

1

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

TMS TAdvTreeView

DEVELOPERS GUIDE

June 2020

Copyright © 2017 - 2020 by tmssoftware.com bvba

Web: https://www.tmssoftware.com

Email: info@tmssoftware.com

https://www.tmssoftware.com/
mailto:info@tmssoftware.com

2

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Index

Introduction ... 3

Organization ... 4

Modes .. 5

Virtual ... 5

Collection-based ... 8

Columns ... 10

Configuration / Appearance ... 10

Autosizing and stretching .. 12

Groups .. 16

Configuration .. 16

Appearance .. 17

Nodes .. 19

Configuration / Appearance ... 19

Adding, inserting and removing nodes ... 19

Fixed vs variable node height ... 22

Checkbox / Radiobutton support ... 27

Extended nodes ... 28

Interaction .. 31

Clipboard ... 32

Reordering / Drag & Drop .. 33

Filtering ... 34

Sorting .. 37

Editing .. 37

Custom Editor ... 39

Customization .. 41

Demos ... 43

Overview ... 43

Directory ... 43

Properties .. 45

Public Properties .. 52

Events ... 55

Procedures and functions .. 58

TAdvDirectoryTreeView and TAdvCheckedTreeView ... 66

TMS Mini HTML rendering engine .. 66

3

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Introduction

The TMS Advanced TreeView offers a wide range of features to enhance your applications.

- High performance virtual and collection-based mode able to easily deal with millions
of nodes

- Multi-line HTML formatted text
- Various built-in column editors
- Multi-column support
- Fixed and variable node height and node auto sizing
- Multiple events for custom drawing and customization of default drawing
- Multiple events for all kinds of interactions such as editing, expand / collapse and

selection
- Auto-sizing and stretching of columns
- Mouse and keyboard interaction
- Nodes with checkbox, radiobutton, image, disabled nodes
- Nodes extending over multiple columns
- TAdvCheckedTreeView & TAdvDirectoryTreeView

4

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Organization

Below is a quick overview of the most important elements in the TreeView. This guide will
cover all elements in different chapters.

1) Columns / Column groups, which are added through the Columns / Groups collection.
Columns based settings can override the default appearance for nodes. Via Columns a
header and configure text alignment, wordwrapping and appearance can be specified.

2) Nodes: Holds a set of values such as the text, icon and check state that are
represented in each column. Nodes can have child nodes and when child nodes are
added, an expand/collapse icon is shown.

3) HTML formatted text: The node can display HTML formatted text for each column.
Simply add the supported HTML tags and the TreeView will automatically switch to
HTML.

4) Checkbox / Radiobutton support is added for each column
Additionally an icon can be specified for each column as well.

5) Customization: Each element in the TreeView can be fully customized. In the above

sample a progressbar is drawn to indicate a certain level of stock instead of text.

5

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Modes

The TreeView supports a collection-based and a virtual mode. Both modes will be explained

in this chapter together with a small sample. You will notice that each programmatic call to

manipulate / interact with nodes has a virtual and a collection-based version of the node.

By default a collection-based TreeView is used. Below is a screenshot on how a default

TAdvTreeView instance looks like when dropped on the form.

Virtual

The TreeView will retrieve its values for each column and the number of nodes/child nodes

through events. Each event that retrieves the node values passes an ANode parameter of type

TAdvTreeViewVirtualNode. The most important event to start with is the

OnGetNumberOfNodes event. This event retrieves the number of nodes during creation of the

TreeView. The event is also called for child nodes after successfully retrieving the child count

for each node. The first level of nodes is -1 (under root) which is the initial display of nodes

and can be accessed with the ANode parameter in the OnGetNumberOfNodes event. Below is

a sample that demonstrates this.

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

6

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 ANumberOfNodes := 10;

end;

Note that this sample code is executed on a default TAdvTreeView instance dropped on the

form without any properties changed. As you will notice, the default columns are still used

while the nodes (i.e. default collection based) are removed.

When continuing with our virtual mode based TreeView you will notice that the text of the

nodes is missing. To further define the setup of the TreeView, we will remove the default

columns and add new columns to the TreeView. Additionally we will specify text for each

node through the OnGetNodeText event.

AdvTreeView1.BeginUpdate;

AdvTreeView1.Columns.Clear;

AdvTreeView1.Columns.Add.Text := 'Column 1';

AdvTreeView1.Columns.Add.Text := 'Column 2';

AdvTreeView1.EndUpdate;

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 AText := 'Node ' + inttostr(ANode.Index) + ' for ' +

AdvTreeView1.Columns[AColumn].Text;

end;

7

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

To add child nodes for each node the level of the nodes is identified with the level property

on the ANode parameter. Note from the first sample that the level is -1 for the root nodes.

For all root child nodes that are added the level is 0 or larger. Each node has an Index

parameter and a Row parameter to uniquely identify each node. The following sample adds 3

root nodes and adds 5 child nodes for the first root node.

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 3

 else if (ANode.Level = 0) and (ANode.Index = 0) then

 ANumberOfNodes := 5;

end;

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 if ANode.Level = 0 then

 AText := 'Node ' + inttostr(ANode.Index) + ' for ' +

AdvTreeView1.Columns[AColumn].Text

 else

 AText := 'Child Node ' + inttostr(ANode.Index)

end;

8

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Each property that affects the node text, icon, check state, … can be configured through the

OnGetNode* events. Alternatively a collection-based approach can be used which is explained

below. When using a virtual TreeView all virtual procedures, functions and properties need to

be used. Below is a sample that expands all nodes in a virtual TreeView.

AdvTreeView1.ExpandAllVirtual;

Collection-based

A collection-based TreeView uses nodes from the Nodes collection property. Each node

represents a set of values for each column that can be accessed through the Values property.

Below is the same sample as in the Virtual mode, but then created through the Nodes

collection.

var

 I: Integer;

 C: Integer;

 K: Integer;

 pn: TAdvTreeViewNode;

begin

 AdvTreeView1.BeginUpdate;

 AdvTreeView1.ClearColumns;

 AdvTreeView1.ClearNodes;

 AdvTreeView1.Columns.Add.Text := 'Column 1';

 AdvTreeView1.Columns.Add.Text := 'Column 2';

 for I := 0 to 2 do

9

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 begin

 pn := AdvTreeView1.AddNode;

 for C := 0 to AdvTreeView1.Columns.Count - 1 do

 pn.Text[C] := 'Node ' + inttostr(I) + ' for ' +

AdvTreeView1.Columns[C].Text;

 if I = 0 then

 begin

 for K := 0 to 4 do

 begin

 childn := AdvTreeView1.AddNode(pn);

 for C := 0 to AdvTreeView1.Columns.Count - 1 do

 childn.Text[C] := 'Child Node ' + inttostr(K);

 end;

 end;

 end;

 AdvTreeView1.EndUpdate;

end;

When using a collection-based TreeView the information of each node such as the position,

height, level, ... is stored in the TAdvTreeViewVirtualNode object which is the same object

being used in the virtual mode. Each collection-based node has a reference to the virtual

node through the VirtualNode property. When using a collection-based TreeView the non-

virtual procedures / functions an properties need to be used. Below is a sample that expands

all nodes in a collection-based TreeView.

AdvTreeView1.ExpandAll;

10

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Columns

Configuration / Appearance

The columns are configured through the Columns collection. Each column displays a set of

values for each node such as the text, icon and check state. The most important property for

a column is the UseDefaultAppearance property which is used to switch between the

properties set at ColumnsAppearance level or the properties on the column collection item

level for controlling the appearance of a column. Per column, horizontal, vertical text

alignment as well as trimming and word wrapping can be configured. Fine-tuning is possible

through a variety of events. Below is a sample that explains the difference between using the

default appearance and customizing the appearance with the UseDefaultAppearance = false

property per column.

In the following sample, we want to customize the font color and size of the header of the

column and the font color of the nodes. For this we need to set the

ColumnsAppearance.TopFont.Color, the ColumnsAppearance.TopFont and the

NodesAppearance.Font.Color properties. Note that the NodesAppearance covers the nodes

area while the ColumnsAppearance covers the columns area.

var

 n: TAdvTreeViewNode;

begin

 AdvTreeView1.BeginUpdate;

 AdvTreeView1.Nodes.Clear;

 AdvTreeView1.Columns.Clear;

 AdvTreeView1.Columns.Add.Text := 'Column 1';

 AdvTreeView1.Columns.Add.Text := 'Column 2';

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 0 for Column 1';

 n.Text[1] := 'Node 0 for Column 2';

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 1 for Column 1';

 n.Text[1] := 'Node 1 for Column 2';

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 2 for Column 1';

 n.Text[1] := 'Node 2 for Column 2';

 AdvTreeView1.ColumnsAppearance.TopFont.Size := 16;

 AdvTreeView1.ColumnsAppearance.TopFont.Color := gcOrange;

11

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 AdvTreeView1.NodesAppearance.Font.Color := gcSeagreen;

 AdvTreeView1.EndUpdate;

end;

Let’s say we add a third column, and don’t want to take on the default appearance, but

instead use a different color for the header and nodes text and we don’t change the font size.

Additionally we also apply trimming. Below is a sample that demonstrates this.

var

 n: TAdvTreeViewNode;

begin

 AdvTreeView1.BeginUpdate;

 AdvTreeView1.Nodes.Clear;

 AdvTreeView1.Columns.Clear;

 AdvTreeView1.Columns.Add.Text := 'Column 1';

 AdvTreeView1.Columns.Add.Text := 'Column 2';

 AdvTreeView1.Columns.Add.Text := 'Column 3';

 AdvTreeView1.Columns[2].UseDefaultAppearance := False;

 AdvTreeView1.Columns[2].Trimming := tvttWord;

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 0 for Column 1';

 n.Text[1] := 'Node 0 for Column 2';

 n.Text[2] := 'Node 0 for Column 3';

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 1 for Column 1';

 n.Text[1] := 'Node 1 for Column 2';

 n.Text[2] := 'Node 1 for Column 3';

 n := AdvTreeView1.AddNode;

 n.Text[0] := 'Node 2 for Column 1';

 n.Text[1] := 'Node 2 for Column 2';

 n.Text[2] := 'Node 2 for Column 3';

12

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 AdvTreeView1.ColumnsAppearance.TopFont.Color := gcOrange;

 AdvTreeView1.ColumnsAppearance.TopFont.Size := 16;

 AdvTreeView1.NodesAppearance.Font.Color := gcSeagreen;

 AdvTreeView1.EndUpdate;

end;

As you will notice, the default font color for both the header and the nodes is gray which can

be set on column level with the properties Column[Index].TopFont.Color and

Column[Index].Font.Color. The following sample adds 2 additional lines to the previous

sample to configure this.

AdvTreeView1.Columns[2].TopFont.Color := clRed;

AdvTreeView1.Columns[2].Font.Color := clPurple;

Autosizing and stretching

When dropping a TreeView instance on the form, you will notice that it already has three

columns and has default behavior of stretching those columns to fit the width of the control.

The TreeView exposes the ability to stretch all columns, or a specific column. When turning

off stretching completely each column has its own Width property that can be used to set a

fixed width for a column.

Below is a sample of the default TreeView and a sample after the width of the TreeView has

been changed.

default

13

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

width changed

As explained, the default behavior of the columns is to stretch. Below is a sample that turns

off stretching for all columns except for a specific column and instead automatically uses the

leftover width.

AdvTreeView1.ColumnsAppearance.StretchAll := False;

AdvTreeView1.ColumnsAppearance.StretchColumn := 1;

14

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Turning off stretching completely with the Stretch property will allow the TreeView to fall

back on the width property of each column which is 100 by default.

AdvTreeView1.ColumnsAppearance.Stretch := False;

Autosizing can be done only when the Stretch property is set to false. The ability is included

to autosize on double-click on the column header splitter line, but this feature is explained in

the Interaction chapter. When programmatically autosizing the visible nodes, column header

for top and bottom layouts are take into calculation to determine the width for a column.

Below is a sample that applies autosizing on all three columns, after turning off stretching.

15

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

var

 I: Integer;

begin

 AdvTreeView1.ColumnsAppearance.Stretch := False;

 for I := 0 to AdvTreeView1.Columns.Count - 1 do

 AdvTreeView1.AutoSizeColumn(I);

end;

Note that autosizing is only applied to the visible nodes, so collapsed nodes and nodes that

fall outside the visible region will not be taken into calculation. To support autosizing on

expand/collapse and scrolling, events can be used to accomplish this.

16

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Groups

Configuration

Groups are used to add additional information to columns. They can be added to multiple

columns or simply cover one column. Below is a sample that adds 2 groups for 3 columns, one

group that is used for the first column and a group that stretches of the last 2 columns.

var

 grp: TAdvTreeViewGroup;

begin

 grp := AdvTreeView1.Groups.Add;

 grp.StartColumn := 0;

 grp.EndColumn := 1;

 grp.Text := 'Important';

 grp := AdvTreeView1.Groups.Add;

 grp.StartColumn := 2;

 grp.EndColumn := 3;

 grp.Text := 'Less Important';

end;

Note that in this case, the additional groups decrease the available space for nodes so a

vertical scrollbar is needed to make sure all nodes are reachable.

17

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Appearance

As with the columns, the groups have their own appearance control. The default appearance

is stored under the GroupsAppearance property and can be overridden with the

UseDefaultAppearance property per group. Below is a sample that demonstrates this.

var

 grp: TAdvTreeViewGroup;

begin

 AdvTreeView1.BeginUpdate;

 grp := AdvTreeView1.Groups.Add;

 grp.StartColumn := 0;

 grp.EndColumn := 1;

 grp.Text := 'Important';

 grp := AdvTreeView1.Groups.Add;

 grp.StartColumn := 2;

 grp.EndColumn := 3;

 grp.Text := 'Less Important';

 grp.UseDefaultAppearance := False;

 grp.TopFill.Color := clRed;

 grp.TopFill.Kind := tvbkSolid;

 grp.TopFont.Color := clWhite;

 AdvTreeView1.GroupsAppearance.TopFont.Size := 16;

 AdvTreeView1.GroupsAppearance.TopFont.Style := [fsBold];

 AdvTreeView1.GroupsAppearance.TopFont.Color := gcSeagreen;

 AdvTreeView1.EndUpdate;

end;

18

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

19

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Nodes

Configuration / Appearance

Nodes are the core data structure for the TreeView and as already explained in the Modes

chapter, the TreeView can use a collection-based and virtual mode for displaying nodes. The

virtual mode always starts by implementing the OnGetNumberOfNodes event and the

collection-based mode starts with the Nodes collection property. Each collection-based node

automatically generates a virtual node to hold the most important information such as the

Index, Row, Level, Children and TotalChildren. For each event that is triggered, the virtual

node is passed as a parameter, because when using only a virtual based TreeView, the values

represented in each column need to be returned through events. When a collection-based

TreeView is used, and events need to be implemented, each virtual node holds a reference to

the collection item node (TAdvTreeViewVirtualNode.Node) that is used and vice versa

(TAdvTreeViewNode.VirtualNode). Only when using a virtual TreeView the

TAdvTreeViewVirtualNode .Node property will be nil.

Important to know is that each procedure, function and property has a collection-based and a

virtual implementation. Generally, the procedures, functions and properties without virtual in

the name are used for a collection-based TreeView.

The appearance of the nodes is configured through the NodesAppearance property. As

explained in the columns chapter, the nodes appearance can be overridden per column with

setting UseDefaultAppearance = false.

Adding, inserting and removing nodes

Adding, inserting and removing nodes are supported in both collection-based and virtual

mode. As already explained, each mode has its own procedures, methods and events. In this

chapter we start with an empty TreeView, so all nodes are removed from the collection which

are added at designtime. Both collection-based and virtual add, insert and remove node

methods will be explained here.

Each TreeView, whether it’s collection-based or virtual will start without nodes and with a

single column. The code to accomplish this is demonstrated below.

AdvTreeView1.BeginUpdate;

AdvTreeView1.ClearColumns;

AdvTreeView1.ClearNodes;

20

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

AdvTreeView1.Columns.Add.Text := 'Column 1';

AdvTreeView1.EndUpdate;

Additionally for the virtual TreeView implementation the OnGetNumberOfNodes always needs

to be implemented and return at least one node. With virtual mode the text is empty by

default, so the OnGetNodeText event needs to be implemented as well. The code below

demonstrates this. Please note that the code below is only added in case a virtual TreeView

mode is chosen.

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 AText := 'Node ' + inttostr(ANode.Index);

end;

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 1;

end;

Adding a new node (virtual)

A new node is added with the code AdvTreeView1.AddVirtualNode;. Note that the

OnGetNodeText will be called returning a different text for the newly added node.

Adding a new node (collection-based)

In a collection-based TreeView, a node is added directly to the Nodes collection, or with the

helper method AdvTreeView1.AddNode;. To get the same result as with the virtual

implementation, we need to add 2 nodes, because in the virtual mode, the first node was

added through the OnGetNumberOfNodes, which isn’t used in a collection-based TreeView.

21

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Adding child nodes (virtual)

Child nodes can be added with the same function, but instead passing the parent node as a

parameter. The following sample demonstrates how to add a child node to the second root

node added with the AddVirtualNode method. Additionally, the parent node that is added

together with the child node is expanded to visually the newly added child node.

var

 pn, n: TAdvTreeViewVirtualNode;

begin

 pn := AdvTreeView1.AddVirtualNode;

 n := AdvTreeView1.AddVirtualNode(pn);

 AdvTreeView1.ExpandVirtualNode(pn);

end;

Adding child nodes (collection-based)

Child nodes can be added the same way as in the virtual mode, but with different method

names. When we copy the above code and remove the Virtual keyword in the method name,

the result output will be identical if we keep in mind that an additional node needs to be

added in the collection to match the virtual node added with the OnGetNumberOfNodes.

var

 pn, n: TAdvTreeViewNode;

begin

 pn := AdvTreeView1.AddNode;

 pn.Text[0] := 'Node 0';

 pn := AdvTreeView1.AddNode;

 pn.Text[0] := 'Node 1';

 n := AdvTreeView1.AddNode(pn);

 n.Text[0] := 'Node 0';

 AdvTreeView1.ExpandNode(pn);

22

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

end;

Inserting a new node

Inserting nodes is done in the same way as adding nodes, but an additional parameter can be

passed specifying the insert position of the new node. In virtual mode, there isn’t any

difference between inserting and adding new nodes because the OnGetNodeText will return

text based on the index of the node.

Additionally, in a collection-based TreeView, the index parameter of the collection item node

can be used to switch positions with an already existing node, creating a move node

functionality.

Removing an existing node (virtual)

Removing an existing node can be done with the RemoveVirtualNode method. The parameter

to pass is an existing node. The following sample retrieves the focused node and removes it.

AdvTreeView1.RemoveVirtualNode(AdvTreeView1.FocusedVirtualNode);

Removing an existing node (collection-based)

In a collection-based TreeView, removing a node can be done in a similar way but without the

Virtual keyword in the method name. Additionally a node can also be removed by freeing the

collection item. Below code output is identical and removes the focused node on both cases.

AdvTreeView1.RemoveNode(AdvTreeView1.FocusedNode);

AdvTreeView1.FocusedNode.Free;

Fixed vs variable node height

23

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

A key feature of the TreeView in both collection-based and virtual mode is support for fixed

and variable node height. The simplest configuration is the fixed node height where each

node has the same height, based on the NodesAppearance.FixedHeight property. Word

wrapping the text of a node or specifying a node icon will be based on the fixed height and

thus exceeding the node bounds when the height of the text or the node icon is larger than

the fixed height.

To support auto-sizing of nodes, based on the node icon or text, the

NodesAppearance.HeightMode property needs to change to tnhmVariable. The

NodesAppearance.VariableMinimumHeight property is used to specify a minimum height for

each node, so to initial total height for displaying a scrollbar can be calculated. The default

value for this property is 25. Keep in mind that the TreeView needs to perform additional

calculations during startup and during scrolling. Below is a sample that demonstrates the

difference between a fixed and variable node height TreeView configuration. Both samples

are demonstrated in a virtual TreeView implementation.

Fixed

AdvTreeView1.BeginUpdate;

AdvTreeView1.ClearNodes;

AdvTreeView1.ClearColumns;

AdvTreeView1.Columns.Add.Text := 'Fixed TreeView';

AdvTreeView1.EndUpdate;

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 AText := 'Node ' + inttostr(ANode.Index);

end;

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 1000000;

end;

procedure TForm1.AdvTreeView1GetNodeIcon(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer; ALarge: Boolean;

 var AIcon: TGraphic);

begin

24

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 AIcon :=

PictureContainer1.Items[Random(PictureContainer1.Items.Count)].Picture

;

end;

Note that the icons specified through the OnGetNodeIcon event are too large to fit inside the

fixed node height. The solution can be to specify a larger fixed height through the

NodesAppearance.FixedHeight property, but when the values that need to be loaded are

unknown, the fixed height approach is no longer valid. When switching to a variable row

height mode you will notice that the node height will automatically take on the size of the

icons.

AdvTreeView1.BeginUpdate;

AdvTreeView1.NodesAppearance.HeightMode := tnhmVariable;

AdvTreeView1.ClearNodes;

AdvTreeView1.ClearColumns;

AdvTreeView1.Columns.Add.Text := 'Variable TreeView';

AdvTreeView1.EndUpdate;

procedure TForm1.AdvTreeView1GetNodeIcon(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer; ALarge: Boolean;

 var AIcon: TGraphic);

begin

 AIcon :=

PictureContainer1.Items[Random(PictureContainer1.Items.Count)].Bitmap;

end;

25

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 AText := 'Node ' + inttostr(ANode.Index);

end;

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 1000000;

end;

In case the text is larger than the node icon, the node height will automatically adapt as

shown in the sample below.

AdvTreeView1.BeginUpdate;

AdvTreeView1.NodesAppearance.HeightMode := tnhmVariable;

AdvTreeView1.ClearNodes;

AdvTreeView1.ClearColumns;

AdvTreeView1.Columns.Add.Text := 'Variable TreeView';

AdvTreeView1.Columns[0].WordWrapping := True;

AdvTreeView1.EndUpdate;

26

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

procedure TForm1.AdvTreeView1GetNodeIcon(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer; ALarge: Boolean;

 var AIcon: TGraphic);

begin

 AIcon :=

PictureContainer1.Items[Random(PictureContainer1.Items.Count)].Picture

;

end;

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 AText := 'Lorem Ipsum is simply dummy text of the printing and

typesetting industry. Lorem Ipsum has been the industry''s standard

dummy text ever since the 1500s, when an unknown printer took a galley

of type and scrambled it to make a type specimen book';

end;

procedure TForm1.AdvTreeView1GetNumberOfNodes(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; var ANumberOfNodes: Integer);

begin

 if ANode.Level = -1 then

 ANumberOfNodes := 1000000;

end;

27

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

When resizing, the node heights will be recalculated, giving more space for the text, and thus

decreasing the necessary height for a node to display all the contents.

Checkbox / Radiobutton support

The TreeView has radiobutton and checkbox support. When specifying a check type through

the OnGetNodeCheckType event or through the collection-based property CheckTypes at node

level a checkbox or radiobutto will be displayed. More information on interaction will be

explained at the Interaction chapter.

var

 n: TAdvTreeViewNode;

 I: Integer;

begin

 AdvTreeView1.BeginUpdate;

 AdvTreeView1.ClearNodes;

 AdvTreeView1.ClearColumns;

 AdvTreeView1.Columns.Add.Text := 'Checkbox / radiobutton';

 for I := 0 to 3 do

 begin

 n := AdvTreeView1.Nodes.Add;

 n.Text[0] := 'CheckBox ' + IntToStr(I);

 n.CheckTypes[0] := tvntCheckBox;

 if Odd(I) then

 n.Checked[0] := True;

 end;

28

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 for I := 0 to 3 do

 begin

 n := AdvTreeView1.Nodes.Add;

 n.Text[0] := 'Radiobutton ' + IntToStr(I);

 n.CheckTypes[0] := tvntRadioButton;

 if I = 2 then

 n.Checked[0] := True;

 end;

 AdvTreeView1.EndUpdate;

end;

Extended nodes

Extended nodes are nodes that are stretched over all columns and takes on the text of the

first column. It is also styled with a different set of properties under NodesAppearance. An

extended node is not editable and selectable by default. This behavior can be overriden in

the Interaction property. To create an extended node, set the Extended property to true on a

collection-based TreeView collection item node, or return True in the OnIsNodeExtended

event. Below is a sample that demonstrates this.

var

 n, pn: TAdvTreeViewNode;

 I: Integer;

begin

29

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 AdvTreeView1.BeginUpdate;

 AdvTreeView1.ClearNodes;

 AdvTreeView1.ClearColumns;

 AdvTreeView1.Columns.Add.Text := 'Column 1';

 AdvTreeView1.Columns.Add.Text := 'Column 2';

 pn := AdvTreeView1.Nodes.Add;

 pn.Text[0] := 'Normal Node';

 pn := AdvTreeView1.Nodes.Add;

 pn.Text[0] := 'Extended Node';

 pn.Extended := True;

 for I := 0 to 3 do

 begin

 n := AdvTreeView1.AddNode(pn);

 if I = 1 then

 begin

 n.Text[0] := 'Extended Node ' + IntToStr(I);

 n.Extended := True;

 end

 else

 begin

 n.Text[0] := 'Normal Node Column 1 ' + IntToStr(I);

 n.Text[1] := 'Normal Node Column 2 ' + IntToStr(I);

 end;

 end;

 AdvTreeView1.EndUpdate;

end;

30

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

31

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Interaction

The TreeView supports interaction through mouse and keyboard. When clicking on a node that

is selectable, the node is selected. When navigating with the keys up, down, home, end, page

up or page down the selected node will be changed. Extended / disabled nodes are not

selectable by default. The behaviour can be changed by changing the ExtendedSelectable and

ExtendedEditable properties.

When the property MultiSelect is true, multiple nodes can be selected with the CTRL and

SHIFT key with either the mouse or keyboard. The selected nodes can be retrieved with the

SelectedNodeCount function and SelectedNodes property. Selection of nodes can be done

with the SelectNode or SelectNodes method. The SelectNodes method takes an array of

nodes. The above methods apply to a collection-based TreeView, but the same methods with

the virtual method name are available for the virtual TreeView implementation.

When a node has children the left / right keys can expand or collapse the node and visualize

or hide the children. Clicking on the expand / collapse node icon with the left mouse button

will perform the same operation.

The keyboard and mouse can be used to edit the node text for each column when the column

is configured to support editing. Additionally, when typing alphanumeric characters, the

treeview will optionally search for the node that matches the lookup string and navigate to

that node. To enable this feature, you need to set the Interaction.Lookup.Enabled property to

true.

32

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Clipboard

Cut, Copy and Paste is supported when setting the Interaction.ClipboardMode property to

tcmTextOnly or tcmFull. The tcmTextOnly value only copies the text for each column and

does not copy along other attributes such as the check and extended state, the node icon.

The tcmFull clipboard mode copies all attributes of the node. Cut will first copy the node and

then remove it from the treeview. When pasting, the focused node will act as the parent, if

there is no node active the treeview will add the pasted node as a new node in the treeview.

There are additional events that are triggered when performing a cut, copy or paste action.

33

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Reordering / Drag & Drop

When setting Interaction.Reorder to True, clicking on an already selected node will duplicate

the node and attach it while dragging. When releasing the node over another node on the

same level it will reorder the node the new location. Please note that touch scrolling is

disabled when reordering is true on the selected node part. On the non-selected node parts,

touch scrolling is still active.

When setting Interaction.DragDropMode to tdmMove or tdmCopy the same approach can be

used as reordering, and will allow you to drop the node as a child node of the dropped node.

Drag & drop takes precedence over reordering, and with drag & drop you cannot only move or

copy nodes in the same treeview but also move nodes to another treeview.

34

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Filtering

When setting Columns[Index].Filtering.Enabled := True; a filter dropdown button appears at

the right side of the column. Clicking on the filter button will show a filter dropdown list with

unique values from the node for that specific column. After clicking a value, the treeview

shows a filtered list.

After filtering, the node that matches the chosen filter is shown.

35

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

To clear filtering on a column, click the ‘(All)’ entry in the filter list.

Note that filtering is also available programmatically. Below is a sample that filtes the nodes

with an A:

var

 f: TAdvTreeViewFilterData;

begin

 AdvTreeView1.Filter.Clear;

 f := AdvTreeView1.Filter.Add;

 f.Column := 0;

 f.Condition := '*A*';

 AdvTreeView1.ApplyFilter;

end;

Additionally we want to filter values from the year 2010 or greater:

var

 f: TAdvTreeViewFilterData;

begin

 AdvTreeView1.Filter.Clear;

 f := AdvTreeView1.Filter.Add;

 f.Column := 0;

 f.Condition := '*A*';

 f := AdvTreeView1.Filter.Add;

 f.Column := 1;

36

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 f.Condition := ' >= 2010';

 AdvTreeView1.ApplyFilter;

end;

To clear all filtering programmatically, you can use the following code:

AdvTreeView1.RemoveFilters;

Note that if a child node matches a filter condition, the parent tree is also added.

37

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Sorting

Sorting can be performed on each column separately. When clicking on the column, the nodes

are sorted and the treeview is updated. Sorting can be done for root nodes only, or recursive

with an optional case sensitivity requirement. Below is a sample that sorts based on all nodes

(recursive).

AdvTreeView1.Columns[0].Sorting := tcsRecursive;

Sorting can also be done programmatically, with the following code, which will show the same

result as the screenshot above.

AdvTreeView1.Sort(0, True, False, nsmDescending);

Editing

The TreeView supports inplace editing of nodes per column. Each column has the ability to

specify an editor through the EditorType property. When editing is started, either by clicking

on the text, or by pressing F2 on the keyboard the OnGetNodeText event is called to retrieve

the text that needs to be placed inside the editor. To know if the OnGetNodeText event is

called for drawing/calculation or for editing the AMode parameter can be used. If the

OnGetNodeText event isn’t used to return a different text when editing, the text of the node

is used.

38

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Below is a sample that demonstrates this. (Note that the code above is applied on a default

TreeView instance)

AdvTreeView1.Columns[2].EditorType := tcetEdit;

When the editing is started, the OnGetNodeText event is called with a different mode. To

initialize the editor with a different text the following code provides a sample to achieve this.

procedure TForm1.AdvTreeView1GetNodeText(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 AMode: TAdvTreeViewNodeTextMode; var AText: string);

begin

 case AMode of

 tntmEditing: AText := 'Editor Started !';

 end;

end;

After editing is finished, the OnBeforeUpdateNode is called to allow making changes to the

edited text or block updating the node if necessary. Additionally the OnCloseInplaceEditor

event can be used to stop the editor from closing if the requirements of the text are not met.

Note that when editing is allowed on multiple columns, starting to edit a node will always

start with the first not read-only column and then the tab key will jump to the next editable

column.

Other than the default TEdit editor, a TMemo or TComboBox can be chosen to allow editing.

A TMemo is typically used to allow a multi-line editor and a TComboBox to have a choice

menu in case multiple values are possible. A sample that shows how to use the TComboBox as

an inplace editor is shown in the sample below.

var

39

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 I: Integer;

begin

 AdvTreeView1.Columns[1].EditorType := tcetComboBox;

 for I := 0 to 19 do

 AdvTreeView1.Columns[1].EditorItems.Add(IntToStr(2000 + I));

end;

If the built-in editors are not sufficient, the TreeView supports using a custom editor as well,

by setting the CustomEditor property to true.

Custom Editor

The code below demonstrates how to use a custom editor, in this case a TTrackBar.

AdvTreeView1.Columns[1].CustomEditor := True;

procedure TForm1.AdvTreeView1BeforeUpdateNode(Sender: TObject;

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer; var AText: string;

 var ACanUpdate: Boolean);

begin

 AText := FloatToStr((AdvTreeView1.GetInplaceEditor as

TTrackBar).Value);

end;

procedure TForm1.AdvTreeView1GetInplaceEditor(Sender: TObject;

40

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

 ANode: TAdvTreeViewVirtualNode; AColumn: Integer;

 var ATransparent: Boolean;

 var AInplaceEditorClass: TAdvTreeViewInplaceEditorClass);

begin

 AInplaceEditorClass := TTrackBar;

end;

After changing the value, the OnBeforeUpdateNode event is triggered which sets the value of

the node text to the value of the trackbar.

41

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Customization

The TreeView supports a wide range of customization possibilities. Below is a sample how to

implement the correct events for custom node drawing. Note that this sample starts from a

default TreeView with nodes already added to the collection.

In the sample below the second column contains information on the build year of the car. To

identify cars that are built in 2012 or later we want to draw a red ellipse in the top right

corner of the text area for the year column.

procedure TForm1.AdvTreeView1AfterDrawNodeText(Sender: TObject;

 AGraphics: TAdvGraphics; ARect: TRectF; AColumn: Integer;

 ANode: TAdvTreeViewVirtualNode; AText: string);

var

 v: Integer;

begin

 if TryStrToInt(AText, v) then

 begin

 if (AColumn = 1) and (v >= 2012) then

 begin

 ACanvas.Brush.Style := bsSolid;

 ACanvas.Brush.Color := clRed;

 ACanvas.Ellipse(Round(ARect.Right - 12), Round(ARect.Top + 12),

Round(ARect.Right - 2), Round(ARect.Top + 2));

 end;

 end;

end;

42

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

43

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Demos

Overview

The overview demo demonstrates variable node heights, programmatically expand and

collapse as well as custom column appearance and toggling column visibility. The node text in

the description column is HTML formatted and a progressbar is custom drawn inside the stock

column. The last 2 columns amount and delivery method show the capabilities of editing

through TEdit and TComboBox.

Directory

44

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

The Directory treeview demo uses the TAdvDirectoryTreeView component that is capable of

loading a drive, or a folder and apply a filter. Additionally the column sizing, auto sizing of

columns and stretching is demonstrated.

45

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Properties

Columns The collection of columns. Please note

that each property that affects

appearance is not applied unless

UseDefaultAppearance is set to False.

Columns[Index] → BottomFill The fill of the column when the

Layout property is set to include

tclBottom.

Columns[Index] → BottomFont The font of the column text when the

Layout property is set to include

tclBottom.

Columns[Index] → BottomStroke The stroke of the column when the

Layout property is set to include

tclBottom.

Columns[Index] → CustomEditor Allows for a custom editor to be

returned through the

OnGetInplaceEditor event.

Columns[Index] → EditorItems The items of the editor when using

the tcetComboBox editor type.

Columns[Index] → EditorType The type of editor to use for each

node in a column. The editor can be

customized per node.

Columns[Index] → Fill The fill of a column.

Columns[Index] → Filtering Configures filtering on a column.

Columns[Index] → Font The font of the nodes of a column.

Columns[Index] → HorizontalTextAlign The alignment of the text of the nodes

of a column.

Columns[Index] → Name The name of the column.

Columns[Index] → Sorting Configures sorting on a column.

Columns[Index] → Stroke The stroke of the column.

Columns[Index] → TopFill The fill of the column when the

Layout property is set to include

tclTop.

Columns[Index] → TopFont The font of the column text when the

Layout property is set to include

tclTop.

Columns[Index] → TopStroke The stroke of the column when the

Layout property is set to include

46

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

tclTop.

Columns[Index] → Trimming The trimming of nodes of a column.

Columns[Index] → UseDefaultAppearance Allows overriding the default

appearance of columns/nodes.

Columns[Index] → VerticalTextAlign The vertical text alignment of nodes.

Columns[Index] → Visible Sets the column visible / invisible.

Columns[Index] → Width The width of the column.

Columns[Index] → WordWrapping The word wrapping of nodes of a

column.

ColumnsAppearance The overall appearance of columns.

Note that these properties are applied

to all columns unless

UseDefaultAppearance is set to False

for a column.

ColumnsAppearance → BottomFill The fill of the column when the

Layout property is set to include

tclBottom.

ColumnsAppearance → BottomFont The font of the column text when the

Layout property is set to include

tclBottom.

ColumnsAppearance → BottomSize The size of the bottom columns.

ColumnsAppearance → BottomStroke The stroke of the column when the

Layout property is set to include

tclBottom.

ColumnsAppearance → BottomVerticalText Allows displaying vertical text in the

columns bottom layout.

ColumnsAppearance → FillEmptySpaces Allows filling empty spaces at the

right side of the columns when the

StretchScrollBars property is set to

False.

ColumnsAppearance → Layouts The layout of the columns which

include tclTop and tclBottom.

ColumnsAppearance → Stretch Allows stretching of columns.

ColumnsAppearance → StretchAll Stretches all columns.

ColumnsAppearance → StretchColumn Calculates all columns except for the

column that matches this property.

The StretchColumn is automatically

given the leftover width after

calculation.

ColumnsAppearance → TopFill The fill of the column when the

47

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Layout property is set to include

tclTop.

ColumnsAppearance → TopFont The font of the column text when the

Layout property is set to include

tclTop.

ColumnsAppearance → TopSize The size of the top columns.

ColumnsAppearance → TopStroke The stroke of the column when the

Layout property is set to include

tclTop.

ColumnsAppearance → TopVerticalText Allows displaying vertical text in the

columns top layout.

ColumnStroke The stroke between columns of a

specific column.

Groups The collection of groups. Please note

that each property that affects

appearance is not applied unless

UseDefaultAppearance is set to False.

Groups[Index] → BottomFill The fill of the group when the Layout

property is set to include tglBottom.

Groups[Index] → BottomFont The font of the group text when the

Layout property is set to include

tglBottom.

Groups[Index] → BottomStroke The stroke of the group when the

Layout property is set to include

tglBottom.

Groups[Index] → EndColumn The column on which the group ends.

Multiple groups can be added that

cover multiple columns.

Groups[Index] → Name The name of the group.

Groups[Index] → StartColumn The column on which the group starts.

Groups[Index] → Text The text of the group.

Groups[Index] → TopFill The fill of the group when the Layout

property is set to include tglTop.

Groups[Index] → TopFont The font of the group text when the

Layout property is set to include

tglTop.

Groups[Index] → TopStroke The stroke of the group when the

Layout property is set to include

tglTop.

Groups[Index] → UseDefaultAppearance Allows overriding the default

48

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

appearance of groups.

GroupsAppearance The overall appearance of groups.

Note that these properties are applied

to all groups unless

UseDefaultAppearance is set to False

for a group.

GroupsAppearance → BottomFill The fill of the group when the Layout

property is set to include tglBottom.

GroupsAppearance → BottomFont The font of the group text when the

Layout property is set to include

tglBottom.

GroupsAppearance → BottomHorizontalTextAlign The horizontal alignment of the group

text when the Layout property is set

to include tglBottom.

GroupsAppearance → BottomSize The size of the bottom columns.

GroupsAppearance → BottomStroke The stroke of the column when the

Layout property is set to include

tclBottom.

GroupsAppearance → BottomVerticalText Allows displaying vertical text in the

columns bottom layout.

GroupsAppearance → BottomVerticalTextAlign The vertical alignment of the group

text when the Layout property is set

to include tglBottom.

GroupsAppearance → FillEmptySpaces Allows filling empty spaces at the

right side of the columns when the

StretchScrollBars property is set to

False.

GroupsAppearance → Layouts The layout of the groups which

include tglTop and tglBottom.

GroupsAppearance → TopFill The fill of the group when the Layout

property is set to include tglTop.

GroupsAppearance → TopFont The font of the group text when the

Layout property is set to include

tglTop.

GroupsAppearance → TopHorizontalTextAlign The horizontal alignment of the group

text when the Layout property is set

to include tglTop.

GroupsAppearance → TopSize The size of the top columns.

GroupsAppearance → TopStroke The stroke of the column when the

Layout property is set to include

49

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

tglTop.

GroupsAppearance → TopVerticalText Allows displaying vertical text in the

columns top layout.

GroupsAppearance → TopVerticalTextAlign The vertical alignment of the group

text when the Layout property is set

to include tglTop.

Interaction Set of properties for configuring

mouse and keyboard interaction.

Interaction → ClipboardMode Sets the mode for clipboard support.

Interaction → ColumnAutoSizeOnDblClick Allows auto sizing of a column on

double-click. Please note that this will

only apply auto sizing on the visible

nodes.

Interaction → ColumnSizing Allows for column sizing.

Interaction → DragDropMode When true, the treeview supports drag

& drop of nodes.

Interaction → ExtendedEditable Allows extended nodes to be editable.

Interaction → ExtendedSelectable Allows extended nodes to be

selectable.

Interaction → KeyboardEdit Allows keyboard editing when editing

is supported.

Interaction → Lookup When true, the treeview supports

keyboard lookup.

Interaction → MouseEditMode Sets the mouse edit mode when

editing is supported.

Interaction → MultiSelect Allows for multiple node selection

with mouse and keyboard.

Interaction → ReadOnly Sets the TreeView in readonly mode,

which disables node editing on all

columns.

Interaction → Reorder When true, the treeview supports

reordering of nodes.

Interaction → TouchScrolling Allows/disallows touch scrolling. When

True, scrolling can be done by flicking

the mouse (finger) up / down on the

TreeView.

Nodes The nodes collection when a

collection-based TreeView is being

used.

Nodes[Index] → Enabled When False, disables editing and

50

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

selection.

Nodes[Index] → Expanded When True and the node has children,

expands the child nodes. When False,

collapses the child nodes.

Nodes[Index] → Extended When True, applies the extended

properties under NodesAppearance

and only uses and stretches the first

column text over the number of

columns.

Nodes[Index] → Nodes The child nodes collection.

Nodes[Index] → Values The values collection that is

represented in a column for each

node.

Nodes[Index] → Values[Index] → Checked Sets whether the node value for a

specific column is checked.

Nodes[Index] → Values[Index] → CheckType Specifies the check type of a node

value. The type can be a radiobutton

or a checkbox.

Nodes[Index] → Values[Index] → CollapsedIcon The icon in collapsed state.

Nodes[Index] → Values[Index] →

CollapsedIconLarge

The icon in collapsed state for high

DPI / retina screens.

Nodes[Index] → Values[Index] →

CollapsedIconLargeName

The icon name linked to a

PictureContainer in collapsed state for

high DPI / retina screens.

Nodes[Index] → Values[Index] → CollapseIconName The icon name linked to a

PicureContainer in collapsed state.

Nodes[Index] → Values[Index] → ExpandedIcon The icon in expanded state.

Nodes[Index] → Values[Index] →

ExpandedIconLarge

The icon in expanded state for high

DPI / retina screens.

Nodes[Index] → Values[Index] →

ExpandedIconLargeName

The icon name linked to a

PictureContainer in expanded state

for high DPI / retina screens.

Nodes[Index] → Values[Index] →

ExpandedIconName

The icon name linked to a

PictureContainer in expanded state.

Nodes[Index] → Values[Index] → Text The Text of a node.

NodesAppearance The appearance for each node.

NodesAppearance → CollapseNodeIcon The icon for the ExpandColumn in

collapsed state.

NodesAppearance → CollapseNodeIconLarge The icon for the ExpandColumn in

collapsed state for high DPI / retina

51

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

screens.

NodesAppearance → ColumnStroke The stroke between columns.

NodesAppearance → DisabledFill The fill of a node in disabled state.

NodesAppearance → DisabledStroke The stroke of a node in disabled state.

NodesAppearance → ExpandColumn The column that shows the expand /

collapse node icons and is used to

expand / collapse the nodes.

NodesAppearance → ExpandHeight The height of the expand / collapse

node icon area.

NodesAppearance → ExpandNodeIcon The icon for the ExpandColumn in

expanded state.

NodesAppearance → ExpandNodeIconLarge The icon for the ExpandColumn in

expanded state.

NodesAppearance → ExpandWidth The width of the expand / collapse

node icon area.

NodesAppearance → ExtendedDisabledFill The fill of an extended node in

disabled state.

NodesAppearance → ExtendedDisabledStroke The stroke of an extended node in

disabled state.

NodesAppearance → ExtendedFill The fill of an extended node.

NodesAppearance → ExtendedFont The font of an extended node.

NodesAppearance → ExtendedSelectedFill The fill of an extended node in

selected state.

NodesAppearance → ExtendedSelectedStroke The stroke of an extended node in

selected state.

NodesAppearance → ExtendedStroke The stroke of an extended node.

NodesAppearance → Fill The fill of a node in normal state.

NodesAppearance → FixedHeight The height of each node in case the

HeightMode property is set to

tnhmFixed.

NodesAppearance → Font The font of a node.

NodesAppearance → HeightMode The HeightMode of the nodes. In case

the HeightMode property is set to

tnhmFixed, the FixedHeight property

is used to determine a fixed height for

each node. When the HeightMode

property is set to tnhmVariable, the

minimum height of a node is 25 and

depending on the text calculation and

properties such as wordwrapping /

52

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

trimming and alignment the treeview

automatically calculates the real node

height on the fly. Mode information

can be found in the chapter Fixed vs

variable node height under Nodes.

NodesAppearance → LevelIndent The size of the indenting used for

different node levels (child nodes).

NodesAppearance → LineStroke The stroke of the line used when

ShowLines is true.

NodesAppearance → SelectedFill The fill of a node in selected state.

NodesAppearance → SelectedFont.Color The color of the font of a node in

selected state.

NodesAppearance → SelectedStroke The stroke of a node in selected state.

NodesAppearance → SelectionArea The area of selection indication. The

selection area can be limited to the

text only, include the icon and level

indenting as well.

NodesAppearance → ShowFocus Shows a focus border on the focused

node.

NodesAppearance → ShowLines Shows node and child node lines.

NodesAppearance → Stroke The stroke of a node in normal state.

PictureContainer Support for adding icons to nodes and

to support image tags inside HTML

formatted text.

StretchScrollBars Allows stretching of scrollbars to

enable a more integrated look and

feel.

Public Properties

TreeView

FocusedNode: TAdvTreeViewNode Returns the focused node (collection-based).

FocusedVirtualNode:
TAdvTreeViewVirtualNode

Returns the focused node (virtual).

SelectedNodes[AIndex: Integer]:
TAdvTreeViewNode

Gives access to the selected nodes based on
the SelectedNodeCount property (collection-
based).

SelectedVirtualNodes[AIndex:
Integer]: TAdvTreeViewVirtualNode

Gives access to the selected nodes based on
the SelectedVirtualNodeCount property
(virtual).

53

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Node (Virtual)

BitmapRects
An array of rectangles for node icons for each
column.

Calculated

When the HeightMode is tnhmVariable, this
property is set to true whenever a node height
is calculated. The Height property contains the
height of the node.

CheckRects
An array of rectangles for node check types for
each column.

CheckStates
An array of Booleans for node check states for
each column.

Children The count of children of a node.

Expanded
Determines if the node is expanded /
collapsed.

ExpandRects
An array of rectangles for expand / collapse
node icons for each column.

Extended Determines if the node is extended / normal.

Height The height of the node.

Index The index of the node relative to its parent.

Level The level of the node.

Node
A reference to the collection-based node if a
collection-based TreeView is used.

ParentNode The row index of the parent node.

Row
The index of the node relative to the
TreeView.

TextRects
An array of rectangles for the text of each
column.

TotalChildren

The total count of children of a node. The
total count includes the count of all levels of
child nodes.

Important notice: When using one of the array properties, the length of the array will always

be the same as the column count, yet the values that are included will only be valid if the

width & height are larger than 0. When using one of those array properties for custom

drawing keep in mind that drawing is only valid when the above criteria is met.

Node (Collection-Based)

Checked[AColumn: Integer]: Boolean
Property to set the checked state of a node for
a specific column.

CheckTypes[AColumn: Integer]:
TAdvTreeViewNodeCheckType

Property to set the check type of a node for a
specific column. The check type of a node can

54

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

be a radiobutton or a checkbox.

CollapsedIconNames[AColumn: Integer
ALarge: Boolean]: String

The name of the icon in collapsed state of a
node for a specific column.

CollapsedIcons[AColumn: Integer
ALarge: Boolean]:
TAdvTreeViewBitmap

The icon in collapsed state of a node for a
specific column.

ExpandedIconNames[AColumn: Integer
ALarge: Boolean]: String

The name of the icon in expanded state of a
node for a specific column.

ExpandedIcons[AColumn: Integer
ALarge: Boolean]:
TAdvTreeViewBitmap

The icon in expanded state of a node for a
specific column.

Text[AColumn: Integer]: String The text of a node for a specific column.

VirtualNode:
TAdvTreeViewVirtualNode

A reference to the virtual node.

55

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Events

Note that for each event, the TAdvTreeViewVirtualNode is being passed as a parameter. This
class is used in virtual mode and in collection-based mode but has a property Node to easily
access the collection item in case a collection-based TreeView is used.

OnAfterCheckNode
Event called after a node check state is
changed.

OnAfterCollapseNode Event called after a node is collapsed.

OnAfterCopyToClipboard
Event called after a copy operation is
performed on the clipboard.

OnAfterCutToClipboard
Event called after a cut operation is performed
on the clipboard.

OnAfterDrawColumn Event called after a column is drawn.

OnAfterDrawColumnEmptySpace
Event called after an empty space next to the
columns area is drawn.

OnAfterDrawColumnHeader
Event called after the header area of a column
is drawn.

OnAfterDrawColumnText
Event called after the text of a column is
drawn.

OnAfterDrawGroup Event called after the group is drawn.

OnAfterDrawGroupEmptySpace
Event called after the empty space next to the
groups area is drawn.

OnAfterDrawGroupText Event called after the group text is drawn.

OnAfterDrawNode Event called after a node is drawn.

OnAfterDrawNodeCheck
Event called after the check area of a node is
drawn.

OnAfterDrawNodeColumn
Event called after the column area of the
nodes is drawn.

OnAfterDrawNodeExpand
Event called after the expand / collapse area
of a node is drawn.

OnAfterDrawNodeIcon Event called after the icon of a node is drawn.

OnAfterDrawNodeText Event called after the text of a node is drawn.

OnAfterDropNode Event called after a node is dropped.

OnAfterExpandNode Event called after a node is expanded.

OnAfterOpenInplaceEditor
Event called after the inplace editor is
opened.

OnAfterPasteFromClipboard
Event called after a paste operation is
performed on the clipboard.

OnAfterReorderNode Event called after a node is reordered.

OnAfterSelectNode Event called after a node is selected.

OnAfterSizeColumn Event called after a column is sized.

56

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

OnAfterUnCheckNode Event called after a node is UnChecked.

OnAfterUnSelectNode Event called after a node is UnSelected.

OnAfterUpdateNode
Event called after a node is updated after
editing.

OnBeforeCheckNode
Event called before a node check state is
changed.

OnBeforeCollapseNode Event called before a node is collapsed.

OnBeforeCopyToClipboard
Event called before a copy operation is
performed on the clipboard.

OnBeforeCutToClipboard
Event called before a cut operation is
performed on the clipboard.

OnBeforeDrawColumn Event called before a column is drawn.

OnBeforeDrawColumnEmptySpace
Event called before an empty space next to
the columns area is drawn.

OnBeforeDrawColumnHeader
Event called before the header area of a
column is drawn.

OnBeforeDrawColumnText
Event called before the text of a column is
drawn.

OnBeforeDrawGroup Event called before the group is drawn.

OnBeforeDrawGroupEmptySpace
Event called before the empty space next to
the groups area is drawn.

OnBeforeDrawGroupText Event called before the group text is drawn.

OnBeforeDrawNode Event called before a node is drawn.

OnBeforeDrawNodeCheck
Event called before the check area of a node is
drawn.

OnBeforeDrawNodeColumn
Event called before the column area of the
nodes is drawn.

OnBeforeDrawNodeExpand
Event called before the expand / collapse area
of a node is drawn.

OnBeforeDrawNodeIcon
Event called before the icon of a node is
drawn.

OnBeforeDrawNodeText
Event called before the text of a node is
drawn.

OnBeforeDropNode Event called before a node will be dropped.

OnBeforeExpandNode Event called before a node is expanded.

OnBeforeOpenInplaceEditor
Event called before the inplace editor is
opened.

OnBeforePasteFromClipboard
Event called before a paste operation is
performed from the clipboard.

OnBeforeReorderNode Event called before reordering a node.

OnBeforeSelectNode Event called before a node is selected.

OnBeforeSizeColumn Event called before a column is sized.

OnBeforeUnCheckNode Event called before a node is UnChecked.

57

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

OnBeforeUnSelectNode Event called before a node is UnSelected.

OnBeforeUpdateNode
Event called before a node is updated after
editing.

OnCloseInplaceEditor Event called when the inplace editor is closed.

OnCustomizeInplaceEditor
Event for customization of the inplace editor
after it has been created.

OnFilterSelect

Event triggered when a value of the filter
listbox is selected and the condition needs to
be applied. In this event you can additionally
customize the condition.

OnGetColumnHorizontalTextAlign
Event called to get the horizontal alignment of
the text in a column.

OnGetColumnText Event called to get the text of a column.

OnGetColumnTrimming
Event called to get the trimming of the text in
a column.

OnGetColumnVerticalTextAlign
Event called to get the vertical alignment of
the text in a column.

OnGetColumnWordWrapping
Event called to get the word wrapping of the
text in a column.

OnGetGroupText
Event called to get the text for a specific
group.

OnGetInplaceEditor Event called to use a custom inplace editor.

OnGetInplaceEditorRect
Event called to get the inplace editor
rectangle.

OnGetNodeCheckType Event called to get the check type of a node.

OnGetNodeColor
Event called to get the color of a node in
normal state.

OnGetNodeDisabledColor
Event called to get the color of a node in
disabled state.

OnGetNodeDisabledTextColor
Event called to get the color of the text of a
node in disabled state.

OnGetNodeHeight

Event called to get the height of a node in
case the NodesAppearance.HeightMode is set
to tnhmVariable.

OnGetNodeHorizontalTextAlign
Event called to get the horizontal text
alignment of a node.

OnGetNodeIcon Event called to get the icon of a node.

OnGetNodeSelectedColor
Event called to get the color of a node in
selected state.

OnGetNodeSelectedTextColor
Event called to get the text color of a node in
selected state.

OnGetNodeText Event called to get the text of a node.

OnGetNodeTextColor
Event called to get the color of the text of a
node.

OnGetNodeTrimming Event called to get the trimming of the text of

58

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

a node.

OnGetNodeVerticalTextAlign
Event called to get the vertical text alignment
of a node.

OnGetNodeWordWrapping
Event called to get the word wrapping of the
text of a node.

OnGetNumberOfNodes Event called to get the number of nodes.

OnHScroll
Event called when the TreeView scrolls
horizontally.

OnIsNodeChecked
Event called to determine if a node is checked
or not.

OnIsNodeEnabled
Event called to determine if a node is enabled
or not.

OnIsNodeExpanded
Event called to determine if a node is
expanded or not.

OnIsNodeExtended
Event called to determine if a node is
extended or not.

OnNeedFilterDropDownData

Event triggered when applying a column filter
operation. In this event you can additionally
change or add values you wish to see in the
dropdown window.

OnNodeAnchorClick
Event called when an anchor is clicked in the
HTML formatted text of a node.

OnNodeChanged
Event called when the node is changed after
editing.

OnNodeClick Event called when a node is clicked.

OnNodeDblClick Event called when a node is double clicked.

OnVScroll
Event called when the TreeView scrolls
vertically.

Procedures and functions

TreeView

AddNode(AParentNode:

TAdvTreeViewNode = nil):

TAdvTreeViewNode

Adds a node to the node collection (collection-
based). An optional parent node parameter
can be passed to add the node as a child node.

AddVirtualNode(AParentNode:

TAdvTreeViewVirtualNode = nil):

TAdvTreeViewVirtualNode

Adds a node to the virtual node list (virtual).
An optional parent node parameter can be
passed to add the node as a child node.

AutoSizeColumn(ACol: Integer) Autosizes a column.

BeginUpdate
Blocks all updates to increase performance.
Must be paired with an EndUpdate.

59

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

CancelEditing Cancels editing when editing is active.

CheckNode(ANode:
TAdvTreeViewNode; AColumn:
Integer; ARecurse: Boolean = False)

Checks the node for a specific column
(collection-based).

CheckVirtualNode(ANode:
TAdvTreeViewVirtualNode; AColumn:
Integer; ARecurse: Boolean = False)

Checks the node for a specific column
(virtual).

ClearColumns Removes all columns.

ClearNodeList Clears the internal node list. (virtual)

ClearNodes
Removes all nodes from the node collection
(collection-based).

CollapseAll
Collapses all nodes and child nodes (collection-
based).

CollapseAllVirtual Collapsed all nodes and child nodes (virtual).

CollapseNode(ANode:
TAdvTreeViewNode; ARecurse:
Boolean = False)

Collapses a specific node (collection-based).

CollapseVirtualNode(ANode:
TAdvTreeViewVirtualNode; ARecurse:
Boolean = False)

Collapse a specific node (virtual).

EditNode(ANode: TAdvTreeViewNode;
AColumn: Integer)

Starts editing a specific node (collection-
based).

EditVirtualNode(ANode:
TAdvTreeViewVirtualNode; AColumn:
Integer)

Starts editing a specific node (virtual).

EndUpdate

Bundles all updates into one update for
performance. Needs to be paired with a
BeginUpdate.

ExpandAll Expands all nodes (collection-based).

ExpandAllVirtual Expands all nodes (virtual).

ExpandNode(ANode:
TAdvTreeViewNode; ARecurse:
Boolean = False)

Expands a specific node (collection-based).

ExpandVirtualNode(ANode:
TAdvTreeViewVirtualNode; ARecurse:
Boolean = False)

Expands a specific node (virtual).

FindColumnByName(AName: String):
TAdvTreeViewColumn

Finds a column with a specific name.

FindColumnIndexByName(AName:
String): Integer

Finds a column index with a specific name.

FindGroupByName(AName: String):
TAdvTreeViewGroup

Finds a group with a specific name.

FindGroupIndexByName(AName:
String): Integer

Finds a group index with a specific name.

GetFirstChildNode(ANode: Returns the first child node of a node

60

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

TAdvTreeViewNode):

TAdvTreeViewNode

(collection-based).

GetFirstChildVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the first child node of a node (virtual).

GetFirstRootNode: TAdvTreeViewNode Returns the first root node (collection-based).

GetFirstRootVirtualNode:

TAdvTreeViewVirtualNode

Returns the first root node (virtual).

GetHorizontalScrollPosition: Double Returns the horizontal scroll position.

GetInplaceEditor:
TAdvTreeViewInplaceEditor

Returns the inplace editor when active. The
GetInplaceEditor function will return nil when
the editor is not active.

GetLastChildNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the last child node of a node
(collection-based).

GetLastChildVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the last child node of a node (virtual).

GetLastNode: TAdvTreeViewNode Returns the last node (collection-based).

GetLastRootNode: TAdvTreeViewNode Returns the last root node (collection-based).

GetLastRootVirtualNode:

TAdvTreeViewVirtualNode

Returns the last root node (virtual).

GetLastVirtualNode:

TAdvTreeViewVirtualNode

Returns the last node (virtual).

GetNextChildNode(ANode:

TAdvTreeViewNode; AStartNode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the next child node starting from a
parent node and the previous node (collection-
based).

GetNextChildVirtualNode(ANode:

TAdvTreeViewVirtualNode;

AStartNode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the next child node starting from a
parent node and the previous node (virtual).

GetNextNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the next node starting from a node
(collection-based).

GetNextSiblingNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the next sibling node starting from a
node (collection-based).

GetNextSiblingVirtualNode(ANode:

TAdvTreeViewVirtualNode):

Returns the next sibling node starting from a
node (virtual).

61

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

TAdvTreeViewVirtualNode

GetNextVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the next node starting from the
previous node (virtual).

GetNodeChildCount(ANode:

TAdvTreeViewNode): Integer

Returns the child count for a specific node
(collection-based).

GetParentNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the parent node for a specific node
(collection-based).

GetParentVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the parent node for a specific node
(virtual).

GetPreviousChildNode(ANode:

TAdvTreeViewNode; AStartNode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the previous child node starting from a
parent node and the previous node (collection-
based).

GetPreviousChildVirtualNode(ANode:

TAdvTreeViewVirtualNode;

AStartNode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the previous child node starting from a
parent node and the previous node (virtual).

GetPreviousNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the previous node starting from a node
(collection-based).

GetPreviousSiblingNode(ANode:

TAdvTreeViewNode):

TAdvTreeViewNode

Returns the previous sibling starting from a
node (collection-based).

GetPreviousSiblingVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the previous sibling starting from a
node (virtual).

GetPreviousVirtualNode(ANode:

TAdvTreeViewVirtualNode):

TAdvTreeViewVirtualNode

Returns the previous node starting from a node
(virtual).

GetRootNodeByIndex(AIndex: Integer):

TAdvTreeViewNode

Returns a root node by a specific index
(collection-based).

GetRootVirtualNodeByIndex(AIndex:

Integer): TAdvTreeViewVirtualNode

Returns a root node by a specific index
(virtual).

GetTotalColumnWidth: Double Returns the total column width.

GetTotalRowHeight: Double Returns the total row height.

GetVerticalScrollPosition: Double Returns the vertical scroll position.

62

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

GetVirtualNodeChildCount(ANode:

TAdvTreeViewVirtualNode): Integer

Returns the child count of a specific node
(virtual).

HorizontalScrollBar: TScrollBar Returns the horizontal scrollbar.

InitSample

Initializes a sample (the same sample
initialized at designtime when dropping a new
instance of TAdvTreeView).

InsertNode(AIndex: Integer;

AParentNode: TAdvTreeViewNode =

nil): TAdvTreeViewNode

Inserts a new node on a specific index and
parent node (collection based).

InsertVirtualNode(AIndex: Integer;

AParentNode:

TAdvTreeViewVirtualNode = nil):

TAdvTreeViewVirtualNode

Inserts a new node on a specific index and
parent node (virtual).

IsColumnVisible(ACol: Integer):
Boolean

Returns if the specified column is visible or
hidden.

IsEditing: Boolean Returns if editing is active.

IsNodeSelectable(ANode:
TAdvTreeViewNode): Boolean

Returns if a node is selectable (collection-
based).

IsNodeSelected(ANode:
TAdvTreeViewNode): Boolean

Returns if a node is selected (collection-
based).

IsVirtualNodeSelectable(ANode:
TAdvTreeViewVirtualNode): Boolean

Returns if a node is selectable (virtual).

IsVirtualNodeSelected(ANode:
TAdvTreeViewVirtualNode): Boolean

Returns if a node is selected (virtual).

RemoveNodeChildren(ANode:
TAdvTreeViewNode)

Removes all children of a specific node
(collection-based).

RemoveSelectedNodes Removes all selected nodes (collection-based).

RemoveSelectedVirtualNodes Removes all selected nodes (virtual).

RemoveVirtualNode(ANode:
TAdvTreeViewVirtualNode)

Removes a node (virtual).

RemoveVirtualNodeChildren(ANode:
TAdvTreeViewVirtualNode)

Removes all children of a specific node
(virtual).

RestoreScrollPosition
Restores scroll position after it has been saved
with SaveScrollPosition.

SaveScrollPosition
Saves the scroll position. Restoring the scroll
position is done with RestoreScrollPosition.

ScrollToNode(ANode:
TAdvTreeViewNode;
AScrollIfNotVisible: Boolean = False;
AScrollPosition:
TAdvTreeViewNodeScrollPosition =
tvnspTop)

Scrolls to a specific node. Additional
parameters can be passed to scroll only if not
visible, and the scroll position when the node
is found (collection-based).

ScrollToVirtualNode(ANode:

TAdvTreeViewVirtualNode;

Scrolls to a specific node. Additional
parameters can be passed to scroll only if not

63

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

AScrollIfNotVisible: Boolean = False;

AScrollPosition:

TAdvTreeViewNodeScrollPosition =

tvnspTop)

visible, and the scroll position when the node
is found (virtual).

SelectAllNodes Selects all nodes (collection-based).

SelectAllVirtualNodes Selects alls nodes (virtual).

SelectedNodeCount: Integer Selected node count (collection-based).

SelectedVirtualNodeCount: Integer Selected node count (virtual).

SelectNode(ANode:
TAdvTreeViewNode)

Selects a specific node (collection-based).

SelectNodes(ANodes:
TAdvTreeViewNodeArray)

Selects an array of nodes (collection-based).

SelectVirtualNode(ANode:
TAdvTreeViewVirtualNode)

Selects a specific node (virtual).

SelectVirtualNodes(ANodes:
TAdvTreeViewVirtualNodeArray)

Selects an array of nodes (virtual).

StopEditing Stops editing.

ToggleCheckNode(ANode:
TAdvTreeViewNode; AColumn:
Integer; ARecurse: Boolean = False)

Toggles the state of a checkbox or radiobutton
when used in a node column (collection-
based).

ToggleCheckVirtualNode(ANode:
TAdvTreeViewVirtualNode; AColumn:
Integer; ARecurse: Boolean = False)

Toggles the state of a checkbox or radiobutton
when used in a node column (virtual).

ToggleVirtualNode(ANode:
TAdvTreeViewVirtualNode; ARecurse:
Boolean = False)

Toggles the expand/collapse state of a node
(virtual).

UnCheckNode(ANode:
TAdvTreeViewNode; AColumn:
Integer; ARecurse: Boolean = False)

Unchecks a node (collection-based).

UnCheckVirtualNode(ANode:
TAdvTreeViewVirtualNode; AColumn:
Integer; ARecurse: Boolean = False)

Unchecks a node (virtual).

UnSelectAllNodes Unselects all nodes (collection-based).

UnSelectAllVirtualNodes Unselects all nodes (virtual).

UnSelectNode(ANode:
TAdvTreeViewNode)

Unselects a specific node (collection-based).

UnSelectNodes(ANodes:
TAdvTreeViewNodeArray)

Unselects an array of nodes (collection-based).

UnSelectVirtualNode(ANode:
TAdvTreeViewVirtualNode)

Unselects a specific node (virtual).

UnSelectVirtualNodes(ANodes:
TAdvTreeViewVirtualNodeArray)

Unselects an array of nodes (virtual).

VerticalScrollBar: TScrollBar Returns the vertical scrollbar.

XYToColumnSize(X, Y: Single): Integer Returns a column index at a specific X and Y

64

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

coordinate.

XYToNode(X, Y: Double):
TAdvTreeViewVirtualNode

Returns a node at a specific X and Y coordinate
(virtual).

XYToNodeAnchor(ANode:
TAdvTreeViewVirtualNode; X, Y:
Single): TAdvTreeViewNodeAnchor

Returns a node anchor at a specific X and Y
coordinate.

XYToNodeCheck(ANode:
TAdvTreeViewVirtualNode; X, Y:
Single): TAdvTreeViewNodeCheck

Returns a node checkbox or radiobutton area
at a specific X and Y coordinate.

XYToNodeExpand(ANode:
TAdvTreeViewVirtualNode; X, Y:
Single): Boolean

Returns a node expand / collapse area at a
specific X and Y coordinate.

XYToNodeTextColumn(ANode:
TAdvTreeViewVirtualNode; X, Y:
Single): Integer

Returns the column of the text of a specific
node at a specific X and Y coordinate.

Node (Virtual)

Collapse(ARecurse: Boolean = False) Collapses the child nodes.

Expand(ARecurse: Boolean = False) Expands the child nodes.

GetChildCount: Integer Returns the count of child nodes.

GetFirstChild:
TAdvTreeViewVirtualNode

Returns the first child node.

GetLastChild:
TAdvTreeViewVirtualNode

Returns the last child node.

GetNext: TAdvTreeViewVirtualNode Returns the next node.

GetNextChild(ANode:
TAdvTreeViewVirtualNode):
TAdvTreeViewVirtualNode

Returns the next child node.

GetNextSibling:
TAdvTreeViewVirtualNode

Returns the next sibling node.

GetParent: TAdvTreeViewVirtualNode Returns the parent node.

GetPrevious:
TAdvTreeViewVirtualNode

Returns the previous node.

GetPreviousChild(ANode:
TAdvTreeViewVirtualNode):
TAdvTreeViewVirtualNode

Returns the previous child node.

GetPreviousSibling:
TAdvTreeViewVirtualNode

Returns the previous sibling node.

RemoveChildren Removes all children.

Node (Collection-Based)

Collapse(ARecurse: Boolean = False) Collapses the child nodes.

65

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Expand(ARecurse: Boolean = False) Expands the child nodes.

GetChildCount: Integer Returns the count of child nodes.

GetFirstChild: TAdvTreeViewNode Returns the first child node.

GetLastChild: TAdvTreeViewNode Returns the last child node.

GetNext: TAdvTreeViewNode Returns the next node.

GetNextChild(ANode:
TAdvTreeViewNode):
TAdvTreeViewNode

Returns the next child node.

GetNextSibling: TAdvTreeViewNode Returns the next sibling node.

GetParent: TAdvTreeViewNode Returns the parent node.

GetPrevious: TAdvTreeViewNode Returns the previous node.

GetPreviousChild(ANode:
TAdvTreeViewNode):
TAdvTreeViewNode

Returns the previous child node.

GetPreviousSibling:
TAdvTreeViewNode

Returns the previous sibling node.

RemoveChildren Removes all children.

66

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

TAdvDirectoryTreeView and TAdvCheckedTreeView

The TAdvDirectoryTreeView and the TAdvCheckedTreeView both inherit from TAdvTreeView

and add additional functionality.

TAdvDirectoryTreeView

The TAdvDirectoryTreeView is capable of displaying drives, folders and files. There are three

important methods to load this information: LoadDrives, LoadDrive and LoadDirectory.

Additionally a filter can be applied for further fine-tuning.

By default there is only one column added which is the name of the file / folder or drive.

When more information is needed, there are additional columns supported such as the

creation date, modification date and the free space, total space in case of a drive. These

columns can be added with the AddColumn function. The directory demo that is included in

the distribution demonstrates this component.

TAdvCheckedTreeView

The TAdvCheckedTreeView adds a checkbox for each node by default. The behaviour is

identical to the TAdvTreeView but saves the code for adding a checkbox to each node.

TMS Mini HTML rendering engine

Another core technology used among many components is a small fast & lightweight HTML

rendering engine. This engine implements a childset of the HTML standard to display

formatted text. It supports following tags :

B : Bold tag

 : start bold text

 : end bold text

Example : This is a test

U : Underline tag

<U> : start underlined text

</U> : end underlined text

Example : This is a <U>test</U>

67

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

I : Italic tag

<I> : start italic text

</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag

<S> : start strike-through text

</S> : end strike-through text

Example : This is a <S>test</S>

A : anchor tag

 : text after tag is an anchor. The 'value' after the href identifier is the

anchor. This can be an URL (with ftp,http,mailto,file identifier) or any text.

If the value is an URL, the shellexecute function is called, otherwise, the anchor value can be

found in the OnAnchorClick event : end of anchor

Examples : This is a test

This is a test

This is a test

FONT : font specifier tag

 : specifies font

of text after tag.

with

• face : name of the font
• size : HTML style size if smaller than 5, otherwise pointsize of the font
• color : font color with either hexidecimal color specification or color constant name,

ie clRed,clYellow,clWhite ... etc
• bgcolor : background color with either hexidecimal color specification or color

constant name : ends font setting

Examples : This is a test

This is a test

P : paragraph

<P align="alignvalue" [bgcolor="colorvalue"] [bgcolorto="colorvalue"]> : starts a new

paragraph, with left, right or center alignment. The paragraph background color is set by the

optional bgcolor parameter. If bgcolor and bgcolorto are specified,

68

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

a gradient is displayed ranging from begin to end color.

</P> : end of paragraph

Example : <P align="right">This is a test</P>

Example : <P align="center">This is a test</P>

Example : <P align="left" bgcolor="#ff0000">This has a red background</P>

Example : <P align="right" bgcolor="clYellow">This has a yellow background</P>

Example : <P align="right" bgcolor="clYellow" bgcolorto="clred">This has a gradient

background</P>*

HR : horizontal line

<HR> : inserts linebreak with horizontal line

BR : linebreak

 : inserts a linebreak

BODY : body color / background specifier

<BODY bgcolor="colorvalue" [bgcolorto="colorvalue"] [dir="v|h"] background="imagefile

specifier"> : sets the background color of the HTML text or the background bitmap file

Example : <BODY bgcolor="clYellow"> : sets background color to yellow

<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp

<BODY bgcolor="clYellow" bgcolorto="clWhite" dir="v"> : sets a vertical gradient from yellow

to white

IND : indent tag

This is not part of the standard HTML tags but can be used to easily create multicolumn text

<IND x="indent"> : indents with "indent" pixels

Example :

This will be <IND x="75">indented 75 pixels.

IMG : image tag

<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"]

[alt="specifier:name"] > : inserts an image at the location

specifier can be: name of image in a BitmapContainer

Optionally, an alignment tag can be included. If no alignment is included, the text alignment

with respect to the image is bottom. Other possibilities are: align="top" and align="middle"

69

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

The width & height to render the image can be specified as well. If the image is embedded in

anchor tags, a different image can be displayed when the mouse is in the image area through

the Alt attribute.

Examples :

This is an image

CHILD : childscript tag

<CHILD> : start childscript text

</CHILD> : end childscript text

Example : This is ⁹/<CHILD>16</CHILD> looks like 9/16

SUP : superscript tag

<SUP> : start superscript text

</SUP> : end superscript text

UL : list tag

 : start unordered list tag

 : end unordered list

Example :

List item 1

List item 2

 Child list item A

 Child list item B

List item 3

LI : list item

<LI [type="specifier"] [color="color"] [name="imagename"]>: new list item specifier can be

"square", "circle" or "image" bullet. Color sets the color of the square or circle bullet.

Imagename sets the PictureContainer image name for image to use as bullet

SHAD : text with shadow

<SHAD> : start text with shadow

</SHAD> : end text with shadow

70

TMS SOFTWARE

TMS Advanced TreeView

DEVELOPERS GUIDE

Z : hidden text

<Z> : start hidden text

</Z> : end hidden text

Special characters

Following standard HTML special characters are supported :

< : less than : <

> : greater than : >

& : &

" : "

 : non breaking space

™ : trademark symbol

€ : euro symbol

§ : section symbol

© : copyright symbol

¶ : paragraph symbol

	Introduction
	Organization
	Modes
	Virtual
	Collection-based

	Columns
	Configuration / Appearance
	Autosizing and stretching

	Groups
	Configuration
	Appearance

	Nodes
	Configuration / Appearance
	Adding, inserting and removing nodes
	Fixed vs variable node height
	Checkbox / Radiobutton support
	Extended nodes

	Interaction
	Clipboard
	Reordering / Drag & Drop
	Filtering
	Sorting
	Editing
	Custom Editor

	Customization
	Demos
	Overview
	Directory

	Properties
	Public Properties

	Events
	Procedures and functions
	TAdvDirectoryTreeView and TAdvCheckedTreeView
	TMS Mini HTML rendering engine

