thSOftwa re LU TMS Data Modeler

Introduction

Data modeling is a mandatory requirement throughout the lifetime of a database system: from
the initial design of the software, when the first structure is created and modeled, to later on,
in system updates, when database structure is modified. There are also situations where
manipulation of database structure may be a complicated task, such as when there is a need
to get a productive system and to work on a non-documented database, or convert a database
from a DBMS to another. There are several tools related to data modeling on the market:
some DBMS-specific, others generic; some useful to specific and isolated tasks, others offering
a multitude of features (and usually not very cheap). TMS Data Modeler is a tool that provides
nothing but essential features for creating and maintaining a database: it integrates database
design, modeling, creation and maintenance into a single environment, in a simple and
intuitive user interface to manipulate databases efficiently. This article briefly describes the
main features of TMS Data Modeler, demonstrating how it may be used to create a project and
maintain an existing database.

Data Modeler main features

TMS Data Modeler is a generic tool that allows data modeling independently of the used DBMS,
in an easy-to-use interface. The application allows you to start modeling a database from
scratch, as well as import the structure of an existing database (reverse engineering). It allows
you to generate scripts to create the full database, or upgrade an existing database with
update script, through its version control system. In addition, it provides features for
conversion from one DBMS to another, consistency check and visualization of entity-
relationship diagrams, among others. Data Modeler supports several database management
systems, currently: Absolute Database, Firebird 2, MS SQL Server 2000/2005/2008, MySQL
5.1, NexusDB V3 and Oracle 10g.

Creating a project in TMS Data Modeler

There are two ways to start a project in Data Modeler: creating a new project from scratch or
importing data dictionary from an existing database.

Create New

J Mew b
MNew Project
|

J Create a new blank projectfar atarget

7 Open database platfom.

H v Import from Database

. Create a new project and import structure
i = from existing database.
I-L_ i Save As

Choosing the "New Project" option, just select the target database and an empty project will
be created. By default Data Modeler provides a diagram named "Main Diagram". Tables and
relationships between them can be created visually through the diagram. All objects in the
database (apart from tables we can have procedures, views, etc.) can be accessed, created
and edited through the Project Explorer, located on the left of the screen.

In the "Import from Database" option you need to configure the connection to the database
whose structure will be imported. After importing the structure, Data Modeler will hold all the
database objects: tables, relationships, triggers, procedures, views, etc. All objects are listed
at Project Explorer on the left, in their respective category. For an overview of the imported
structure, it is possible to open the "Main Diagram" and select "Add all tables" from the context
menu.

1|Page

productivity software building blocks

tmssoftware.com TMS Data Modeler

£ 0O & | ‘ ‘TMS Data Modeler E@ﬂ

| SRS Home Tools Help Design | o

E 1;‘&]‘ b Tahoma -lls |- J\ E’] @ Ij

{2 Mon-ID Relationshi
Table Relationship = ? Sy Fill Print Print Orientation Size

Preview

Insert Font Qutput Page Setup (]
Diagrams E‘; Main Diagram @
';:" Main Diagram

7 groupid LOGID
RECORDID PROJECTID
2 UserD FR USERID

2 PROJECTID MODULEID

¥ RECORDNR
= BUGID
PROJECTID

parentid
treelevel R |-
flags

RIGHTS TSTAMP
TYPE
DESCRIFTION

name

description

m

BUGID
RecordID
PROJECTID
= 0o USERID BUG
% PROJECTID o] navE e o0
REFERENCE R LOGIN o
PW RITY
2 CREATEDBY CREATED
22 LASTUSER IPADDR =]
= LneTaccESs RIGHTS 72 CREATEDBY
,,,,,,,,, reroRy DELETED FLAGS 1
X RECORDNR . |— DESCRIPTION DESCRIPTION
ﬁ arams 22 MILESTONEID DELETEL REPORTEDBY
FK
DESCRIPTION
PR 1o FRPROJECTID el \S'\ch;iE:ROUND
ables e s . -
] PICONFIRM 1L Fa NN
ey REACHED ; T
"~ Relationshi [
g neanonss DESCRIPTION :

i

n Procedures

MODULEID

RECORDID MNAME
p:j Views - TODOID
== mstones Fi PROJECTID USERID PATH
MILESTONEID MODULEID = ppnErTn TSTAMP -

1| I |

Database: M5 SQL Server 2008 Version: 1

Versioning database

To use the version control features of TMS Data Modeler (comparison and identification of
changes, script generation for upgrade) it is necessary to archive versions so they are kept in
history. By default any new project starts at version 1, with the status "under construction". In
this example, after importing the structure of an existing database, we will archive the first
version. Once this version is archived, its status is changed to "closed", and a new version (2)
is created with the status "under construction". All changes from now on will be part of the

second version.
Archive version ﬁ

e

Version number: 1
Time stamp: 21/08/2010 01:10:07

Information:

#

Initial databaze stucture after reverse engineering.

[Archive ” Cancel

2|Page

tmssoftware com TMS Data Modeler

Creating and editing database objects

The Project Explorer on the left provides access to viewing and editing interfaces to all existing
objects, as well as creating new ones through the context menu. Data Modeler's interface
allows multiple objects to be opened simultaneously, organized into tabs, which allows easy
navigation among them. In this example we will create a new table named "attachments", and
later we will relate it to the existing table "projects". We will also create a new field "filesize" in
the table "blobs".

e 0 eHE jedives.dgp - TMS Data Modeler = | B ||
Home | Tools Help 9
= @J j ":%_ Procedure | J J ?\I, § L [Messages Window
& § = V[e ———
& . [View = 2 g— |}j$ Project Explorer |
Generate Check Merge Table Relationship Domains | Compare Archive Manage &=/~ |
script] Object -
Project Create Versions ShowHide
Tables '€} Main Diagram == projects | = attachments &3
£ attachments Table name attachments Laption Files attached to projects
EH blobs
Fields | Indexes | Check constraints | Triggers | Description
. Jnios] [Fogges [t
7 DBARCHIVEVERSICE || | | |Field name Datatype % | Properties | Description
3 framily ¥ idattachment Int (identity) * Field name Caption
description VarChar(150) ¥ | idattachment idattachment
3 groups
| filename WarChar(255) “3 | Domain
] fabels createdon Datetime [(no domain) v] Primary key
EH logcomm content Image Logic type Size Predision
EH mdbugs [Int (identity) v]
] modules Physical type
INTEGER IDENTITY(0, 1)
j mstones
. Mot null constraint
5 pibugs
— S Mot null
4 [| »
""""" Check constraint
|
am Diagrams Check expr. [specific
Constraint name
Tables
Default value
/_’: Relationships Default value [specific
Constraint name
Procedures Identity
Seed (initial valug) Increment
Dﬂ Views 1
Database: M5 SQL Server 2008 Version: 2

Data Modeler allows you to create different diagrams by dragging the desired tables from
Project Explorer to the diagram area; related tables are automatically linked. As a result, it is
possible to see different sets of tables, separated by module or system context.

To relate the two tables visually, through the diagram, insert a new diagram to make viewing
easier, and drag the "projects" and "attachments" tables from Project Explorer to diagram
area. Selecting the "Relationship" button on the toolbar, just click on the parent table and drag
the mouse to the child table. This will display a window for inserting a new relationship, in
which we can set its name, keys and other options. After confirmation, the relationship
between the tables is created and displayed immediately in the diagram. Note that a field
"ProjectID" was automatically created in the "attachments" table, related to the primary key in
the "projects" table.

3|Page

productivity software building blocks

tmssoftware.com

TMS Data Modeler

f%lJJHﬁI | |

[J Note

= ™

LAl din

IR o |

jedivcs.dgp - TMS Data Modeler

:Eﬂ

[2)

Tahoma

i oz Mon-ID Relationship

Bk E (g @ B [

';:'} Main Diagram

n Procedures
Flﬂ Views

1|

@} Projects and Attachments projects
? PROJECTID
" o - CREATED % idattachment
|l LG Fr CREATEDEY description
5 _ TR LASTUSER 4“‘*&-_‘_{% flename
Diagrams LASTACCESS createdon
i- Tables HISTORY content
=2k DELETED 7 PROJECTID
= DESCRIPTION
/::- ~ Relationships

I

Table Relationship Sy Fill - Print Print Crientation Size
Preview - -
Insert Font Quiput Page Setup Pl
Diagrams @3 Main Diagram - projects - attachments @3 Projects and Attachments &3

13

m

Database: M5 SQL Server 2008 Version: 2

Version upgrade

After the changes are made in the project, version 2 becomes different from version 1, which
was archived right after importing the structure from the database. Using the comparing
versions tool of Data Modeler, we can view the structure of each version side by side, with
their differences highlighted (created, removed or changed objects), and the creation script of
selected objects. On the same screen we can select the changes to generate a script to update

the database.

4| Page

TMS Data Modeler

tmssoftware.com

P

& Compare Versions

Differences between versions
Options

[Hide unchanged items

Filter objects: Tables, Indexes, Relationships, Triggers, Dom | - Action: ’Generate database script «

Version 1 (21/08/2010) Diff Version 2 (21/08/2010)
= Tables ¥ =) Tables -
(not exists) Ll attachments
= blobs A = blobs 1
=1 3 Fields o 2 3 Fields 3

= FII;E_,FTF =] FII;E_,FT;
I —— T —

CREATE TRBLE [blobs]

[ELCBID] INTEGER IDENTITY(1,1) NOT NULL,
[REVISIONID] INTEGER NULL,

[EXTENSICN] VARCHRR(Z0) NULL,

ORIG ORIGCRC
E| ORIGSIZE E| ORIGSIZE
[E oricTIME E oriGTIME
= rEVISIONID [Hl rREVISIONID i

- CREARTE TABLE [blobs] | -
[BLOBID] INTEGER IDENTITY (1,1) NOT NULL,
[REVISIONID] INTEGER NULL,

[EXTENSICN] VARCHRE(Z0) NULL,

m
m

[ORIGTIME] DATETIME NULL,
[CRIESIZE] IN
[CRIECRC] INT
[COMPSIZE] IN E
[COMPCRC] INTEGER NULL,

[FILEDATR] IMRCE NULL

[OCRIGTIME] DATE
[CRIESIZE] INIE

[COMPCRC] INIEGER NULL,
[FILEDATE] IMRGCE NULL,
[FILESIZE] INTEGER HNULL

4 | [2

[sk | [cewoe |[concel |

Clicking on "Generate", we have our script ready to update the database from version 1 to
version 2, containing all alterations.

E. Compare Versions o | El |t
SQL Script
1 |ALTER TZRLE [blobs] ADD [FILESIZE] o
z INTEGER HNULL
2 |GO
4
5 |CRELATE TRABLE [attachments] |
2 [idattachment] INTEGER IDENTITY(0,1) NOT HWULL, 2
7 [description] VARCHAR (150) 1
& [filename] WVARCHAR (255) NULL,
3 [createdon] DATETIME NCT NULL,
10 [content] IMAGE NULL,
11 [FRCJECTIL] INTEGER NOT NULL,
1z CONSTRRAINT [pkattachments] PRIMARY EEY (:idattachment:,:PROJECTIE__
1z |
12 |0
15
16 |CREATE UNIQUE INDEX [ikattachments] ON [attachments)]
17 ([description])
18 |zo =
4| 1 &
Back

5|Page

thSOftwa re LU TMS Data Modeler

Reading the structure of a Data Modeler project from your application

TMS Software offers a free library, Data Modeler Library (DMLib), which allows access to the
structure of a database stored in a TMS Data Modeler project, from any application in Delphi or
C++Builder. It is a collection of read-only classes containing clear methods and properties for
obtaining information about all objects from the data dictionary. Here is a small example of
how to use DMLIib for getting the fields and their data types from a specific table in the data
dictionary:

program DMread;
uses
SysUtils, uAppMetaData, uGDAO;

var
amd: TAppMetaData;
table: TGDAOTable;
field: TGDAOField;
i: integer;

begin
amd := TAppMetaData.LoadFromFile('C:\tmssoftware\dmlib\jedivcs.dgp');
try
table := amd.DataDictionary.TableByName('attachments');
if table <> nil then
begin
for i := O to table.Fields.Count-1 do
begin
field := table.Fields[i];
Writeln(Format('Field %d: %s [%s]',
[i + 1, field.FieldName, field.DataType.Name]));
end;
end
else
Writeln(‘Table not found.");
finally
amd.Free;
end;
end.

Output:

Field 1: idattachment [Int (identity)]
Field 2: description [VarChar]

Field 3: filename [VarChar]

Field 4: createdon [Datetime]

Field 5: content [Image]

Field 6: PROJECTID [Int]

Conclusion

In this article only the main features of TMS Data Modeler have been described, with examples
of how to create a project and maintain a database using this tool. TMS Data Modeler offers
many other features for modeling and maintaining databases, and comes with complete
manual reference and online help. Access our website for details on further application features
and benefits. For more information and a free trial download of TMS Data Modeler, visit:
http://www.tmssoftware.com/site/tmsdm.asp

TMS Data Modeler Library is available for free at:
http://www.tmssoftware.com/site/tmsdmlib.asp

6|Page

http://www.tmssoftware.com/site/tmsdm.asp
http://www.tmssoftware.com/site/tmsdmlib.asp

