moved columns
via column drag & drop, it will reset the grid to the original column sequence. This will not affect
the column widths.

function ColumnStatesToString: string;

This returns the states of each column as a string. This string can be easily stored in a registry
or INI file or database for example. This string represents the current column ordering, the
widths of the columns and the column visibility. The states of the columns returned via
ColumnStatesToString is the state relative to the reference order determined at the time
grid.SetColumnOrder was called. As such, a typical scenario is to call
grid.ColumnStatesToString before the application closes and store this. With this stored value,
the sequence and width of the columns can be restored to the state when the user left the
application when it is restarted.

procedure StringToColumnStates(States: string);
Assuming the grid is in reference column order (if not call grid.ResetColumnQOrder), a previously

stored state of columns can be restored by calling StringToColumnStates with the string that
represents the state as parameter.

76

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

function Columnposition(ACol: integer): integer;

When the reference column order is set, the function ColumnPosition() can be used to get the
position of a specific column after the user moved columns around with drag & drop.

function ColumnAtPosition(APosition: integer): integer;
When the reference column order is set, the function ColumnAtPosition can be used to return

the index of the column in its reference order that is at a specific position after a user moved the
columns around.

77

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Columns

The Columns collection manages designtime and runtime grid cell layout, types and behaviour
as well as cell interaction capabilities such as sorting and editing. This behaviour is default and
is controlled with the public UseColumns property.

When using combinations of dynamically created checkboxes at runtime and checkbox columns
at designtime with the columns collection the preference is given to the dynamically created
checkboxes.

Below are the properties that can be used to configure a grid column. All properties that are
related to appearance / layout of a cell are applied only to normal cells. Other cell types are
configured dynamically through one of the events that can be used to modify the cell layout.

BorderColor: TAlphaColor: Border color of a column grid cell in normal state.

BorderWidth: Single: Border width of a column grid cell in normal state.

Color: TAlphaColor: Color of a column grid cell in normal state.

ColumnType: TTMSFMXGridColumnType: Identifies the type of the column. A column can be
configured to show checkbox, radiobutton, button or progressbar cell types. The ColumnType
property has a default value which is a normal grid cell type.

Comboltems: TStringList: Used in combination with the Editor property. The Comboltems
property is a stringlist that is assigned to the CellComboBox internally used for editing, when the
editor type is etComboBox or etComboEdit.

Editor: TTMSFMXGridEditorType: The editor type used to define the inplace editor that is
used for editing and is identical to the editor type retrieved through the OnGetCellEditorType.
Used in combination with the Comboltems property in case of etComboBox or etComboEdit.
Fixed: Boolean: Sets the complete column as a fixed column. The cell type will be modified to
a fixed cell type and therefore all layout properties such as Color, BorderColor and FontColor
are ignored.

FontColor: TAlphaColor: The color of the font of a column grid cell in normal state.

Font: TFont: The font of a column grid cell in normal state.

HorzAlignment: TTextAlign: The horizontal alignment of a column grid cell text in normal
state.

ID: String: A unique identifier for each column to make sure each column can be accessed with
this unique identifier after a column has been swapped, inserted or deleted.

ReadOnly: Boolean: Sets the complete column readonly. The cells for that column remain
normal cell types but are not editable.

SortFormat: TSortFormat: The sorting format type of the column when sorting is applied
(“Sorting” chapter). The property values can be set to ssAutomatic which will automatically
identify the content of the column cells, a specific value such as ssAlphabetic,

78

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

ssAlphabeticNoCase, ssNumeric, ssDate, ssHTML, ssCheckBox, ssRaw (OnRawCompare) or
ssCustom (OnCustomCompare).

SortSuffix: string: A sorting suffix used for additional sorting customization.

SortPrefix: string: A sorting prefix used for additional sorting customization.

Tag: integer: A second unique identifier that can be used in a similar way as the ID property.
VertAlignment: TTextAlign: The vertical alignment of a column grid cell text in normal state.
WordWrap: Boolean: The wordwrap of a column grid cell text in normal state.

LiveBindings

When reading the documentation in the “LiveBindings in RAD Studio” you will notice that
LiveBindings is not limited to DataBase support. There is also support for binding various
properties of the Grid to other controls. Below is a sample that binds the TrackBar position to
the Grid rotationAngle.

Drop a new Grid and a TrackBar component on the form. When dropping a Grid on the form you
will notice a LiveBindings property.

LeftCol 1

+ |LiveBindings LiveBindings [*]
Locked Falze
+ |Margins (TBounds)

To create a new LiveBinding, you can either click on the arrow and select “New LiveBinding...”
or click directly on “New LiveBinding...” at the bottom of the object inspector.

LeftCol 1
+!|LiveBindings LiveBindings |T|
Locked False | Mew LiveBinding. .. |
T Mzrmine FTBra At

This action will automatically drop a BindingsList component on the form and will show the
BindingsList editor window.

79

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

@) New LiveBinding =)

Binding Classes:

4 - Binding Expressions
-| TBindExpression
- TBindExprItems
4 -Links
- TBindLink
- TBindListLink
- TBindGridLink
- TBindPosition
4 -Llists
- TBindList
- TBindGridList
- DE TableView Links
‘... TTMSFMXBindDBTableViewLink
- DB TileList Links
t... TTMSFMXBindDETileListLink
- DB Grid Links
‘... TTMSFMXBindDBGridLink

B B

| ok || canel || e

Select the TrackBar component and add a new TBindExpritems expression. In the BindingsList
component you see the TBindExpritems component listed.

Categories: Bind Companents:

All LiveBindings: Mame Description

Binding Expressions

i BindExprItemsTMSEMYGrid 11 Bind contral “TMSFMXGrid1” from source “TrackBar 1™ (0 expressions

80

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

9@ Ohject Inspector o2
BindExpritemsTMSFMXGrid11 TEindExpritems E]

Properties | Events

Autobctivate (V] True

Category Binding Expressions
ClearExpressions | (TExpressionsDir)
ControlComponent | TMSFMXGridl
FormatExpressions |(TExpressionsDir)
Managed [F]True

Mame BindExprItemsTMSFMXGrid 11
MotifyQutputs [False

SourceComponent | TrackBarl

|SourceMemberiame =
Tag i]

e

Point the SourceComponent to the TrackBar and the ControlComponent to the TMSFMXGrid1.
Start the FormatExpressions editor by double-clicking on the “(TExpressionsDir)” label. Click on
the add button to add a new format expression and fill in the Binding properties. The
ControlComponent is set to TMSFMXGrid1l and we want the RotationAngle to be modified. Fill
in RotationAngle in the Control Expression field. For the Source Expression which is linked with
the SourceComponent we fill in “Value”.

@ Editing BindExpritems2.Form... @

o FH I

Mame Caontrol Expression Saource Expressi
0 RotationAnagle Value

4 1 3

Now there is one step left to implement before the application is ready. When dragging the

slider of the TrackBar, the RotationAngle of the TMSFMXGrid component will be unaffected.
This is because the TMSFMXGrid did not receive a notice from the BindingsList component,
therefore we need to notify the bind component that the value of the TrackBar has changed.

This is done by implementing the OnChange event and notifying the BindingsList component:

var
FNotifying: Integer;

81

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

procedure TForml.TrackBarlChange (Sender: TObject) ;
begin
// Some controls send notifications when setting properties,
// like TTrackBar
if FNotifying = 0 then
begin
Inc (FNotifying) ;
// Send notification to cause expression re-evaluation of
dependent expressions
try
BindingsListl.Notify (Sender, ''");
finally
Dec (FNotifying) ;
end;
end;
end;

Now when dragging the slider of the TrackBar, the BindingsList is notified and the TMSFMXGrid
rotates according to the Value of the TrackBar. Multiple bindings can be made and are triggered
simultaneously due to the Notify procedure of the BindingsList.

The Grid supports displaying fields and records as well as editing and navigating. This can be
done manually or automatically.

Manually
In the BindingsList editor window you will notice that a new category is added for the Grid: “DB

Grid Links”. The link “TTMSFMXBindDBGridLink” can be used to connect to a DataSource
through a BindScope. This link is designed to work specifically with DataBase connections.

82

tmssoftware:com

r@ Mew LiveBinding ﬁ1

Binding Classes:

4 - Binding Expressions
-| TBindExpression
- TBindExprItems
4 -Links
- TBindLink
- TBindListLink
- TBindGridLink
- TBindPosition
4 -Llists
- TBindList
- TBindGridList
- DE TableView Links
‘... TTMSFMXBindDBTableViewLink
- DB TileList Links
t... TTMSFMXBindDETileListLink
- DB Grid Links
‘... TTMSFMXBindDBGridLink

B B

| ok || canel || e

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

The PosControlExpression and PosSourceExpression are used to link the position in the
dataset to the selected row and vice versa. This is automatically generated when using a

TTMSFMXBindDBGridLink component.

?':% Object Inspector

oz

TMSFMXBind DBGridLinkTMSFMXGrid11 'I'I'I'ﬂSFrﬂZJ{BiI‘u:IDBGI'i|:|Li|‘|kE]

Properties | Events

¥ | AutoActivate [¥] True
AutoFil [¥] True
BufferCount -1
Cateqgory DB Grid Links

ClearControlExpres (TExpressions)
ColumnExpressions | (TColumnLinkExpressions)
ControlComponent | TMSFMXGridl

FormatControlExpre (TExpressions)

Mame TMSFMYBindDEGridLinkTMSFMXGrid 11
PosControlExpressi (TExpressions)
PosSourceExpressic (TExpressions)

SourceComponent |BindScopeDB1

Tag i)

=

83

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

In the object inspector, after selecting the TTMSFMXBindDBGridLink component you will notice
a ColumnExpressions property. This is because the implementation inherits from the standard
TBindGridLink and is necessary to link Database fields to columns in the Grid.

Automatically

The TTMSFMXGrid adds the capability of automatically detecting and add columns, along with
a new visual designer and a livebindings wizard to help you create your application. More on
this matter is explained in the LiveBindings Demo chapter.

The TTMSFMXGrid adds the capability of linking a column to a lookup combobox. Drop a
TTMSFMXGrid on the form, or link it with a datasource of choice through the LiveBindings
wizard. You will need a second datasource for the lookup table. In this case we have a field
“Country” which is linked with a lookup table “Countries”.

LiveBindings Designer @

Form21 - Default Layer ¥ Layers '{':
f (ADOTable2) (BindSourceDB1]

* ADOTablel
~ | |l =
K

Country CountryName
=== N |

The CountryName field is based on the Country field and serves as a lookup field.
Add a new field to the dataset and specify the lookup data:

84

TMS SOFTWARE

tmssoftware:com TMS FHX Grid

Mew Field E

Field properties

Marme: CountryMarme Component: ADCTable 1CountryMame
Type: String w | Size:

Field type

()Data () Calculated (®) Lookup

Lookup definition
key Fields: Country v | Dataset: ADCTable2 W

Country v

Lookup Keys: (] w | Besult Field:

You will need to add the Country field to the dataset in order to make the grid work properly:

= I}% Provider=Microsoft, ACE.QOLEDE. 15.0;Data Source =C:\delphix:
=g thiCountries {ADCTableZ}

i Fields

- thiTest {ADOTable 1}

¢y Fields

3, 0 - Country {ADOTable 1Country}
ﬁ 1 - CountryMame {ADOTable 1CountryMame}

DEVELOPERS GUIDE

When starting the application, the grid will show 2 columns, one with the actual ID linked to the

lookup table and the second column which is used to link the field to the lookup data.

85

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

4 Metherlands
7 Spain

5 UsA

3 Erazil

3 Erazil

5 UsA

3 Erazil

5 UsA

4 Metherlands

The grid automatically detects if a lookup field is used and uses a combobox for editing. The
combobox is not automatically filled with the data from the lookup table. To link the data to the
combobox insert the code below in the formcreate:

var
LinkCountry: TLinkFillControlToField;
begin
LinkCountry := TLinkFillControlToField.Create (Self);
LinkCountry.Control := TMSFMXGridl.CellComboBox;
LinkCountry.DataSource := BindSourceDBI;
LinkCountry.FieldName := 'Country'; // edit this field
LinkCountry.FillDataSource := BindSourceDB2;
LinkCountry.FillDisplayFieldName := 'Country'; // display this
field
LinkCountry.FillValueFieldName := 'ID'; // data value for each item
LinkCountry.Track := False; // Apply changes when click on item
rather than when exit control
LinkCountry.Active := True;

This will bind the grid to the CellComboBox used inside the grid as an inplace editor.

Double-clicking the cell starts editing and shows the combobox. The combobox is now filled with
the values from the lookup table.

86

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Country CountryMam

& France

4 Metherlands

T Spain

5 (LYY

3 Brazil

3 Brazil

5 UsA, W

3 Belgium

c Germarny
Brazil

4
Metherlands
iy
France
Spain
Paortugal

A sample is included in the Distribution: LiveBindings Lookup demo.
The demo also shows how to link multiple lookup fields to a single editor combobox.

TTMSEMXGrid & TTMSEMXLiveGrid

For binding data to the grid, there are 2 types of grids that can be used. The TTMSFMXGrid is
able to bind to data and load all records at once. This type of grid can then optionally be
disconnected by setting the property SaveDataSetData to true before deactivating the dataset to
persist the data inside the grid.

After data is persisted and the grid doesn’t have an active connection anymore, the grid can be
used to apply filtering, grouping and sorting.

The TTMSFMXLiveGrid loads the data on demand. A database with many records loads faster
than the TTMSFMXGrid implementation. The SaveDataSetData property doesn’t have any
effect on this grid because when the connection is deactivated the data is removed. Sorting,
grouping and filtering on this grid directly are not supported. For each operation that has effect
on the data, it must be applied directly on the dataset, which will automatically update the data
inside the grid, if it has an active connection. Below is a sample how sorting is applied when the
grid has an active connection.

87

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

Assuming you have already setup a connection to a dataset, either through manually
implementing the columns and field connections or by connecting to a dataset and loading the
columnsf/fields automatically the following code will sort the column on the dataset and
automatically update the data. Note that sorting on the grid directly is not supported with an
active connection so we will have to disable the built-in sorting. The sample below sorts a
TClientDataSet loaded with data from the biolife.xml file.

*

Species Mo
Category

Common_Mame

Species Mame
Length (cm)
Length_In
Motes

Graphic

Species No Category Common_N Species Nar Length (cm Length_In Motes Graphic

Triggerfishy Clown Trigg Ballistoides « 50 158.568503937 Range is Ind Q@}ﬂ
90030 Snspper Red Empero Lutjanus set 60 236220472 "FMIEETE gy
Q0050 Wrasse Giant Maeri Cheilinus un 229 90.1574803] Range is the. %R
0070 Angelfish Blue Angelfi Pomacanthy 30 11.8110236. o ﬁ
Q0080 Cod Lunartail Ro Variola louti| 80 31.4960629¢ Range is the <N
Q0090 Scorpienfish| Firefish Pterois voliti 38 14.9606259: T %&‘
20100 Butterflyfish|Ornate Butty Chaetodon (19 7.48031496(’ @
90110 Shark Swell Shark | Cephaloscyl 102 4015748031 . . .| e
90120 Ray Bat Ray Mylicbatis c| 56 220472440 *3
a0130 Eel Califernia M Gymnothorg 150 59.05511811 o B
Q0140 Cod Lingeed COphiodon /150 59.0551181! N
90150 Sculoin Cabezon Scorpaenich 99 3887637790 . . iy i

procedure TForml.FormCreate (Sender: TObject) ;
begin

TMSFMXLiveGridl.Options.Sorting.Mode := gsmNormal;
end;

88

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

procedure TForml.TMSFMXLiveGridlCanSortColumn (Sender: TObject; ACol:
Integer;

var Allow: Boolean);
var

idx: TIndexDef;

idxn: String;

f: TField;
begin
Allow := False; //disable built-in sorting
f := ClientDataSetl.Fields[ACol - TMSFMXLiveGridl.FixedColumns];
if Assigned(f) then
begin
idxn := f.FullName + 'Index';

if ClientDataSetl.IndexDefs.Count = 1 then

idx := ClientDatasetl.IndexDefs[0]
else

idx := ClientDatasetl.IndexDefs.AddIndexDef;
idx.Name := idxn;
idx.Fields := f.FullName;
ClientDatasetl.IndexName := idxn;
TMSFMXLiveGridl.SortColumn := ACol;

end;

end;

Species No Category/. Common_N Species Nai Length (cm Length_In |Notes Graphic

20070 Angelfish Blue Angelfi Pomacanthe 30 11.8110236: ﬁ
0210 Barracuda |Great Barrac|Sphyraena £ 150 5905511810 . . L | T
20100 Butterflyfish|Ornate Butti| Chaetodon 119 T AB031496(o @
Q0080 Cod Lunartail Ro|Variola louti| 80 31.4950529¢ Range is the 48ERL
a0140 Cod Lingcod Cphiodan £ 150 50.05511481! g
_______________ Crosker White Sea B Atractoscior 150 500551181 "€ EIEE ey
E-B-C-iSO ------- Eel California M|Gymnothorz 150 59.0551181] T
90290 Greenling Rock Greenl Hexagramm 60 236220472 PN HHEO U g
90240 Grouper Massau Grot Epinephelus 91 35.8267716! N
0220 Grunt French Grun/Haemulzn fl 30 1LBIT0236: L oy o mi
a02a0 lack Yellow Jack |Gnathanodc 90 3543307084 . L #ls
90200 Parretfish |Redband Pa Scarisoma & 28 110236220 Edibility is o) S i

89

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Filtering

The TTMSFMXGrid also supports built-in filtering. Filtering can be done programmatically or via
the user interface when enabling the dropdown button on a fixed column header cell.

THMSFMEGridl .Options.Filtering. DIDEDDW:“

DropDown: Boolean;

property DropDownFicedRow: Integer;
property DropDownWidth: Integer;
property DropDownHeight: Integer;

When the dropdown button is visible, the dropdown list is automatically filled with unique values
from the column. When selecting an item from the dropdown list, the grid is filtered based on the
value you have selected:

0:0 1:0 | 20 - 3:0 | 40 -
0:1 1211 &1 Al
________________ _l -
212
2 1:2 22
233
3 1:3 2:3 2 1
04 14 2 25 I
0:5 15 2:5 = v
0:0 1:0 | 0 | 30 | 4:0 -
0:4 {2:4 34 2:4
________________ ol

By default, when setting grid.Options.Filtering.DropDown = true, all normal column header cells
get a dropdown button. With the OnNeedFilterDropDown, the dropdown button / filtering can be
enabled / disabled per column. When a dropdown filter button is displayed, this dropdown list is
automatically filled with the unique values in the column but the OnNeedFilterDropDownData
event is triggered and this allows to alter the data that is displayed in the dropdown list.

procedure TForml.TMSFMXGridlNeedFilterDropDownData (Sender: TObject;
Col,
Row: Integer; AValues: TStrings);
begin
AValues.Add ('Hello World !");
end;

90

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

0:0 1.0 | 20 (| 3:0 | 4:0 -
0:1 121 25 -
________________ -
0:2 12 22 =
27 =
0:3 1:3 2:3 :
2:8
0:4 1:4 24 2.0 |
0:5 1:5 2:5 Hello Werld ! ¥i

When an item from the filter dropdown is selected, this triggers the OnFilterSelect event. This
returns the column and the selected filter condition and also allows to dynamically change the
condition.

As the filter dropdown is filled automatically with unique values of a column, it is by default not
possible to undo a filter from the user-interface. With the help of the
OnNeedFilterDropDownData and the OnFilterSelect event, an item can be added to the
dropdown that will undo the filtering.

Add the (All) options to the dropdown:

procedure TForm1. TMSFMXGrid1NeedFilterDropDownData(Sender: TObject; Col,
Row: Integer; AValues: TStrings);

begin
AValues.Add('(All)");

end;

When the (All) option is selected, set the condition to accept all values:

procedure TForm1. TMSFMXGrid1FilterSelect(Sender: TObject; Col: Integer;
var Condition: string);
begin
if Condition = '(All)' then
begin
Condition :="*";
end;
end;

Programmatically, a filter condition can be added to the filter list, and the list is filtered when
applying the filter with grid.ApplyFilter;

with TMSFMXGridl.Filter.Add do
begin
Condition := '2:4";

91

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Column := 2;
end;

TMSFMXGrid.ApplyFilter;
To remove the filter again at a later time, call TMSFMXGrid.RemoveFilter;
The TFilterData type in the Filter collection has following properties:

Column: integer : sets the column the filter condition applies to

Condition: string : holds the condition, this is a string value including the use of <,>,&,|, *, ?
specifiers

CaseSensitive: Boolean : defines whether the condition is case sensitive or not

Data: TFilterCells: specifies on what data the filter condition is applied. By default this is the cell
text (fcNormal)

Prefix: string: part of the cell text that should be ignored (at start of the cell text)

Suffix: string: part of the cell text that should be ignored (at end of the cell text)

Operation: TFilterOperation :defines the logical operation between the filter condition and the
previous filter condition.

The definition of TFilterOperation is:

foSHORT: short circuit Boolean evaluation

foNONE: no logical operation (typical for first filter condition)
foAND: logical AND

foXOR: logical XOR

foOR: logical OR

Example:
When a column contains numbers formatted like:

50.00USD
75.00USD
25.00USD
60.00USD

The filter to get values larger than 60, could be :

fd: TFilterData;

fd :=grid.Filter.Add;
fd.Column := 1;
fd.Suffix := ‘USD’
fd.Condition := *>50’;

To specify a filter that would retrieve values less than 30 or bigger than 60, this could be
specified as:

92

tmssoftware:com

fd: TFilterData;

fd :=grid.Filter.Add;
fd.Column := 1;
fd.Suffix := ‘USD’
fd.Condition := >60’;

fd :=grid.Filter.Add;
fd.Column := 1;
fd.Suffix := ‘USD’
fd.Condition := ‘<30’;
fd.Operation := foOR;

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

93

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

HTML formatted text, cell anchors, highlighting and marking in cells

The grid supports HTML formatted strings in cells. This is based on a small & fast HTML
rendering engine. This engine implements a subset of the HTML standard to display formatted
text. It supports following tags :

B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

| : Italic tag
<|>: start italic text
</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag
<S> : start strike-through text
</S>: end strike-through text

Example : This is a <S>test</S>

A : anchor tag

 : text after tag is an anchor. The 'value' after the href identifier is the anchor.
This can be an URL (with ftp,http,mailto,file identifier) or any text.

If the value is an URL, the shellexecute function is called, otherwise, the anchor value can be
found in the OnAnchorClick event : end of anchor

Examples : This is a test
This is a test
This is a test

FONT : font specifier tag
94

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

 : specifies font
of text after tag.
with

o face : name of the font

e size : HTML style size if smaller than 5, otherwise pointsize of the font

e color : font color with either hexidecimal color specification or color constant name, ie
claRed,claYellow,clawhite ... etc

e bgcolor : background color with either hexidecimal color specification or color constant
name : ends font setting

Examples : This is a test
This is a test

P : paragraph

<P align="alignvalue" [bgcolor="colorvalue"] [bgcolorto="colorvalue"]> : starts a new paragraph,
with left, right or center alignment. The paragraph background color is set by the optional
bgcolor parameter. If bgcolor and bgcolorto are specified,

a gradient is displayed ranging from begin to end color.

</P>: end of paragraph

Example : <P align="right">This is a test</P>

Example : <P align="center">This is a test</P>

Example : <P align="left" bgcolor="#ff0000">This has a red background</P>

Example : <P align="right" bgcolor="claYellow">This has a yellow background</P>
Example : <P align="right" bgcolor="claYellow" bgcolorto="clared">This has a gradient
background</P>*

HR : horizontal line
<HR> : inserts linebreak with horizontal line

BR : linebreak

 : inserts a linebreak

BODY : body color / background specifier
<BODY bgcolor="colorvalue" [bgcolorto="colorvalue"] [dir="v|h"] background="imagefile
specifier"> : sets the background color of the HTML text or the background bitmap file

Example : <BODY bgcolor="claYellow"> : sets background color to yellow

<BODY background="file://c:\test.omp"> : sets tiled background to file test.bmp

<BODY bgcolor="claYellow" bgcolorto="claWhite" dir="v"> : sets a vertical gradient from yellow
to white

95

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels

Example :
This will be <IND x="75">indented 75 pixels.

IMG : image tag
<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"]
[alt="specifier:name"] > : inserts an image at the location

specifier can be: name of image in a BitmapContainer

Optionally, an alignment tag can be included. If no alignment is included, the text alignment with
respect to the image is bottom. Other possibilities are: align="top" and align="middle"

The width & height to render the image can be specified as well. If the image is embedded in
anchor tags, a different image can be displayed when the mouse is in the image area through
the Alt attribute.

Examples :
This is an image

SUB : subscript tag
<SUB> : start subscript text
</SUB> : end subscript text

Example : This is ⁹/₁₆ looks like 9/16

SUP : superscript tag
<SUP> : start superscript text
</SUP> : end superscript text

UL : list tag
 : start unordered list tag
 : end unordered list

Example :
List item 1
List item 2

96

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

 Sub list item A
 Sub list item B

List item 3

LI: listitem
<LI [type="specifier"] [color="color"] [name="imagename"]>: new list item specifier can be
"square", "circle" or "image" bullet. Color sets the color of the square or circle bullet. Imagename

sets the PictureContainer image name for image to use as bullet

SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

Z : hidden text
<Z> : start hidden text
</Z>: end hidden text

Special characters
Following standard HTML special characters are supported :
< : less than : <

> : greater than : >

& : &

" : "

 : non breaking space
™ : trademark symbol
€ : euro symbol

§ : section symbol
© : copyright symbol
¶ : paragraph symbol

When hyperlinks are specified in grid cells, these hyperlinks are displayed underlined and in
blue color. When the hyperlink is clicked, the OnCellAnchorClick event is triggered. Via HTML
formatting, the grid also offers highlighting or marking of text in grid cells. This can be used to
indicate text that matches a search or to show errors. The following methods are available for
marking & highlighting in cells:

Examples:

TMSFMXGrid1.HighlightinCol(false,false,2,'156");

97

tmssoftware:com

Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo

Alfa Romeo

[T e

=

=

=

=

Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo
Alfa Romeo

Alfa Romeo

[T - e

=

=

=

=

Available methods:

TMS SOFTWARE
TMS FMX Grid

DEVELOPERS GUIDE

TMSFMXGrid.HighlightinCell(DoCase: Boolean; Col,Row: Integer; HiText: string);

Highlight the text HiText with or without case sensitivity in cell Col,Row.

TMSFMXGrid.HighlightinCol(DoFixed,DoCase: Boolean; Col: Integer; HiText: string);
Highlight the text HiText with or without case sensitivity in all cells in column Col.

TMSFMXGrid.HighlightinRow(DoFixed,DoCase: Boolean; Row: Integer; HiText: string);

Highlight the text HiText with or without case sensitivity in all cells in row Row.

98

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.HighlightinGrid(DoFixed,DoCase: Boolean; HiText: string);
Highlight the text HiText with or without case sensitivity in all cells in the grid.

TMSFMXGrid.UnHighlightInCell(Col,Row: Integer);
Remove the highlighting in cell Col,Row.

TMSFMXGrid.UnHighlightinCol(DoFixed: Boolean; Col: Integer);
Remove the highlighting in column Col, with or without fixed cells included.

TMSFMXGrid.UnHighlightinRow(DoFixed: Boolean; Row: Integer);
Remove the highlighting in row Row, with or without fixed cells included.

TMSFMXGrid.UnHighlightInGrid(DoFixed: Boolean);
Remove the highlighting in normal cells or all cells.

TMSFMXGrid.UnHighlightAll;
Remove the highlighting in all cells.

TMSFMXGrid.MarkinCell(DoCase: Boolean; Col,Row: Integer; HiText: string);
Mark the text HiText with or without case sensitivity in cell Col,Row.

TMSFMXGrid.MarkinCol(DoFixed,DoCase: Boolean; Col: Integer; HiText: string);
Mark the text HiText with or without case sensitivity in all cells in column Col.

TMSFMXGrid.MarkinRow(DoFixed,DoCase: Boolean; Row: Integer; HiText: string);
Mark the text HiText with or without case sensitivity in all cells in row Row.

TMSFMXGrid.MarkinGrid(DoFixed,DoCase: Boolean; HiText: string);
Mark the text HiText with or without case sensitivity in all cells in the grid.

TMSFMXGrid.UnMarkinCell(Col,Row: Integer);

Remove the marking in cell Col,Row.
TMSFMXGrid.UnMarkinCol(DoFixed: Boolean; Col: Integer);

Remove the marking in column Col, with or without fixed cells included.

TMSFMXGrid.UnMarkinRow(DoFixed: Boolean; Row: Integer);
Remove the marking in row Row, with or without fixed cells included.

TMSFMXGrid.UnMarkinGrid(DoFixed: Boolean);
Remove the marking in normal grid cells or all grid cells.

99

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGrid.UnMarkAll;
Remove the marking in all grid cells.

100

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

General FireMonkey component usage guidlines

With the new FireMonkey framework, the methodology to create and use components has
dramatically changed. A component now exists of 2 parts.

Visual part

The visual part is stored in a .style file, which is compiled to a .res file through an .rc file. The .rc
file is included in the package and must be recompiled whenever a change is made to the .style
file. For each component in this set you will find a .style file. In this file, the default layout of the
component is stored.

You will notice different elements, basic elements such as an arc, ellipse, rectangle ...

The elements combine and define the layout of a control. The basic elements are called shapes,
and are already available by default. In several components you will find custom shapes
registered and useable in a new application, and used in the component by default.

Each shape or element can have a StyleName, which is used in the non-visual part of the
control for interaction. This name is key in the relationship or “style-contract” between style
resource and component code.

Non-visual part

The non-visual part of the component interacts with the shapes defined in the .style file. This is
a normal .pas unit file as was used for VCL component, yet little to no painting is done in code.
As explained above, the visual part is already defined by the style.

The component defined in this unit needs to inherit from the TStyledControl class, which can be

styled at designtime. This is the base class for all styleable controls, just like the
TCustomControl class was the base class for most controls in the VCL framework.

Naming convention

It is always good practice to handle a consistent naming convention, therefore all .rc, .pas files
and .style files should start with the FireMonkey unit scope name “FMX.”, such as the units:
FMX.Types, FMX.Dialogs, FMX.Objects ...

Inside the style file each element can have a StyleName, which can be used in the non-visual
part to address the resource. Make sure each element has a unique StyleName to avoid

101

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

mistakes when interacting with the component. All combinations of elements must be
encapsulated within a rectangle element that is invisible by default (through the Fill.Kind and
Stroke.Kind = bkNone), and has the StyleName of the component.

If you have a component named TFMXMyFirstControl, the the StyleName of the rectangle
encapsulating all other elements must be set to FMXMyFirstControlStyle. The “T” is removed
and “Style” is added.

Styling

Each component inherits from TTMSFMXBaseControl which implements a basic Fill and Stroke,
and handles the style resource files that define the default layout of the component. To change
the visuals of the component you no longer have corresponding properties in the object
inspector. Right-clicking on the component provides two extra menu items that can be used to
edit the style of the component.

Clicking either of these items will automatically drop a StyleBook component on the form when
there is not yet one available. A StyleBook holds custom and default styles. When the default
style is changed, dropping a new component of the same class will automatically get this
changed style as defined in the default style.

—o—¢

| Off@
@8~ it v
Control 3

Mew LiveBinding...

Align To Grid
Revert to Inherited

Align...
Creation Order...
Add to Repository...
Wiew as Text

v Text FMX

Edit Custom Style...
Edit Default Style...

Edit Custom Style: Clicking on this item starts the IDE style editor and copies the default
style of the component. The name of the style is set to the component name on the form
and appended with ‘Style1’. After changing properties through the editor, the style is
then applied to the component. You will notice that the StyleLookUp property is set to
the name of the custom style in the stylebook.

102

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Edit Default Style: Clicking on this item starts the IDE style editor and uses the default
style of the component. As with the Edit Custom Style option, the nhame of that style is
set. The difference between these 2 options is that the default style has a generic name
and is applied to all new instances of the component that are dropped on the form. The
StyleLoopup property is not set.

[Load.. ” Load Default [Savew [Clear All [Apply .Apu\y and Close H Cancel]

4 TMSFMXSlider1Stylel: TRectangle a8 x

4 elementcontainer: TRoundRect ao x

A sliderbuttonelement: TRoundRect ao x

TRoundRect s x

4 onelement: TRoundRect ae x

ontextelement: TText e x

4 offelement: TRoundRect e x

offtextelement: TText 8o x
R =7

|
NP
A—

The IDE style editor can be started with these 2 options, or by double-clicking on the StyleBook
editor icon on the form. In this example we have a TTMSFMXSlider component that will be
altered with a custom style. Notice the TMSFMXSlider1Stylel name that is used for this style.
When applying this style, you will also notice the StyleLookup property is set to
TMSFMXSIlider1Stylel.

State ssOff

StyleLookup THMSFMXSlider1stylel

StyleName A
TabOrder B r
Tag 0

Visible | True

Width 75 m

103

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Each component exists of different styleable elements. Simple click on an element in the editor
to change the appearance.

A TMSFMESliderlStylel: TRectangle ae x
P clementcontainer: TRoundRect Bo %
B sliderbuttonelement: TRoundRect Beo x
TRoundRect aoeo x
P onelement: TRoundRect B x
ontextelement: TText Beo x
p offelement: TRoundRect e x
offtextelement: TText B x
OFF

You can also add new elements from the Tool palette.

#) Tool Palette £3
ER g || Q, Search

TLine s
[] mRectangle

() TRoundRect
O THlipse

O TCircle

m

After applying the Style, the component will have the new custom style.

(ON .

Dropping a new TTMSFMXSlider component on the form will not adopt this custom style and
will have the default style applied. Editing the default style is done in the same way, yet the
name of the style differs and each new instance of the TTMSFMXSIider adopts the edited
default style.

104

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

4 tmsfmusliderstyle: TRectangle aoe x
P elementcontainer: TRoundRect Bo x

- sliderbuttonelement: TRoundRect foe x
TRoundRect Bo x

p onelement: TRoundRect foe x
ontextelement; TText Bo x

p offelement: TRoundRect foe x
offtextelement; TText Bo x

General component properties that do not directly define a visual appearance of the component
are still displayed in the Object Inspector. Note though that some properties will affect what is
available in the style editor! For example, if a component provides a collection of visible items
displayed in the control and it is desirable that the visual appearance of each item can be
customized, style elements (shapes) will be dynamically added or removed and be available in
the IDE style editor.

In other cases, it is desirable that the appearance for a given type of items in a control is
identical. This can be represented as a single style element in the style editor. The component
will then internally copy the settings of the style element and apply it to each item displayed in
the control.

Components

Most of the components in the FireMonkey framework can be scaled and rotated without loss of
functionality and quality. As our base control implementation inherits from a base class which
supports these features, all of the controls inside the TMS Instrumentation WorkShop set
support scaling and rotation.

Scaling: With the Scale property you can specify how large the component must be. The default
value of the X and Y property of the Scale is 1. This means that the default component layout is
set at one, if you have a component which has 100 pixels width and height dimensions, setting
the scale X and Y properties to 1.5 will automatically increase the width and height to 150
pixels. Below are some examples at designtime, which shows the capability of this property.

Scale 1.5 Scale X15Y1
@ G
g) ™ @ —a——
& o FF) @) @DFF)
N v P - S
Scale 0.5 Scale X0.5Y 2

105

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

AR
%'. Fe

Rotation: The rotation property rotates the component around the center by default, which can
be changed with the rotationcenter property. Rotating the component does not limit interaction
capabilities and functionality.

BE0®

ey o
@ @

®® 6

45°

Samples

Included in the distribution is a set of ready to use applications that demonstrate the most
important features of the grid. Below is an overview, screenshot and a short description of each
demo.

XLSIODemo
GroupDemo
FilteringDemo
FixedFreezeDemo
ClipboardDemo
SortingDemo
CellControlsDemo
EditingDemo
MergingDemo

10. StylingDemo

11. RTFIODemo

12. EmbeddedControlsDemo
13. PrintingDemo

14. LiveBindings demo

CoNor®ONE

106

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

XLSIODemo
@) TMS software FMX Grid: XLSIO demo o B X
[Export to LS | | Import from XLS
o
1 94 53 70 25
2 43 40 26 T8
3 o i 2 s
4 28 4 — 20
79 ' ; iy : [B
5 16 62 |§“ = - |= gridexportyds [Compatibility Mode] - Microsoft Excel —
'3 65 53 83 73 Home Insert Page Layout Formulas Data Review View Team @ e = @ 2
7 @ . 35 9 87 =¥ Arial -1 - EEE @] General I | S=lnset - E - W [ﬁ
3 0 81 |ss 8 2 = G- (Bl o AW B Fepetete - [g]r 2 -
Paste Ay A o styles .., Sort & Find &
9 Fa 78 a2 78 - = 4 i T 5 00 .0 v LEjFormat' 27 Filter~ Select -
Clipboard Font Fl Alignment Fl Number Fl Cells Editing
AL - £l 12 v
A B = D E F G H J i
1 12 94 53 70 23 m
2 |43 40 26 78
| w [7
29|41 39
719
5 16 62 93 =
6 65 53 83 73 82
7 @78 55 9 87 90
s U 81 |58 8 42 34
9 64 |78 92 78 6
10 P
11
12
13
14 -
M 4+ M| Sheetl /¥J [T4] [[N
Ready | |@@E 100% (=)) (+)
\

The XLS IO demo demonstrates exporting to and importing from an Excel compatible format.
When clicking on the Export to XLS button, the grid is exported and the xIs file is automatically
opened if Excel is available.

Exporting the grid can be done with

TMSFMXGridExcelIOl .XLSExport ('..\..\gridexport.xls");
XOpenFile ('open', '..\..\gridexport.xls', '', "'');

Note that for opening the file, the XOpenFile procedure is used that is located in the unit

FMX.TMSXULtil which is compatible with all supported platforms which can handle file
manipulation.

107

tmssoftware:com

GroupDemo

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

-
iG) TMS software FMX Grid: grouping dema

:Eg

After grouping, click column headers to perform sort within groups

Close all nodes

A3 LG
A3 LE
A4 LG
A3 L9TDI

Ad LTI

Ad LE

1595
1781
1595
1896
1896
1781

74
52
74
66
66
52

Bl BE|ls | BB

Type cc Hp cyl Kw Price
156 L6TS | 1598 a8 4 120 599000
150 LETs | 1774 106 4 144 762000
156 2075 1970 114 4 155 292000
Spider 1.8 | 1747 106 4 144 292000
Spider 20 | 1970 114 4 155 1072000
15625 2492 140 & 120 1029000
166 2075 1970 114 4 155 1100000
166 2,0W6 1996 151 & 120 1350000
Spider 3.0 | 2959 141 & 192 1437000
166 25Ve | 2492 140 & 190 1460000
166 3,0W6 | 2959 166 & 226 1580000

| Country

F'Y
5 (

B T I T A - - - I i -

169,1818181 12464000

101
125
101
S0
S0
125

590000
764000
235000
290000
297000
933000

5

o
0
0

Clicking the group button groups the Brand column and shows a group header and summary
row with the total / average of the Kw and Price column. Clicking on a node collapses the group.
To return to a normal state, click on the ungroup button. To close all nodes at once, click on the

Close all nodes button.

This demo’s also demonstrates sorting in normal and grouped mode. Clicking on a column in
group mode will sort the data specific to that group, resulting in a correct display of the sorted

data.

To group grid data according to the demo use the following code below:

TMSFMXGridl.SortData (1, sdAscending) ;
TMSFMXGridl .Options.Grouping.MergeHeader
TMSFMXGridl .Options.Grouping.Summary

true;

108

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

TMSFMXGridl .Group (1) ;
TMSFMXGridl .GroupSum (6)
TMSFMXGridl .GroupAvg (5)

4
4

109

tmssoftware:com

FilteringDemo

TMS SOFTWARE

TMS FMX Grid

DEVELOPERS GUIDE

.
i TMS software FMX Grid: filtering demo

Type brand name to start filtering

M Filter brands starting with &
A
MERCEDES CLK 230 2295 142 4 193 1448000 0
MERCEDES CLK 320 3199 160 B 218 1708000 0
MERCEDES CLK 430 4266 205 2 279 2245000 0
MERCEDES CLK cabrio 2/ 1998 100 4 136 14598000 0
MERCEDES CLK cabrio 2| 2295 142 4 193 1667000 0 .
MERCEDES CLK cabrio 3/ 3199 160 6 218 19590000 0
MERCEDES 5320 3199 165 B 224 2488000 0
MERCEDES 5430 4266 205 2 279 2994000 0
MERCEDES 5500 4966 225 2 308 3275000 0
MERCEDES 5L280 2799 142 6 193 2T 0
MERCEDES 5L320 3199 170 6 231 3032000 0
MERCEDES 5L500 4973 235 8 320 3830000 0
MERCEDES 504600 5987 290 12 394 5020000 0
MERCEDES 5L60 AMG | 55956 280 2 381 4958000 0
MERCEDES 5LKZ00 1998 100 4 136 1253000 0
MERCEDES 5LKZ30 2295 142 4 193 1445000 0
MG MGF 1796 88 4 120 506500 1
Mazda MX5 1,8-16% 1839 103 4 140 G25000 3 =

The filtering demo shows how the grid can be used to filter data, based on the first letter or a
string typed in the edit box. Below is a result when typing a string in the edit box:

Type brand name to start filtering

Aud | Filter brands starting with A |

Audi A3 1B 1595 74 4 101 690000 o
Audi A3 LE 1781 82 4 125 764000 0
Audi A3 18TDI 1896 BB 4 S0 290000]
Audi A4 16 1595 74 4 101 835000 0
Audi 2418 1781 92 4 125 933000]
Audi A4 24 2383 120 & 163 1065000 o

110

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

FixedFreezeDemo

r@! TMS software FMX Grid: Fixed & freeze cells demo l =HHC] éjq
IZ' Fixed right column D Freeze columns 1,2 @ Cell sc rolling O Pikel seralling
D Fied footer IZ‘ Fraaze rows 1,2
0 Brand Type cc Hp Ccyl Kw Price Country =
1 I:I 156 L6TS 1598 as 4 120 693000 4 %1 101
2 Alfa Romeo 156 L&TS 1774 108 4 144 TEI000 4 %2 10:2 -
15 Audi Ad L6 1595 74 4 101 835000 0 %15 10:15
16 Audi Ad LB 1781 92 4 125 S33000 0 516 10:16
17 Audi Ad 24 2393 120 6 163 1065000 0 @17 1017
18 Audi Ad 28 2771 142 3 193 1313500 0 918 10:18
19 Audi A4 L9TDI | 1896 66 4 S0 897000 0 %19 10:1g
20 Audi TT Coupe | 1781 132 4 1a0 1235000 0 %20 10:20
21 Audi AB LE 1781 %2 4 125 10593000 0 %21 10:21
22 Audi AB 24 2393 120 3 163 1279000 o .22 1022
23 Audi AB 28 2771 142 6 193 1504000 0 923 10:23
24 Audi ABLOTDI | 189 a1 4 110 1113000 0 %24 10:24
25 Audi AB 25TDI | 2496 110 5 150 1310000 0 %25 10:25
26 Audi AB 2,8 2771 142 3 193 1841500 0 .26 1026
27 Audi AB 3T 3697 169 2 230 2108000 0 .27 10:27
28 Audi AB 4,2 4172 221 2 200 2TRER00 0 .28 10:28
29 Audi AB 25TDI | 2496 110 3 150 1855000 o .29 10:2%
30 BRW 318is coupe | 1895 103 4 140 1182358 0 %30 10:30
31 BMW 320i coupe | 1991 110 6 150 1200000 0 @31 10:31 v
4| | >
\

This demo demonstrates the use of fixed and freeze columns / rows, which are cells that do not
scroll along when navigating through the grid.

The fixed columns / rows are always displayed starting from the first column/row and are drawn
in a fixed layout. These cells cannot be selected and are only used, amongst other features, for
sorting, filtering and grouping interaction capabilities.

The Freeze columns / rows are displayed starting after the fixed columns /rows are displayed
and are drawn in a normal layout. The cells also act as normal cells. The only difference is that
they do not scroll when navigating through the grid.

The Fixed Right Columns / Fixed Footer rows are additional fixed cells that are displayed
respectively at the right side and bottom side of the grid and do not scroll when navigating

through the grid.

The last option is switching between cell scrolling and pixel scrolling.

111

TMS SOFTWARE
tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

ClipboardDemo

.
&3 TMS software FMX Grid: clipboard demo T

Edit grid and/or use Ctrl-C, Ctrl-V, Cirl-X for clipboard actions on single cell or range of cells

This demo demonstrates clipboard support. The Cut, Copy and Paste actions are integrated in
the grid with the common known keyboard shortcuts. There are additional properties that can be
set when pasting the data, such as disabling overwriting readonly cells, automatically appending
columns and rows when necessary. All these options can be found under
grid.options.Clipboard.

These clipboard actions can also be done programmatically.
TMSFMXGridl.CutToClipboard;

TMSFMXGridl.PasteFromClipboard;
TMSFMXGridl .CopyToClipboard;

112

tmssoftware:com

SortingDemo

TMS SOFTWARE

TMS FMX Grid

DEVELOPERS GUIDE

rl@l TMS software FMX Gnid: sorting, column sizing, column dragging, dyn. highlight E‘E‘gw
) Mosort () Single col sart @) Multi col sort Click column header to perform sort. Shift click for
additional sort columns in Multi col sort mode,

TMS grid! | Brand Type cc Hp Cyl ¥ Kw Price Country —
I:l A3 LG 1585 74 4 101 G90000 o
Audi Ad 1.6 1595 74 4 101 235000 o
Alfa Romec | 156 L6TS 1598 28 4 120 £99000 i
Alfa Romec | Spider 1,8 | 1747 106 4 144 399000
Alfa Romec | 156 LBTS 1774 106 4 144 769000
Audi A3 LE 1781 92 4 125 764000 o
Audi Ad LB 1781 52 4 125 533000 o
Audi AB LE 1781 52 4 125 1092000 o
Audi TT Coupe 1781 132 4 180 1235000 o
BrW £318 1798 a5 4 116 30000 o
MG MGF 1796 28 4 120 S0e500 1
LaTUS Elise 1796 28 4 120 1175000 1
Mazda MX5 1,8-16% 1839 103 4 140 929000 3
BrW Z3 19 1395 103 4 140 1090000 o
BrW 318is coupe 1895 103 4 140 1182358 o
Audi A3 L9TDI 1396 66 4 £l 290000 o
Audi A4 19700 1&96 66 4] 297000 o
Audi AR L9TDL 1896 g1 4 110 1113000 o
Alfa Romec | 156 2,075 1970 114 4 155 299000 v

—

The grid supports 2 sorting modes demonstrated in this demo. The first mode is the normal
mode which only allows sorting on one column and is indicated with a blue triangle displaying

the column that is sorted and displaying the sort direction.

When switching the multi column sorting, the blue triangles change to yellow triangles displaying
the index number (default 1). In this mode multiple columns can be selected and sorted with the
shift key. When releasing the key and clicking on a column, the grid returns to sorting on 1

column.

113

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

CellControlsDemo

@) TMS software FMX Grid: Cell Controls Demo (=@8] %]
Clicking the ancher in the cell with HTML formatting triggers OnAncherClick
0 1 2 - 3 4 5 s cet 7:0 dickl 2t
1 Alfa Romeo [] 156 1.6TS o 1598 88 4 S celt 701 click! q
2 Alfa Romeo ¢ 1561.8Ts |5 1774 106 4 Lz celt 702 Click! 4
3 I:l []1s620Ts | @@ 1970 114 4 it celt 723 click! |4
4 Alfa Romeo [15625 o 2492 140 6 o celt 724 click!
5 Alfa Romeo [] 16620TS g 1970 114 4 esy celt 705 clickl
6 Alfa Romeo [1es20ve | g 1996 151 6 osy | celt 726 Click!
7 Alfa Romeo [1e625v6 | §g 2492 140 6 OT | celt 77 click!
8 Alfa Romeo [186 3.0v8 G o509 166 6 Lo | celt 728 Click! 1
9 Alfa Romeo (%] Spider 1.8 o 1747 106 4 Lo dos celt /9 Click! 4
10 Alfa Romeo [7] Spider 2.0 o 1970 114 4 Ldedy cett 710 click!]
11 Alfa Romeo [[] Spider3.0 G 2980 141 6 Loy cett 711 clickt)
12 Audi [0 A31s o 1595 74 4 ez celt 7012 click! iy
13 Audi] A318 1781 52 4 T cell 7:13 click! |
14 Audi [A3 197D ¥ 1896 66 4 teogy cet 714 click! 0
15 Audi [As18 wuf 1595 74 4 st |(celt 7015 Clickt 0
16 Audi [Ad18 o 1781 92 4 LB (celt /016 Clickt 0
17 Audi [A424 * 2393 120 6 s ceu7:17 dlick: 0
18 Audi] A428 et m 142 6 Lss cet 718 click! Uy
< J >
. J

This demo demonstrates the use of cell controls, which are different from standard cells. Each
cell in the grid is an object that can contain other objects. This is designed in such way that it
fully supports the FireMonkey design philosophy.

The grid already implements a set of base control cells such as a checkbox, radiobutton and
bitmap grid cell. This demo also shows how to add custom controls and how interact with them.

114

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

EditingDemo
r ™Y
i@ TMS software FMX Grid: Editing Demo =
Click on or type in a selected cell to editing. Each column uses a different inplace editor.
0 ComboBox Edit TrackBar DatePicker ArcDial ColorPicker Switch Pasword i
1 Alfa Romeo 156 LETS 1598 28 4 120 699000 4
2 Alfa Romeo 156 LETS 1774 106 4 144 769000 4
3 Alfa Romeo 156 2,075 1870 114 4 |:| Agqua (299000 4
4 Alfa Romeo 156 2.5 2492 140 6 [] Aliceblue A 1099000 4
l:l Antiquewh
5 Alfa Romeo 166 2,075 1970 114 4 l:l Agqua 1100000 4
Aguz i
6 Alfa Romeo 166 2,0V6 1996 151 5 O Aquamaric 1) 30000 4
l:l Azure
7 Alfa Romeo 166 2,5V6 2492 140 & l:l Beige 1460000 4
l:l Bisque
8 Alfa Romeo 166 3,0V6 2959 166 & 1580000 4
. Black v
9 Alfa Romeo Spider 1,8 1747 106 4 144 599000 4
10 Alfa Romeo Spider 2,00 1970 114 4 155 1072000 4
11 Alfa Romeo Spider 3,0 25958 141] 192 1437000 4
12 Audi A3 LE 1595 74 4 101 690000 o
13 Audi A3 LE 1781 g2 4 125 764000 o
14 Audi A3 LATDI 1896 66 4 S0 290000 o
15 Audi Ad L6 1595 74 4 101 835000 o
16 Audi AdLE 1781 g2 4 125 533000 o v
L

The grid supports editing that is enabled by default. In this demo, various supported editor types
are demonstrated as well as setting additional properties through various helper events that are
triggered when editing.

By default the editor type is an edit that supports lookup and autocompletion, as well as
validation with several edit types. To change the editor type the demo implements the
OnGetCellEditorType event.

procedure TForml.TMSFMXGridlGetCellEditorType (Sender: TObject; ACol,
ARow: Integer; var CellEditorType: TTMSFMXGridEditorType) ;
begin
case ACol of
1: CellEditorType := etComboBox;
CellEditorType := etTrackBar;
CellEditorType := etDatePicker;
CellEditorType := etArcDial;
CellEditorType := etColorComboBox;

o U1 W W

115

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

end;
end;

116

tmssoftware:com

MergingDemo

TMS SOFTWARE
TMS FMX Grid

DEVELOPERS GUIDE

(@) TMS software FMX Grid: Merging Demo =)
[Merge Selection] [Split Selection
A
JAGUAR XK8 cabrio 3996 209 2 280 2935000 1
Cablo 5V 5707 368 12 500 7410000 4
LAMBORGHINI Diablo 2WD 5707 272 12 492 7720000 4
Diablo VT 5707 272 12 492 8822599 4
LOTUS Elise 1796 28 4 120 1175000 1
LOTUS Esprit VB8-GT 3506 260 2 354 2590000 1
1996 225 & 306 2035825 4
2790 209 & 284 2053975 4
3200 GT 3217 271 2 370 3126640 4
MASERATI
Quattroporte 2,0 | 1996 211 & 287 2265725 4
Quattroporte 28 | 2790 209 6 284 2459125 4
Quattroporte 3,2 | 3217 247 2 335 3003825 4
MERCEDES CLK 200 1998 100 4 136 1268000 o
MERCEDES CLK 230 2295 142 4 193 1448000 0
MERCEDES CLK 320 3199 160 & 218 1768000 o
MERCEDES CLK 430 4266 205 2 279 2245000 o
MERCEDES CLK cabrio 200 | 1998 100) 136 1498000 0
MERCEDES CLK cabrio 230 2295 142 4 193 1667000 o
BACDCOVC L borio 30 2100 LF=a I 21 Ll sTelulalalal 0o W
N

Cells can be merged and splitted in the grid. Select a range of cells and press CTRL+M or
CTRL+S to merge or split.

Also programmatically a selection of cells can be merged or splitted with:

TMSFMXGridl .MergeSelection (TMSFMXGridl.Selection) ;

TMSFMXGridl.SplitCell (TMSFMXGridl.FocusedCell.Col, TMSFMXGridl.FocusedC

ell.Row) ;

117

TMS SOFTWARE

tmssoftware:com TMIS FIX Grid

DEVELOPERS GUIDE

StylingDemo
(@) TMS software FMX Grid: Styling Demo E=E)

[Apply Style] [Apply Style 2]

]
L]
]
]
P
]
]

<

The styling demo demonstrates changing different layouts. To see how this is achieved, open
the Demo form in designtime and double-click on of the StyleBooks which contain the different
layouts for the grid. There you will notice a style layout of the grid, with modified cell
appearances.

118

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

RTFIODemo
1@ TMS software FMX Grid: RTFIO demo o B X
[Export to RTF |
0
1 83 21 ES 6
2 £ 71 12 59
3 50 89 - 65 12
4 58 |97 53
1
5 32 82 — = [| = é]‘
= 18 o5 . 1 @| = = gridexport.ritf [Compatibility Mede] - Microsoft Word =
7 @ 72 2 23 1 Home Insert Page Layout References Mailings Review View & o
8 0 48 5 83 &7 || [F5L & segoeur ML = gz = &, % #H
9 7 2% 21 EL] 13 | ,;g G| B L U -aex, X[= Quick Ch Editing
: 1 @ B A Aar | A A B8] StyLI“ecs' StyTgsg'e -
Clipboard & Font F} Paragraph F} Styles
i
52 83 21 [26 6
84 71 12 59
50 89 65 12
1 18 58197 53
12 24 32 g2 g2
18 58 88 12 21
Q72 34 23 25
J 48 |6 83 67 e
EF PR 99 33 2 -
Ed
o
F
4 [[| »
Page: 1 of 1 | Words:44 | Dutch (Belgium) | \@Eﬂ 5z = 100% (=) LJ {+)

The RTF 10 demo demonstrates exporting to and importing from an rich text compatible format.
When clicking on the Export to RTF button, the grid is exported and the rtf file is automatically
opened if a rich text editor is available.

Exporting the grid can be done with

TMSFMXGridRTFIOl .ExportRTF ('..\..\gridexport.rtf');
XOpenFile ('open', '..\..\gridexport.rtf', "', "');

Note that for opening the file, the XOpenFile procedure is used that is located in the unit

FMX. TMSXUtil which is compatible with all supported platforms which can handle file
manipulation.

119

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

EmbeddedControlsDemo

- ~
i@ TMS software FMX Grid: embedded controls dema l == ﬂ_hj

4 Remove cell grid
(|

)]

31 4:1

4| | [3

13 23 33 43

14 24 34 A4

15 25 35 45

18 28 36 48

17 27 37 47

18 28 3B 48

13 29 39 49 -

| | >

The Embedded Controls demo shows you how to add a control to a cell that is handled outside
the grid.

With
TMSFMXGridl.CellControls[ACol, ARow] := AControl;
You are able to add an additional control inside a gridcell.

The control is client-aligned, so with ColumnWidths and RowHeights, or cell merging the cell
can be made larger so the control can be made visible and interactable.

120

tmssoftware:com

PrintingDemo

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

() TMS software FMX Grid: Printing Demo o B |
[Print] [Print To Image]
0 1 2 * 3 4 ey cet 7:0 clickl -
1 I:l [X| 156 1.6TS | iQu 1598 88 LB (Celt 711 Click!
2 Alfa Romeo [1561.8Ts |35 1774 106 Lz (celt 72 Click!
3 Alfa Romeo [[] 156 2.0Ts ¥ 1970 114 L (Celt 73 Click! a
4 Alfa Romeo [[] 15625 1 2492 140 oy (Celt 74 Click!
5 Alfa Romeo [] 166 2.0TS Lo (celt 705 Click!
o 1970
6 Alfa Romeo [X] 166 2.0v6 e | Cel 76 Click!
7 Alfa Romeo [16625v6 |35 2492 140 Lty (Celt 77 Click!
8 Alfa Romeo [186 3.0v8 U 2959 166 Lt0E g (Celt 78 Click!
9 Alfa Romeo [] spider1.8 |33 1747 106 oSy (Celt 79 Click!
10 Alfa Romeo 3 om0 114 oy | ceu7:10 clickt
11 Alfa Romeo U 2959 141 oy | cet 7:11 click!
[[] Spider2.0
12 Audi ¥ 1595 74 ez (celt 7012 Clickt
13 Audi @ 18 92 Loy | celt 7:13 click!
14 Audi] A3197DI U 1896 66 ooy (celt 7:14 Clickt
15 Audi X A416 & 1595 74 s (cett 7015 clickt
16 Audi [A48 o 1781 92 LB (celt 7116 Click!
17 Audi] A424 wt 2303 m 120 i (Celt 7117 Clickt v
< | -
———————————————————

The printing demo demonstrates how to print to the printer and to an image. Printing supports
several options and events and also supports printing to a separate canvas. When clicking on
the print button, the printpreview dialog is shown that allows you to navigate through the pages

and select the current page or a range of pages to print.

121

tmssoftware:com

LiveBindings demo

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

f Y
@) TMS software FMX Grid: LiveBindings Demo =
Car Catalog
Brand Alfa Romeo
Madel 156 1675
Top Speed 120
Price 639000
ry
D Brand Model Average Spee Top Speed Cylinder Gearbox Price Order Date Stock Logo —
L - &
4 DE TOMASO | Guara 210km/h 286km/h 3982 8 £4537000 6/5/2012 X ="
7 LAMBORGHIN Diablo SV 368km/h | 500km/h | 5707 12 £7410000 | 4/3/2012 X v
10 MERCEDES | CLK200 1W00km/h 136km/h 1998 4 £1268000 11582012 | [X] () Meredes s
11 MERCEDES | SLRVision 600km/h | 557km/h | 5500 12 £12445000 |9/29/2012 | [X] () Meredes s
12 MG MGF 88 km/h 120km/h 1796 4 £908500 7/3/2012 X @ L
15 VR Chimaerad0 168km/h 228km/h | 3952 8 £2006000 | 10/10/2012 |[X] m
16 Wiesmann MF 28 42km/h 193km/h 2793 6 £2000000 | 10/12/2012 |[X] Sruasmany
17 Chrysler Stratus 250X | 120km/h 163 km/h | 2497 6 £1053000 | 117102012 |[X] =
18 Honda NSX Coupe | 206km/h 280km/h 3179 6 £3881000 |6/16/2012 | (X D
HONDWMA
19 Lexus G300 163km/h 221km/h | 2997 6 £1650000 |8/13/2012 | (X @
e s
— v
e inl hdazra RAWE 1.2 1FRL AN oo AAN oo 1230 A £ G7T0000 221017] r\ﬂ
e 4[> o[+H=[E] v x[0))
L

This demo is a LiveBindings sample, specifically designed in combination with the
TMSFMXGrid. The demo loads a ClientDataSet with a cars.xml sample data file. The
ClientDataSet is then connected, in combination with a DataSource, to a BindScope, which is
needed to bind data to the ListBindings component. You can choose to manually bind the data

to the grid, or automatically. Both are explained here below.

Manually

122

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

'!I.'.l-'!:\ (=)

L=l BindScopeDB1

_I T —
BindingsListl
— ClientData5etl
E

DataSourcel

The demo makes use of a TTMSFMXBindDBGridLink that is created and registered specifically
for the Grid component. When opening the editor of the BindingsList you will see various
bindings to different elements that are placed on the form. All these elements have a binding to
a specific field and will update when navigating through the list or with the BindNavigator
component.

r© N
 Editing Form719.BindingsListl (e
2~ % |
Categories: Bind Components:
M D il
Binding Expressions ame =L
DB Grid Links TMSFMYBIindDBGridLinkTMSFMXGrid11 Link grid control "TMSFMXGrid1™ to source "BindScopeDB 1™
DB Links BindExpression1 Bind control “Image1” from source "BindScopeDEB1, Logo™
DBLinkEdit1Brand1 Link contral "Edit1” to source "BindScopeDB1, Brand™
DBLinkEdit2Model1 Link contral "Edit2” to source "BindScopeDB1, Model™
DBLinkEdit3TopSpeed1 Link contral "Edit3” to source "BindScopelB1, TopSpeed™
DBLinkEdit4Price 1 Link control "Edit4” to source "BindScopeDB 1, Price™
i 1 3
L

Selecting the TMSFMXBindDBGridLinkTMSFMXGrid11 component will display its properties in
the object inspector.

123

tmssoftware:com

?@ Object Inspector ez
THMSFMXBindDBGridLinkTMSFMXGrid11 'I_I'MSFM:I:EinDEGI'idLiI‘|kE]

Properties | Events

g

AutoActivate [¥] True E]
AutoFil [¥] True

BufferCount -1

Cateqgory DB Grid Links

ClearControlExpres (TExpressions)
ColumnExpressions | (TColumnLinkExpressions)
ControlComponent | TMSFMXGridl

FormatControlExpre (TExpressions)

Mame TMSFMYBindDEGridLinkTMSFMXGrid 11
PosControlExpressii (TExpressions)
PosSourceExpressic (TExpressions)

SourceComponent | BindScopeDB1

Tag i)

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

As with the TrackBar sample in the LiveBindings chapter this link has a SourceComponent and
a ControlComponent. The difference between this link and the link in the TrackBar sample is,
that the TMSFMXBindDBGridLink component is able to bind multiple fields to multiple columns

in

the grid.

In the sample you will notice that there is binding to the Fields that are loaded from the
clientdataset located in the cars.xml file. To bind data to these elements, an expression must be
added per field to the ColumnExpressions collection. Double-clicking on the

ColumnExpressions property opens the expressions editor.

124

tmssoftware:com

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

i | &% 4 &
Collections: Expressions:
(All Collections) w Name Control Source
FormatControl = =
ClearControl Columns. ID. ColFarmat[d] TMSFMXGrid1, Cells[1, 0] BindScopelE1, ID, "ID"
PasContral Columns, ID. CellFormat[d] TMSFMXGridi, Cells[1] BindScopeDE1, ID, DisplayText
PosSource Columns. ID. CellParse[0] TMSFMYGrid1, SelectedText(Self) BindScopeDB1, ID, Text
4 Columns Columns.Brand. ColFormat[d] TMSFMXGrid1, Cells[2, 0] BindScopeDEB1, Brand, "Brand”™
4 Model Columns.Brand. CellFormat[d] TMSFMXGrid1, Cells[2] BindScopeDB1, Brand, DisplayText
ColFormat Columns.Brand. CellFarse[0] TMSFMXGrid1, SelectedText{Self) BindScopeDEB1, Brand, Text
CellFormat Columns. Model. ColFormat[] TMSFMXGrid1, Cells[3, 0] BindScopeDB 1, Model, "Model™
CellParse Columns. Model. CellFermat[d] TMSFMXGrid1, Cells[3] BindScopeDEB1, Model, DisplayText
4 TopSpeed Columns. Model, CellFarse[0] TMSFMXGridi, SelectedText{Self) BindScopelEB1, Model, Text
ColFormat Columns. AverageSpeed. ColFormat[0] TMSFMXGrid1, Cells[4, O] BindScopeDB1, AverageSpeed, "Average Speed”
CellFormat Columns. AverageSpeed. CellFarmat[] TMSFMXGrid1, Cells[4] BindScopelEB1, AverageSpeed, DisplayText
CellParse Columns, AverageSpeed, CellParse[0] TMSFMYGrid1, SelectedText{Self) BindScopeDB1, AverageSpeed, Text
4 Price Columns, TopSpeed. ColFormat[i] TMSFMXGrid1, Cells[5, 0] BindScopeDB1, TopSpeed, "Top Speed™
ColFormat Columns. TopSpeed. CelFormat[d] TMSFMXGrid1, Cells[5] BindScopeDB 1, TopSpeed, DisplayText
CellFarmat Columns. TopSpeed. CellParse[i] TMSFMXGrid1, SelectedText{Self) BindScopelEB1, TopSpeed, Text
. Ord:rﬂ::erse Columns. Cylinder . ColFormat[] TMSFMXGridi, Cells[&, O] BindScopeDE1, Cylinder, "Cylinder™
CcolFormat L Columns. Cylinder . CellFormat[d] TMSFMYGrid1, Cells[5] BindScopeDB1, Cylinder, DisplayText
calFormat i Columns. Cylinder.CellParse[] TMSFMXGrid1, SelectedText{Self) BindScopelB1, Cylinder, Text
cellParse Columns. Gearbox. ColFarmat{d] TMSFMXGrid1, Cells[7, 0] BindScopeDB1, Gearbox, "Gearbox™
4 Logo Columns, Gearbox, CellFarmat[0] TMSFMXGrid1, Cells[7] BindScopeDB1, Gearbox, DisplayText
ColFarmat Columns. Gearbox. CellParse[0] TMSFMXGrid1, SelectedText{Self) BindScopeDB1, Gearbox, Text
cellFormat Columns. Price. ColFarmat[a] TMSFMXGrid1, Cells[3, 0] BindScopeDE1, Price, "Price”™
CellParse Columns. Price. CelFormat[0] TMSFMXGridi, Cells[5] BindScopeDE1, Price, DisplayText
4 Stock Columns. Price. CellParse[0] TMSFMYGrid1, SelectedText(Self) BindScopelB1, Price, Text
ColFormat Columns. OrderDate. ColFormat[d] TMSFMXGrid1, Cells[3, 0] BindScopeDE 1, OrderDate, "Order Date”
CellFormat Columns, OrderDate. CellFormat[0] TMSFMXGrid1, Cells[3] BindScopeDB1, OrderDate, DisplayText
CellParse Columns, OrderDate. CellParse [0] TMSFMXGrid1, SelectedText{Self) BindScopeDB1, OrderDate, Text
4D Columns Logo. ColFarmat[a] TMSFMXGrid1, Cells[11, 0] BindScopeDE1, Loga, "Logo™
ColFormat Columns.Loge. CelFormat[o] TMSFMXGrid1, Bitmaps[11] BindScopelE1, Loga, Self
CellFormat Columns.Stock ColFormat[c] TMSFMXGrid1, Cells[10, 0] BindScopeDB1, Stock, "Stock”
. Bra:fjellParse Columns. Stock. CellFarmat[d] TMSFMYGrid1, Booleans[10] BindScopeDB1, Stock, DisplayText
ColFormat Columns. Stock. CellParse[0] TMSFMXGrid1, SelectedText{Self) BindScopeDEB1, Stock, Text
CellFormat 1 L b
CellParse Control expression for TMSFMXGrid1:
4 AverageSpeed Cells[1, 0]
ColFormat
celFormat Source expression for BindScopeDB1, ID:
CellParse D"
4 Cylinder
ColFormat i I Eval Control I I Eval Source I I Assign to Control I sig Source

For the ID, the binding has been added to an integer field in the DataBase. To return the value
for the current record, the Asinteger function must be used in the Source expression. The
ColFormat is used to display the header in the fixed row of the grid. The CellFormat is used to
display the cell data depending on the active row. The CellParse is used to detect the selected
text when editing is done. The CellParse expression looks identically for each column. The
CellFormat is the most important expression that is used to insert the data in the grid.

As you will notice, the most used control expression in either ColFormat / CellFormat or
CellParse is the Cells[] property. This is also available in a standard grid. The Cells property
with one value passed through is used internally when the record pointer changes to load the
data in the grid. In the ColFormat the Cells property is used with 2 parameters and will remain
fixed during the runtime of the application.

To bind the Logo, the source expression is Self and the control expression is Bitmapl[]. To know
exactly which source expression you must use, you can click on Eval Source which will tell you
the type of the data. To use the Eval Source function the DataSet must be active. Currently the
grid supports 4 kinds of cell binding:

125

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

Cells[] : All text based data

Bitmaps[] : All graphical / blobfield type data

Booleans[] : All Boolean data.

Colors[]: All Color data (integer).

When starting the application, the list will load the data and display the different columns in the
grid. When selecting a different row, the navigation in the dataset is automatically handled. This
is due to the initialization of the TTMSFMXBindDBGridLink that has already taken care of this
functionality and has stored the correct values in the PosSource and PosControl expressions.

PosSource:
Contraol expression for TMSFMXGrid1:

Math_Max(1, Selected)

Source expression for BindScopeDEB1:

DEUts_ValidRedMa(Self)

PosControl:
Control expression for TMSFMXGrid1:

Selected

Source expression for BindScopeDB1:

Math_Max(1, DEUtls_ActiveRecord(Self) + (1))

When double-clicking on a cell (based on the default settings in grid.options) the editing starts.
When typing in the edit box, the dataset is automatically set in edit mode. When pressing enter
the edit is stopped and the value is inserted in the cell. The value is not automatically added in
the database, therefore a post must be done through the BindNavigator component. The value
is also automatically posted when editing is still active and the post button has been pressed in
on BindNavigator component.

The editor must be specified manually, there is no support to detect which fieldtype that has
been added so the default editor is used on all field (etEdit). To specify a different editor for
specific field you need to override the OnGetCellEditorType:

procedure TForm1. TMSFMXGrid1GetCellEditorType(Sender: TObject; ACol,
ARow: Integer; var CellEditorType: TTMSFMXGridEditorType);
begin
case ACol of
7: CellEditorType := etNumericEdit;
9: CellEditorType := etDateEdit;
end;

126

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

end;
Automatically

Start a new application and right-click on the form. Select Bind Visually... to start the visual
designer to create a livebinding application.

Edit 3
Control 4
Bind Visually...

Align Te Grid

Revert to Inherited

Align...

Creation Order...
Add to Repository...
View as Text

Text FMX

Convert to Metropelis Ul

The designer shows a visual overview of the links between the components and datasources /
other components. Click on the livebindings wizard icon to start the wizard.

LiveBindings Designer @
Form14 - Default Layer W Layers 'ﬁ'}'
4
Gl
2l
LiveBindings Wizard... I

127

TMS SOFTWARE

tmssoftware:com TMS FHX Grid

DEVELOPERS GUIDE

() LiveBindings Wizard x|

Binding task
Select a binding task

Ise a arid to display fields of a data source.

Binding task (" Link a control with a field

Grid (®) Link & grid with a data source

Data source (I Link a component property with a contral
Options (" Link a component property with a field

(I Create a data source

Cancel Help

Tl

3
7

¥

1of4 ack Mext ==

[ma)
I-'|

You have multple options to choose from, either linking a component to a data source or linking
a component to a control (see trackbar sample). For our grid, the Link a grid with a data source
is marked. Click on the next button to go to the next page.

128

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

() LiveBindings Wizard x|
Grid
Select a grid or a agrid class
Create a new TTMSFMXGrid
Binding task Existing rid | New grid
Grid Contral Class:
Data source TGrid
Options TStringGrid
TTMSFMY Grid
2of4 << Back Mext == Finish Cancel Help

On this page the TTMSFMXGrid is available to be used as a new grid. On the tab Existing Grid
you will also be able to choose an existing TTMSFMXGrid instance if you already have added a

grid.

129

TMS SOFTWARE

tmssoftware:com TMS FHX Grid

DEVELOPERS GUIDE

() LiveBindings Wizard x|

Data source

Choose a datasource

Create a new TBindSourceDBX
Binding task - Mew &

Existing Source W SOUrce
Grid Class Mame:
Data source TBindSourceDBY
Data source properties TPrototypeBindSource
Options
Fofs << Back Mext == Finish Cancel Help

The datasource page has 2 options, to bind the grid to a TBindSourceDBX, or to a
TPrototypeBindSource. The TProtoTypeBindSource is a datasource that allows adding fields
with dummy data to quickly create a test sample for your application. The bindsource can be
easily replaced if real data is used. The real datasource is created with TBindSourceDBX. This
has an extra page available that shows the datasource connection properties.

130

TMS SOFTWARE

tmssoftware:com TMS FIX Grid

DEVELOPERS GUIDE

() : LiveBindings Wizard x|

Data source properties
Spedfy data source properties

Binding task Connection Component
Grid {Mew connection))
Data source Driver:
Data source properties h
Options Connection Mame:
W
Command Type:
ctTable W
Command Text:
W
Test Command
" 4of5 << Back Finish Cancel Help i

On the Data Source connection properties page you can specify which driver you wish to use
among some other options such as a command type and a command text.

131

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

() LiveBindings Wizard x|
Options
Set create options
Binding task []Add data source navigator
Grid [] add control label
Figlds
Data source
Options
5o0f5 << Back Mext == Finish Cancel Help

The last page allows you to add a Data source navigator to navigate through the records.
When clicking on the finish button, the visual designer and components are updated showing

your links you have created through the livebindings wizard. For this sample we show the visual
designer that is linked to a ClientDataSet:

132

tmssoftware:com

TMS SOFTWARE
TMS FMX Grid
DEVELOPERS GUIDE

4

G

ooo
ooo
ooo

Vi

Form719 - Default Layer

LiveBindings Designer

W Layers

ok

Text

Text

= TopSpeed

Text Text

Cylinder

AverageSpeed
Gearbox

Price

CrderDate

-

A

Logo —

=
o
an

When selecting the BindingsList component and showing the list of Bindings, you will notice a
LinkGridToDataSource link available that is created after finishing the LiveBindings wizard.

133

tmssoftware:com

(5

e

Ohject Inspector

LinkGridToDataSourcel TLinkGridToDataSource

Properties | Events

»

AutoActivate True

AutoBufferCount || False

BufferCount -1

Category Quick Bindings

Columns (TLinkGridToDataSourceColumns)
DataSource BindSourceDB1

DefaultColumniWidth 54

GridControl THMSFMXGrid1

Mame LinkGridToDataSource 1

Tag u]

TMS SOFTWARE
TMS FMX Grid

DEVELOPERS GUIDE

This LinkGridToDataSource automatically loads the Fields and applies the correct Source and
Control expression for the columns. When double-clicking on the LinkGridToDataSource in the
BindingsList window, you will see that all expressions are added and cannot be modified. If you
wish to modify an expression, such as a boolean field that needs to be presented as a text field,
you need to work with the TTMSFMXBindDBGridLink that allows columns and expressions to
be modified.

Columns. OrderDate, CellParse 01 TMSFMXGrid1.
<

) Editing Form719.LinkGridToDataSource1 @
|
Collections: Expressions:
(Al Callections) Name Control Source &
PosControl — -
PosSource Columns. ID. CellFormat[a] TMSFMXGrid1, Cells[1] BindSourceDB1, ID, Text
2 Columns Columns. ID. CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB1, ID, Text
. AverageSpeed Columns.Brand. CelFormat[0] TMSFMXGrid1, Cells[2] BindSourceDB1, Brand, Text
. TopSpeed Columns.Brand. CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB1, Brand, Text
> Price Columns. Model, CelFormat[0] TMSFMXGrid1, Cells[3] BindSourceDE 1, Model, Text
. ID Columns.Model, CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB1, Model, Text
> Brand Columns. Cylinder, CelFormat[0] TMSFMXGrid1, Cells[4] BindSourceDB1, Cylinder, Text
> Model Columns. Cylinder. CellParse[0] TMSFMXGridl, SelectedText{Self) BindSourceDB1, Cylinder, Text
> Cylinder Columns. AverageSpeed.CellFor... TMSFMXGrid1, Cells[5] BindSourceDB1, AverageSpeed, Text
> Gearbox Columns. AverageSpeed.CellPars... TMSFMXGrid1, SelectedText{Self) BindSourceDB1, AverageSpeed, Text
» OrderDate Columns. Gearbox.CellFormat[d] TMSFMXGrid1, Cells[8] BindSourceDE1, Gearbox, Text
> Logo Columns. Gearbox. CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB 1, Gearbox, Text
Columns. TopSpeed. CellFormat[0] TMSFMXGrid1, Cells[7] BindSourceDB1, TopSpeed, Text
Columns, TopSpeed. CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB1, TopSpeed, Text
Columns. Price.CelFormat[0] TMSFMXGrid1, Cells[g] BindSourceDB1, Price, Text
Columns. Price.CellParse[0] TMSFMXGrid1, SelectedText(Self) BindSourceDB1, Price, Text
Columns,OrderDate, CelFormat[0] TMSFMXGrid1, Cells[9] BindSourceDB1, OrderDate, Text
SelectedText{Self)

BindSourceDB 1. OrderDate. Text he
>

Control expression for TMSFMXGrid 1:
Cels[1]
Source expression for BindSourceDB1, ID:

Text

Eval Control Eval Source

134

TMS SOFTWARE

tmssoftware:com TS FuIX Grid

DEVELOPERS GUIDE

When editing, some editors are numeric only, the datetime shows a calendar and the checkbox
is used on a boolean field. These type of cells and editors are automatically detected and used
by the grid.

Based on the type of column, the editor changes. There is support for alpha- and numeric
editing, boolean and datetime editing. For that last type the TDateEdit / TDatePicker component
is used. If the automatically chosen editor is not suitable for your application you can override
the OnGetCellEditorType event that allows specifying a different editor.

Deleting and inserting a row

The delete key deletes a record with a confirmation dialog. The insert key inserts a new row.
This can be switched off in grid.options.keyboard.

LiveBindings Lookup demo

@ TMS software FMX Grid: LiveBindings Lookup Demo \ilﬂlgl
1] Short Text Number Currency Date / Time Yes/No Long Text 1 Hyperlink Bitmap Country CountryMam Field1 CarName
12 Item 1 40 120 4/08/2012 test #httpy/foww, /}_‘ [France 2 Audi
13 Item 2 1 3 26/08/2012 Hella World ! |#http://www. : 4 Metherlands |4 Bugatti
14 Item 3 554 50 1500872012 | [] #hitpy/faww. = 7 Spain 1 Mercedes
15 Item 4 10 100 10/10/2012 test #hitpe/ A, E 5 USA 3 BMW
17 e 10 20 aoreoz | test #httpy/fwww, 5 UsA 3 BMW
18 5 50 60 20/10/2012 testsun label |#httpy/fwaw, 3 {““-“““““14 Bugatti
19 test 45 54 13092m2 | test #httpe/ W, u 7 Spain 3 BIMW
20 ltem 9 25 120 5/08/2012 #httpy/fwww, ﬁ 3 Brazil 3 BMW
21 Item 10 10 150 10/05/2012 D #Fhttpy/iww, 5 Usa
3 test o 564 16/08/2012 hittp:/fwnw, 4 Metherlands

MW+ —=EH v X0

Shows how to bind multiple lookup fields to a combobox in the grid used as an inplace editor.
More information can be found in the LiveBindings chapter.

135

	Introduction
	Grid properties
	Options
	Organisation
	Styling
	Cell Properties
	Events
	Custom Cell Drawing
	Custom Cell Class
	Grid cell merging / splitting
	Printing
	Find & Replace
	Editing
	Selection
	Calculations
	Sorting
	Grouping
	Column persistence
	Columns
	LiveBindings
	Filtering
	HTML formatted text, cell anchors, highlighting and marking in cells
	General FireMonkey component usage guidlines
	Visual part
	Styling
	Components

	Samples
	XLSIODemo
	GroupDemo
	FilteringDemo
	FixedFreezeDemo
	ClipboardDemo
	SortingDemo
	CellControlsDemo
	EditingDemo
	MergingDemo
	StylingDemo
	RTFIODemo
	EmbeddedControlsDemo
	PrintingDemo
	LiveBindings demo
	LiveBindings Lookup demo

