

1

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

TMS Physics Delphi

Development Library
DEVELOPERS GUIDE

Apr 2017

Copyright © 2017 by tmssoftware.com bvba

Web: http://www.tmssoftware.com

Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

2

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Index
Index .. 2

Introduction .. 3

Dependences ... 3

Extensions ... 3

Basic concepts ... 4

Physical quantities .. 4

Units of measurement .. 4

Unit prefixes ... 5

Using PHYSICS ... 5

Unit conversion ... 6

Fast unit conversion ... 6

String to Unit conversion .. 7

Class Hierarchy .. 8

Physical quantity class hierarchy .. 8

Unit class hierarchy .. 9

Special units (logarithmic and decibels) ...11

Extending PHYSICS ...13

Introducing new physical quantity ..13

Introducing new units of measurement ..14

Appendix A. Physics dimensions and quantities ..19

Appendix B. Physics prefixes and units of measurement ..22

3

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Introduction

PHYSICS is a Delphi library for developers. PHYSICS library contains special classes and
allows using various physics concepts (such as physical quantities, units of measurement and
so on) in Delphi programs.

ADVANTAGES of PHYSICS library:
1. 100% Delphi code.
2. Strongly structured class hierarchy (as close as possible to modern physics concepts).
3. Universal algorithms for working with physics concepts (no need to modify primary code).
4. Many predefined physical entities (physical quantities, units of measurement).
5. Easy to introduce new physics concepts (physical quantities, units of measurement and so
on).
6. Platform independent (many platforms supported – x32, x64, VCL, FMX).

Dependences

PHYSICS Delphi library depends on:
1. RTL.
2. DRTE (Delphi Run-Time Environment) library.

Extensions

There are the following extensions of PHYSICS Delphi library:
1. Physics Measurement.

4

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Basic concepts

The main goal of PHYSICS library is to provide the easiest way for converting values between

various units of measurement. This part explains main concepts used in PHYSICS library.

Physical quantities

A physical quantity is a property of a physical substance that can be measured

(http://en.wikipedia.org/wiki/Physical_quantity). Examples of physical quantities are: mass, time,

electric current and so on. One should not confuse the concept of physical quantity and the

concept of physical (quantity) values. A physical quantity is an abstract concept, and a physical

quantity value is the value of concrete phenomenon property. For example, 5 grams is a

physical value of the physical quantity mass.

There are fundamental (base) physical quantities called dimensions: length, time, mass,

temperature, electric current, amount of substance, luminous intensity. They are fundamental

because all other quantities can be expressed via them. For example, the physical quantity

velocity can be expressed via the fundamental quantities length and time: velocity =

length/time. Therefore, any physical quantity has the same characteristic called physical

dimension. The velocity quantity has the dimension length/time, the acceleration quantity has

the dimension length/time2, the area quantity has the dimension length2 and so on.

Thus, any physical quantity can be characterized by two properties: name (or symbol) and

dimension. There are fundamental quantities with the same dimensions and derived quantities

with dimensions, constructed from the fundamental quantities.

NOTE. Three additional dimensions can be introduced for convenience: information, plane

angle, solid angle. These quantities are dimensionless in fact, but they can be considered as

the additional dimensions to differentiate them from truly dimensionless data (numbers).

The total list of dimensions and physical quantities, defined in PHYSICS library, can be found in

Appendix A.

Units of measurement

An unit (of measurement) is a definite magnitude of a physical quantity

(http://en.wikipedia.org/wiki/Unit_of_measurement). For, example, meter is a predefined

magnitude of the length physical quantity. Thus, as a physical quantity, every unit has such

attribute as physical dimension. Some unit can measure a physical quantity if and only if they

have equal dimensions. There is ‘many to many’ relation between physical quantities and units.

That is, many units can measure one quantity, and one unit can measure many quantities. For

http://en.wikipedia.org/wiki/Physical_quantity
http://en.wikipedia.org/wiki/Unit_of_measurement

5

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

example, mass can be measured with grams, pounds, kilograms and so on. At the same time,

one unit – Pascal, can measure hydrostatic pressure and mechanical stress.

In accordance with said above, there are base units to measure fundamental quantities. For the

length quantity – meters, inches and so on, for the mass quantity – grams, pounds and so on…

All units for the derived quantities can be produced by multiplying and dividing the base units,

multiplying them by some constants and adding constant values to them (using general algebra

rules). For example, the unit of the area measurement ‘Are’ can be got multiplying 10 m by 10

m, so 1 a = 100 m2.

One of the main purposes to use units of measurement in a computer program is to convert

values of physical quantities from one unit to other ones. The base units are converted in

accordance with their definitions. For example, to convert a temperature value t from degrees of

Celsius to degrees of Fahrenheit the following equation is used t °С = 5/9 (t °F - 32). All the

base units are ‘linear’ because they have ‘one dimension’. So, they all converted from one to

another by a linear law. The law of the derived unit conversion is determined by the way of their

derivation. For example, 1 m2 = 1 m · 1 m = 100 cm · 100 cm = 10000 cm2.

Even the algorithm of the conversion is straightforward for any separate case of units, it is not

so easy to write the code of the algorithm in general case. One of the main difficulties is to

create ‘right’ class hierarchy that provides one algorithm for all units and for that time an easy

way to introduce new units.

PHYSICS library has unique universal algorithm of unit conversion. It converts value from

one unit to any other unit if they are compatible for the conversion (have equal dimensions).

The only thing needed is to create new unit class. The algorithm itself will ‘build’ the conversion

function to any other compatible unit, according to the unit definition.

Unit prefixes

A unit prefix is a specifier that indicates multiplication factor for the unit it precedes. A simple

example of a prefix using is the definition of the kilogram unit kg. Here the prefix kilo ‘k’

precedes the unit gram ‘g’. It means that the magnitude of the unit must be multiplied with the

value of the prefix, in this case it is 1000.

PHYSICS library supports many decimal and binary prefixes (see Appendix B).

Using PHYSICS

The main functionality of PHYSICS library is conversion of different units of measurement.

Another functionality is to convert string data to units of measurement. The functionality is

6

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

mainly realized with the Unit1 class and the UnitConverter. The next part explains how to use

the classes.

Unit conversion

The unit conversion is very simple to implement with PHYSICS library. The base class Unit has

static method Convert to convert value from any unit to any compatible one. The following code

demonstrates an example of the conversion

var

 u1: TUnit;

 u2: TUnit;

 x1, x2: TFloat;

begin

 u1:=TPascal.Create;

 u2:=TAtmosphere.Create;

 x1:=100;

 x2:=TUnit.Convert(u1, u2, x1);

 …

In this example, a real value converted from the Pascal unit to the Atmosphere unit. Units must

be compatible to convert values. Units are compatible if they have equal dimensions. Use the

Unit class method Convertible to check that two units are compatible for conversion.

Fast unit conversion

The unit conversion, described above, is universal and can be applied to any (convertible) units.

But it can be slow for conversion of huge arrays of values. The more ‘complicated’ units are the

slower conversion is.

At the same time, all units can be divided into two categories: ‘zero based’ and not ‘zero

based’2. The ‘zero based’ units are such units that their scale zeros equal. For example, mass

units are zero based, because zero mass is always zero, no matter what unit is used to

measure it. As opposite, temperature units are not zero based, because 0°С is not equal to

0°K.

The conversion of the ‘zero based’ units if always linear and can be made using one factor

coefficient f. Then the formula is x unit1 = f·x unit2, where x is the value, unit1 and unit2 are the

units to convert from and to convert to, f is the conversion factor. The Unit class contains the

IsZeroBased method to check, if a unit is zero based.

1 Hereinafter in the text (not code) prefix ‘T’ is omitted for all class names.
2 For other cases, see ‘Special units’ part.

7

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

The conversion of the not ‘zero based’ units cannot be implemented by using only one scale

factor in general case. But, in the case of ‘interval’ conversion, this can be made by multiplying

the value with a ‘scale factor’. For example, the temperature interval of 10°С can be converted

to the temperature interval measured in Fahrenheit’s degrees by multiplying the first with 9/5.

In accordance with said above, for all ‘zero based’ units and for ‘interval’ conversion a scale

factor can be used to convert values. The Unit class contains the static method ScaleFactor to

calculate the value of the scale factor. The example code below shows how to use this method

to convert an array of values.

Let there is an array of pressure values measured in the ‘millimeters of mercury’.

var

 pressures: TArray<TFloat>;

And all values must be converted to the Pascal units. The code of the conversion is the

following:

var

 u1, u2: TUnit;

 v: TFloat;

 i: Integer;

 …

begin

 …

 u1:=TMillimetreOfMercury.Create;

 u2:=TPascal.Create;

 try

 v:=TUnit.ScaleFactor(u1, u2);

 for i:=0 to Length(pressures)-1 do

 pressures[i]:=v*pressures[i];

 finally

 u1.Free;

 u2.Free;

 end;

end;

String to Unit conversion

PHYSICS library provides mechanisms to convert string data to units of measurement. It is

useful for all programs which allow the user to input units to measure some value. The

8

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

mechanism of string-to-unit conversion is provided by the UnitConverter class. The following

code demonstrates conversion of a string to a unit.

var

 u: TUnit;

 uconverter: TUnitConverter;

 s, error: string;

begin

 uconverter:=TUnitConverter.Create;

 s:='N mm^2/ns';

 u:=uconverter.ConvertString(s,error);

 …

In this example new unit x is constructed from string and it is Newton·millimeter2/nanosecond.

The rules of string-to-unit conversion:

- A string can contain unit symbols, prefixes, spaces, division operator sign ‘/’ and power
operator sign ‘^’.

- No multiplication sign allowed in a string (space symbol ‘ ‘ used instead).
- Only one division sign allowed in a string.
- A prefix is not separated by spaces with the unit it belongs to.
- Different units are separated by spaces (that is spaces used as multiplication operator).

If there is an error in the string, its description is returned via error out parameter.

The list of all defined named units can be found in Appendix B.

Class Hierarchy

This part explains the base class hierarchy of PHYSICS library. There is no need to know the

hierarchy for using main features of the library: unit conversion and parsing string data into units

of measurement. The knowledge is only useful for extending the library - introducing new

physical quantities and units of measurement.

Physical quantity class hierarchy

In accordance with said above, the class hierarchy of physical quantities in PHYSICS library

follows the concepts of modern physics. Each physical quantity is represented by a class. Base

abstract class for all physical quantities is the PhysicalQuantity. It has three main properties:

Name, Symbol and Dimension. The FundamentalQuantity and DerivedQuantity classes are

directly inherited from this base class. Ten fundamental quantities (Length, Time, Mass,

Temperature, ElectricCurrent, AmountOfSubstance, LuminousIntensity, Information,

PlaneAngle, SolidAngle) are inherited from the former class. All other derived quantity classes

are inherited from the last one. The class hierarchy diagram is shown on picture 1.1.

9

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Picture 1.1. Physical quantity class hierarchy diagram.

Unit class hierarchy

The unit class hierarchy is shown on picture 1.2. The hierarchy is rather complicated. The

hierarchy was constructed with the purpose to represent the modern physics concept of ‘units of

measurement’ as close as possible and, from the other side, to provide an universal algorithm of

unit conversion and the easiest way to introduce new units.

10

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

The base abstract class for all units is Unit. It provides all common unit properties – Name,

Symbol, Dimension, and common algorithms – conversion values from one unit to another,

checking units for compatibility and so on.

Picture 1.2. Unit class hierarchy diagram.

The LinearUnit class is directly derived from the base abstract class Unit. It realizes the

abstract methods for the linear conversion algorithm. Then, the BaseUnit class is inherited from

the LinearUnit class. It realizes the abstract mechanisms for all base units (those measure the

fundamental quantities). The base units are separated into eleven branches, corresponding to

the fundamental quantities. All other units, corresponding the fundamental quantities, must be

inherited from one of these eleven units. There are many predefined base units: Foot, Gram,

Second and so on.

11

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Picture 1.3. Unit prefix class hierarchy diagram.

All other units are constructed from the base ones. The simplest way to get new unit is to

multiply it by some value and/or exponentiate it. For example, from the meter unit m new unit

can be constructed 10 m2. The ExponentUnit class realizes this concept. The special abstract

class UnitPrefix (picture 1.3) is designed to realize standard multipliers for units

(http://en.wikipedia.org/wiki/SI_prefix). All standard multipliers realized in PHYSICS library and

can be used for unit derivation.

And finally, the general way to derive new unit from the base ones is to multiply several

exponent units. For example, the following unit can be constructed: kg·m2·A-1·s-2. This concept

is realized by the BaseDerivedUnit class. All derived units can be divided in two categories.

The first category includes the units those have their own names. For example, Newton, Pascal,

Henry and so on. The second category includes all other units, they have no names, only

symbols. For example km·s-2. These concepts realized by the DerivedUnit and

ConstructedUnit classes correspondingly.

PHYSICS library implements many predefined units of measurement. New units can be simply

added to the library without modifying the core algorithms.

Special units (logarithmic and decibels)

The unit class hierarchy presented above is not full. It was reduced for the reason of

simplification. Really, there is another branch of inheritance shown on picture 1.4. The main

branch node is SpecialUnit. This branch was introduced for special needs. The SpecialUnit

class used in all core algorithms of the library, but implementation supposes special cases.

http://en.wikipedia.org/wiki/SI_prefix

12

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Picture 1.4. Diagram of special unit class branch of inheritance.

Common example of special unit is Decibel – this is a logarithmic unit with special rules of

conversion and operations (https://en.wikipedia.org/wiki/Decibel). The Decibel is defined as

logarithmic unit by base 10, so it inherited from Decimal logarithmic unit. Really, all logarithmic

units are dimensionless, because they express the relative values. However, dimensioned

decibels can be introduced by supposing some dimensioned reference value

(https://en.wikipedia.org/wiki/Decibel#Suffixes_and_reference_values).

Common feature of the logarithmic (and decibel) units is that they are NOT SCALABLE. It

means that ‘interval’ conversion for them cannot be done by multiplying with a factor value (in

general case). The conversion between logarithmic units and other ones can be done only with

general conversion algorithm (no fast conversion). Use method IsScalable of the Unit class for

checking if unit can be converted to another one by the scale factor. Also, method

MakeConversion can be used for creating suitable conversion delegate for any units, taking

into account their properties.

 Summary of logarithmic and decibel unit features:

- Logarithmic units are not scalable with other ones.

- There are dimensionless and dimensioned decibels.

- Logarithmic units and decibels cannot be multiplied with other logarithmic ones.

https://en.wikipedia.org/wiki/Decibel
https://en.wikipedia.org/wiki/Decibel#Suffixes_and_reference_values

13

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

- Logarithmic units and decibels cannot be raise to a power (except 1).

- When making operations with physical values logarithmic units make special sense: the

logarithmic values cannot be multiplied; the logarithmic values cannot be raise to a power; sum

of two logarithmic values can be done if they have the same dimension or if one of them is

dimensionless.

Extending PHYSICS

PHYSICS library provides a complete core for converting units of different types and to parse

string data into units of measurement. It also contains many predefined, completely realized,

physical entities. Thus, the library can be used without any modification for its main purposes.

Nevertheless, there is a huge amount of specific physical entities used in many specialized

applications. PHYSICS library provides the easiest way to introduce new specific physical

entities. They will be used like other predefined entities without any modification of the core

algorithms.

Introducing new physical quantity

It is very easy to introduce new physical quantity. Every quantity is represented as a class inside

the program. Thus, new class must be inherited from the DerivedQuantity class. For example,

to introduce the force physical quantity the following class must be created:

interface

…

 TForce = class sealed (TDerivedQuantity)

 protected

 function GetSymbol: string; override; final;

 function GetName: string; override; final;

 function GetDimension: TDimension; override; final;

 end;

…

implementation

…

function TForce.GetDimension: TDimension;

begin

 Result:=(Mass*Length)/(Time*Time);

end;

function TForce.GetName: string;

begin

 Result:='Force';

end;

14

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

function TForce.GetSymbol: string;

begin

 Result:='F';

end;

…

This code introduce new physical quantity with the name ‘Force’ and the symbol ‘F’. The

dimension of the quantity is mass·length/time2 (which corresponds the force dimension).

And it is all. PHYSICS library uses Delphi reflection mechanisms to find and identify physics

entities. New class will be automatically found and registered. All algorithms of working with

physical quantities do not depend on the type of the quantity. The program can find quantity,

display it, find units of measurement those are compatible with the quantity and so on.

Introducing new units of measurement

The unit class hierarchy is rather complicated, but there is no need to know all features of the

structure to introduce new units in a program and use them. PHYSICS library provides simple

mechanisms to introduce and use new units.

There are two different ways to use new units in a program. The first is to create new classes for

the units. This way must be used for all units, those have their own names (Pascal, Newton and

so on). For such units, corresponding the base physical quantities, the class must be inherited

from one of the base derived units. For example, there is the code for the ‘yard’ unit.

interface

…

 // Yard = 0.9144 m

 TYard = class sealed (TLengthUnit)

 protected

 function GetFactor: TFloat; override; final;

 function GetName: string; override; final;

 function GetPlural: string; override; final;

 function GetSymbol: string; override; final;

 end;

…

implementation

…

function TYard.GetFactor: TFloat;

begin

15

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

 result:=0.9144;

end;

function TYard.GetName: string;

begin

 result:='Yard';

end;

function TYard.GetPlural: string;

begin

 result:='Yards';

end;

function TYard.GetSymbol: string;

begin

 result:='yd';

end;

…

The Yard unit is inherited from the LengthUnit, because it is a measure for the length physical

dimension. It overrides the methods providing the name and the symbol of the unit. Also it

overrides the GetFactor method, which returns the coefficient of conversion to the base unit. It

is the only information needed for the conversion algorithm. All coefficients must correspond to

conversion of the unit to the base SI units (http://en.wikipedia.org/wiki/SI).

All complex units must be directly inherited from the DerivedUnit class. For example, there is

the code for the ‘watt’ unit.

interface

…

 // Watt (kg m^2/s^3)

 TWatt = class sealed (TDerivedUnit)

 protected

 function GetName: string; override; final;

 function GetPlural: string; override; final;

 function GetSymbol: string; override; final;

 procedure RecreateUnits; override; final;

 end;

…

implementation

…

function TWatt.GetName: string;

http://en.wikipedia.org/wiki/SI

16

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

begin

 result:='Watt';

end;

function TWatt.GetPlural: string;

begin

 result:='Watts';

end;

function TWatt.GetSymbol: string;

begin

 result:='W';

end;

procedure TWatt.RecreateUnits;

begin

 inherited;

 SetLength(fUnits, 3);

 fUnits[0]:=TExponentUnit.Create(TKilogram.Create, 1);

 fUnits[1]:=TExponentUnit.Create(TMetre.Create, 2);

 fUnits[2]:=TExponentUnit.Create(TSecond.Create, -3);

end;

…

The class overrides the methods providing the name and symbol of the unit. Also it overrides

the RecreateUnits method which provides main information for conversion and other

algorithms. In this method the unit ‘watt’ is constructed with three exponent units

Kilogram1·Metre2·Second-3.

The second way of using new units in a program is creating object instances dynamically in run-

time. The simplest way is using the ConstructedUnit class. The following code demonstrates

run-time unit creation:

var

 x: TConstructedUnit;

 u: TExponentUnit;

begin

 x:=TConstructedUnit.Create;

 u:=TExponentUnit.Create(TKilogram.Create,1);

 x.AddUnit(u);

 u:=TExponentUnit.Create(TMetre.Create,1);

 x.AddUnit(u);

 u:=TExponentUnit.Create(TSecond.Create,-2);

17

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

 x.AddUnit(u);

 …

end;

The created unit x is kg·m/s2. Then this constructed unit can be used as all other ones for

conversion purposes.

The special case of introducing new unit of measurement is inheriting from one of the special

units. Let us consider an example of implementing a dimensioned decibel unit for voltage

measurement (https://en.wikipedia.org/wiki/Decibel#Voltage). The code of the class presented

below:

interface

…

/// <summary>

/// Decibel - Voltage

/// </summary>

TDecibelVoltage = class sealed (TDecibelDimensioned20)

protected

 /// Reference unit - 1 Volt

 function CreateReferenceUnit: TUnit; override; final;

 function GetName: string; override; final;

 function GetPlural: string; override; final;

 function GetSymbol: string; override; final;

public

 class function IsRealized: boolean; override; final;

end;

…

implementation

…

function TDecibelVoltage.CreateReferenceUnit: TUnit;

begin

 result:= TVolt.Create;

end;

function TDecibelVoltage.GetName: string;

begin

 result:= 'Decibel-Volts';

end;

function TDecibelVoltage.GetPlural: string;

begin

 result:= 'Decibel-Volts';

end;

function TDecibelVoltage.GetSymbol: string;

begin

https://en.wikipedia.org/wiki/Decibel#Voltage

18

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

 result:= 'dBV';

end;

class function TDecibelVoltage.IsRealized: boolean;

begin

 result:= true;

end;

…

As one can see from the implementation, the class overrides common methods of the Unit

class, like getting unit’s symbol, name etc. In addition, the class overrides IsRealized method

which returns ‘True’ for defining that the unit provides the final functionality (unfortunately,

standard Delphi RTTI system does not provide such information). As the unit is dimensioned

decibel, it implements the CreateReferenceUnit method. This function returns the ‘Volt’ unit,

according to the unit definition. The class is inherited from the DecibelDimensioned20, since

the voltage decibels converted with respect to power, not amplitude, so the factor 20 used.

Note, there is no need to provide additional methods for defining that the unit is scalable or

additive with other ones. The PHYSICS core algorithms detect this automatically, based on the

specially designed class hierarchy.

19

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Appendix A. Physics dimensions and quantities

Table A.1. Physical dimensions.

Dimension Symbol Virtuality3

 Dimensionless (number) 1 -

 Length L False

 Time T False

 Mass M False

 Temperature Θ False

 Electric Current I False

 Amount of Substance N False

 Luminous Intensity J False

 Information Υ True

 Plane Angle Φ True

 Solid Angle Ω True

Table A.2. List of physical quantities, defined in PHYSICS library.

Quantity Symbol Dimension

 Length L L

 Time T T

 Mass M M

 Temperature Θ Θ

 Electric Current I I

 Amount of Substance N N

 Luminous Intensity J J

 Information Υ Υ

 Plane Angle Φ Φ

 Solid Angle Ω Ω

 Area A L²

 Volume V L³

 Frequency F 1/T

 Wavenumber k 1/L

 Wavelength λ L

 Mean lifetime τ T

 Speed V L/T

 Angular Speed ω Φ/T

 Acceleration a L/T²

3 Virtuality means that the dimension is equivalent to the dimensionless quantity in fact.

20

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Quantity Symbol Dimension

 Angular Acceleration α Φ/T²

 Density ρ M/L³

 Linear Density ρ₁ M/L

 Area Density ρ₂ M/L²

 Specific volume v L³/M

 Weight W L M/T²

 Flow F L³/T

 Impulse p L M/T

 Moment of inertia I L² M

 Angular momentum L L² M/T

 Spin S L² M/T

 Viscosity η M/L T

 Force F L M/T²

 Pressure P M/L T²

 Stress σ M/L T²

 Strain ε 1

 Moment M L² M/T²

 Surface tension Y M/T²

 Energy E L² M/T²

 Specific energy e L²/T²

 Energy density Eρ M/L T²

 Work W L² M/T²

 Power W L² M/T³

 Heat Q L² M/T²

 Heat flux density Qφ M/T³

 Thermal conductivity k L M/T³ Θ

 Molar heat capacity cμ L² M/T² N

 Specific heat capacity c L²/T² Θ

 Entropy S L² M/T² Θ

 Enthalpy H L² M/T²

 Chemical potential μ L² M/T² N

 Reaction rate r N/L³ T

 Molar concentration C N/L³

 Electric Charge Q T I

 Electric Potential P L² M/T³ I

 Electric Resistance R L² M/T³ I²

 Electrical conductance G T³ I²/L² M

 Capacitance C T⁴ I²/L² M

21

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Quantity Symbol Dimension

 Electric Dipole moment p L T I

 Current Density J I/L²

 Impedance Z L² M/T³ I²

 Magnetic Flux MF L² M/T² I

 Magnetic Field MFi M/T² I

 Inductance Ind L² M/T² I²

 Magnetic flux density B M/T² I

 Magnetization M I/L

 Permeability μ M/L I²

 Permittivity ε T⁴ I²/L² M

 Radioactivity A 1/T

 Dose equivalent H L²/T²

 Radioactive Dose D L²/T²

 Radiance L M/T³ Ω

 Radiant intensity l L² M/T³ Ω

 Irradiance E M/T²

 Illuminance Ey J Ω/L²

 Level (relative) L 1

 Entropy (information) H Υ

22

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Appendix B. Physics prefixes and units of measurement

Table B.1. Prefixes.

Prefix Symbol Value

 Deci d 1E-1

 Centi c 1E-2

 Milli m 1E-3

 Micro mc 1E-6

 Nano n 1E-9

 Pico p 1E-12

 Femto f 1E-15

 Atto a 1E-18

 Zepto z 1E-21

 Yocto y 1E-24

 Deca da 10

 Hecto h 100

 Kilo k 1000

 Mega M 1E+6

 Giga G 1E+9

 Tera T 1E+12

 Peta P 1E+15

 Exa E 1E+18

 Zetta Z 1E+21

 Yotta Y 1E+24

 Kibi Ki 1024

 Mebi Mi 10242

 Gibi Gi 10243

 Tebi Ti 10244

 Pebi Pi 10245

Table B.2. List of units of measurement, defined in PHYSICS library.

Unit Symbol Dimension

 Percent % 1

 Permille ‰ 1

 Metre m L

 Atomic unit of length a₀ L

 Angstrom Å L

 Micron μ L

 Light Year ly L

23

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Unit Symbol Dimension

 Mile (international) mi L

 Foot ft L

 Inch in L

 Yard yd L

 Point pt L

 Second s T

 Atomic unit of time au T

 Minute min T

 Hour h T

 Kilogram kg M

 Gram g M

 Atomic mass unit AMU M

 Electron rest mass m₀ M

 Electronvolt eV M

 Carat kt M

 Carat (metric) ct M

 Tonne t M

 Kelvin ºK Θ

 Celsius ºC Θ

 Fahrenheit ºF Θ

 Delisle ºDe Θ

 Newton (temperature) ºN Θ

 Rankine ºR Θ

 Reaumur ºRe Θ

 Romer ºRo Θ

 Ampere A I

 Mole mol N

 Candela cd J

 Bit b Υ

 Byte B Υ

 Nibble nib Υ

 Trit trit Υ

 Dit dit Υ

 Nat nat Υ

 Radian rad Φ

 Degree º Φ

 Arcminute ' Φ

 Arcsecond " Φ

24

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Unit Symbol Dimension

 Steradian sr Ω

 Are a L²

 Hectare ha L²

 Litre L L³

 Hertz Hz 1/T

 Revolutions per minute rpm 1/T

 Light speed c L/T

 Standard gravity g₀ L/T²

 Newton N L M/T²

 Dyne dyn L M/T²

 Kilogram-force kgf L M/T²

 Sthene sn L M/T²

 Ounce-force ozf L M/T²

 Pound-force lbf L M/T²

 Poundal pdl L M/T²

 Ton-force tnf L M/T²

 Pascal Pa M/L T²

 Atmosphere atm M/L T²

 Bar bar M/L T²

 Millimetre of mercury mmHg M/L T²

 Millimetre of water mmH₂O M/L T²

 Pieze pz M/L T²

 Pound per square foot psf M/L T²

 Pound per square inch psi M/L T²

 Torr torr M/L T²

 Joule J L² M/T²

 Erg erg L² M/T²

 Watt W L² M/T³

 Stokes St L²/T

 Litre per minute LPM L³/T

 Coulomb C T I

 Atomic unit of charge e T I

 Volt V L² M/T³ I

 Abvolt abV L² M/T³ I

 Statvolt statV L² M/T³ I

 Ohm O L² M/T³ I²

 Farad F T⁴ I²/L² M

 Weber Wb L² M/T² I

25

TMS SOFTWARE

TMS Physics Delphi Development

DEVELOPERS GUIDE

Unit Symbol Dimension

 Tesla T M/T² I

 Henry H L² M/T² I²

 Gauss G M/T² I

 Maxwell Mx L² M/T² I

 Debye D L T I

 Lumen lm J Ω

 Lux lx J Ω/L²

 Phot ph J Ω/L²

 Footcandle fc J Ω/L²

 Sievert Sv L²/T²

 Rontgen equivalent man rem L²/T²

 Gray Gy L² M²/T²

 Rad Rad L² M²/T²

 Roentgen R T I/M

 Becquerel Bq 1/T

 Curie Ci 1/T

 Rutherford rd 1/T

 Decibel (10) dB₁₀ 1

 Decibel (20) dB₂₀ 1

 Bell bel 1

 Neper Np 1

 Binary logarithm log₂ 1

 Decimal logarithm log₁₀ 1

 Natural logarithm logₑ 1

 Decibel-milliwatts dBm L² M/T³

 Decibel-Joules dBJ L² M/T²

 Decibel-Pascals dBPa M/L T²

 Decibel SPL (air) dBSPL M/L T²

 Decibel SPL (liquid) dBSPLl M/L T²

 Decibel-Volts dBV L² M/T³ I

 Decibel-Volts (unloaded) dBu L² M/T³ I

