
 
 

 

 

1 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

 

 

 

 

 

 

TMS Analytics Delphi 

Development Library 

DEVELOPERS GUIDE 

 

 

 

 

 

 

 

 

 

 

 

 

 
Jan 2025 

Copyright © 2025 by tmssoftware.com bvba 

Web: http://www.tmssoftware.com 

Email: info@tmssoftware.com 

http://www.tmssoftware.com/
mailto:info@tmssoftware.com


 
 

 

 

2 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Index 

Introduction ................................................................................................................................ 4 

Dependences ............................................................................................................................. 4 

Extensions ................................................................................................................................. 4 

Hello Analytics ........................................................................................................................... 5 

Basic concepts ........................................................................................................................... 8 

Expressions ............................................................................................................................ 8 

Literals.................................................................................................................................... 8 

Variables ................................................................................................................................ 8 

Operators ............................................................................................................................... 9 

Functions ...............................................................................................................................10 

Indexing .................................................................................................................................10 

Arrays ....................................................................................................................................11 

Syntax summary ....................................................................................................................12 

Using ANALYTICS ....................................................................................................................13 

Working with variables ...........................................................................................................13 

Evaluating expression values ................................................................................................15 

Checking expression syntax ..................................................................................................17 

Analytical derivative calculation .............................................................................................18 

Analytical integration .............................................................................................................20 

Symbolic expression simpification .........................................................................................22 

Implicit operations in symbolic expressions ...........................................................................23 

Functional operators ..............................................................................................................27 

Explicit string expressions manipulation ................................................................................30 

Managing registered operators, functions, derivatives and integrals ......................................31 

Class Hierarchy .........................................................................................................................32 

Variable classes ....................................................................................................................32 

Operator classes ...................................................................................................................33 

Function classes ....................................................................................................................36 

Expression classes ................................................................................................................38 

Extending ANALYTICS .............................................................................................................40 

Overloading operators ...........................................................................................................40 

Explicitly overloaded operators ..............................................................................................44 

Introducing new functions ......................................................................................................45 

Implementing indexing ...........................................................................................................50 

Introducing function derivatives .............................................................................................53 

Introducing function integrals .................................................................................................56 

Introducing advanced integrators ...........................................................................................58 

Running commands ..................................................................................................................63 

Assignment statement ...........................................................................................................64 



 
 

 

 

3 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Getting information ................................................................................................................65 

Evaluating expressions ..........................................................................................................66 

Creating user functions ..........................................................................................................67 

Indexing assignment and array slicing ...................................................................................67 

Conditional statement ............................................................................................................69 

Loop statement ......................................................................................................................70 

Symbolic derivatives and integrals .........................................................................................71 

Operations with math expressions .........................................................................................72 

Numerics extension for ANALYTICS .........................................................................................74 

Approximation .......................................................................................................................74 

Numerical integration .............................................................................................................79 

Ordinary differential equation solution....................................................................................80 

Function analysis ...................................................................................................................83 

Nonlinear equation systems solution .....................................................................................84 

Linear algebra extension for ANALYTICS .................................................................................85 

Introducing arrays and matrices.............................................................................................86 

Array and matrix operators ....................................................................................................86 

Array and matrix functions .....................................................................................................88 

Logical array and matrix operations .......................................................................................89 

Statistics extension for ANALYTICS ..........................................................................................90 

Base statistical functions .......................................................................................................91 

Number sequences and progressions ...................................................................................92 

Probability distributions ..........................................................................................................93 

Converting expressions to external formats and drawing formulae............................................95 

Appendix A. Analytics operators and functions........................................................................ 101 

 



 
 

 

 

4 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Introduction 

 
ANALYTICS is a Delphi library for developers. ANALYTICS library contains special classes to 
work with ‘analytical’ or ‘symbolic’ expressions in Delphi programs. It allows checking 
expressions syntax, parsing expressions, calculating expression value, evaluating symbolic 
derivatives and so on. 
 
ADVANTAGES of ANALYTICS library: 
1.  100% Delphi code. 
2.  Strongly structured class hierarchy. 
3.  Universal algorithms (working with formulae of any complexity). 
4.  Analytical (symbolic) derivative calculation.  
5.  Analytical (symbolic) integration.  
6.  Many predefined functions. 
7.  Easy to introduce new functions for any argument types.  
8.  Easy to overload operators for any argument types. 
9.  Working with Complex numbers, 3D vectors and tensors. 
10.  Working with indexed data (arrays, matrixes and higher dimensioned data). 
11. Ready-to-use numerical tools, integrated with analytical capabilities. 
12. Platform independent (many platforms supported – x32, x64, VCL, FMX). 
 

Dependences 

 
ANALYTICS Delphi library depends on: 
1. RTL. 
2. DRTE (Delphi Run-Time Environment) library. 
3. MATHEMATICS library. 
 

Extensions 

 
There are the following extensions of ANALYTICS Delphi library: 
1. Analytics Float (depends on MATHEMATICS library). 
2. Analytics Derivatives. 
3. Analytics Integrals. 
4. Analytics Complex (depends on MATHEMATICS library). 
5. Analytics Linear Algebra (depends on MATHEMATICS library). 
6. Analytics Special (depends on MATHEMATICS library). 
7. Analytics Fractions (depends on MATHEMATICS library). 
8. Analytics Numerics (depends on MATHEMATICS library). 
9. Analytics Statistics (depends on MATHEMATICS library). 
 
 
 



 
 

 

 

5 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Hello Analytics 

This section introduces the ‘Hello Analytics’ application. This is a simple console application 

that evaluates the value of a math expression (function). Here is the full source code of the 

application: 

 

program HelloAnalytics; 

 

{$APPTYPE CONSOLE} 

 

{$R *.res} 

 

uses 

  System.SysUtils, System.RTTI, 

  Base.Types, 

  Analytix.Translator, 

  Analytix.Utilities, 

  Analytix.Assembly, 

  Analytix.Float.Assembly; 

 

var 

  translator: TTranslator; // translator instance 

  f: string;               // function 

  x, y: TFloat;            // variable and function values 

  v: TValue; 

 

begin 

  try 

    Analytix.Assembly.InitializeAssembly;        // 1  

    Analytix.Float.Assembly.InitializeAssembly;  // 1 

 

    translator:= TTranslator.Create;             // 2  

    translator.Add('x', 0.0);                    // 3  

 

    Write('Input f(x)= '); 

    ReadLn(f); 

 

    if not translator.CheckSyntax(f) then exit;  // 4  

 

    Write('Input x= '); 

    ReadLn(x); 

 

    translator.Variables['x'].Value:= TUtilities.ToValue<TFloat>(x); // 5  

    v:= translator.Calculate(f);                                     // 6  



 
 

 

 

6 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

    y:= TUtilities.FromValue<TFloat>(v);                             // 7  

 

    WriteLn('f(x)= '+FloatToStr(y)); 

    ReadLn; 

  except 

    on E: Exception do 

    begin 

      Writeln(E.ClassName, ': ', E.Message); 

      ReadLn; 

    end; 

  end; 

end. 

 

The program consists of seven base steps (marked with numbers in the code): 

 

1 Initialization of operations (functions, math operators) that are going to be used in the 

application. The most of operations with real numbers are realized in the Float module. Thus, 

the Analytix.Float.Assembly.InitializeAssembly is called for the initialization. 

 

2 An instance of the ‘TTranslator’ class created. The class incapsulates most of the methods to 

work with analytical expressions. 

 

3 Adding the ‘x’ variable of real type to the translator instance. As the main goal of the 

application is calculating the value of a function, there must exists at least one variable, the 

function depends on. 

 

4 Checking syntax of the function expression, that the user provided with the console input. If 

one of the syntax rules violated, an exception will be thrown. 

 

5 Assigning new value, provided by the user with the console input, to the ‘x’ variable. As the ‘x’ 

variable is of real type, the generic method TUtilities.ToValue with type TFloat used to provide 

a value of the required type. The TFloat type is declared in the Base.Types unit and this is the 

base type for real numbers used in the Analytics library. 

 

6 Evaluating the value of the function. The ‘Calculate’ method of the TTranslator class 

evaluates the value of a math expression for current variable values. 

 

7 Extracting the real value of the function and assigning it to the ‘y’ variable. The type of the 

value, returned with the ‘Calculate’ method, is always ‘TValue’ (from RTTI unit). Thus, the value 

converted to the TFloat type first. 

 

Having this application, the user can evaluate math expressions, depending on one variable ‘x’. 

Let’s consider several examples of such evaluations: 



 
 

 

 

7 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

Input f(x)= sin(Pi*x/180) 

Input x= 30 

f(x)= 0.5 

 

Input f(x)= e^x 

Input x= 2 

f(x)= 7.38905609893065 

 

In the first example, the user evaluates the sine function, when its argument measured in 

degrees. For the argument x=30 degrees the resulting value is 1/2. In the second example the 

exponent function is evaluated for the argument x=2. 

 

Let’s now consider the following examples of the input: 

 

Input f(x)= cos(Pi*x/180)) 

ESyntax: Syntax error. Unexpected paranthesis ). It must be preceeded by (. 

 

Input f(x)= cos(A*x) 

Input x= 2 

EVariableNotFound: Variable NOT found "A". 

 

In the first example, the syntax of the expression is not valid, namely, there is an extra 

paranthesis in the formula. This error found by the ‘CheckSyntax’ method. 

 

In the second example, the user tried to evaluate an expression, containing the ‘A’ variable. As 

such variable has not been added to the translator instance, the expression cannot be 

evaluated. 

 

This introductory section provided the example code for a simple application created with the 

ANALYTICS library. The following sections explain in details the programming concepts of the 

library and its advanced symbolic and mathematical features. 

 

 



 
 

 

 

8 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Basic concepts 

The main goal of ANALYTICS library is to provide the easiest way for mathematical expressions 

evaluation. This part explains main concepts, used in ANALYTICS library to work with math 

expressions and formulae. 

Expressions 

A mathematical expression is a syntactically correct sequence of elements. Syntax defined 

with basic math rules. Using these rules, we can evaluate the expression, simplify it or make 

other manipulations. A simple example of expression is ‘x+y’. If we know values of x and y we 

can calculate their sum. Generally, math expressions contain such elements as constants 

(literals), variables, operators, functions. The result of an expression calculation depends on 

elements the expression consists of. For example, if ‘x’ and ‘y’ are real numbers (variables) – 

the result of the given sum is a real number. If one of the variables is complex, the result will be 

complex too. 

Literals 

A literal is an unnamed constant value or a symbol, standing for ‘standard’ constant value. For 

example, in the expression ‘2*(x+y)’ – ‘2’ is a numerical literal. ANALYTICS library recognizes 

Real and Complex literals. 

  

Real literals can be written in simple and exponential form. Simple form examples: ‘100’, ‘1.23’, 

‘-45.67’1. Exponential form examples: ‘1.23E-3’, ‘-2.45e+5’. 

  

A complex literal consists of a real and an imaginary parts separated by ‘+’ or ‘-’ symbol. A real 

part is just a real literal. An imaginary part is a real literal plus imaginary unit symbol ‘I’. This 

symbol stands for the imaginary unit value. NOTE: there is no multiplication symbol between a 

real literal and the imaginary unit symbol. Complex literal examples: ‘I’, ‘-4I’, ‘2+3.2I’, ‘-2e2-

4.45I’, ‘2.45+I’, ‘-1.2e-3+4.5e+2I’. 

  

ANALYTICS library supports the following ‘standard’ constants: ‘e’ – Euler number; ‘π’, ‘Pi’ – Pi; 

‘∞’ – positive infinity. 

Variables 

A variable is a named value. The value of a variable can be changed during its lifetime. A 

variable name can include alphanumeric symbols only and underscore symbol (the first symbol 

can be letter only). The value of a variable can be of any type. The type of a variable cannot be 

changed during its lifetime. In mathematical expressions, a variable value is accessed via the 

                                                
1  Current FormatSettings Decimal separator is used in real literals. 



 
 

 

 

9 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

variable name. That is, in an expression the variable name stands for the current variable value. 

For example, let the variable ‘A’ is a real variable whose current value is ‘1.0’, then the result of 

‘A+1’ expression evaluation is ‘2.0’. Changing variable values allows calculation of the same 

expression for various variable values. 

Operators 

Syntactically an operator is a symbol standing for some mathematical operation. For example, 

in the expression ‘x+y’ the operator ‘+’ stands for the addition operation. From the functional 

point of view, an operator implements some action with data value(s), called operand(s), and 

returns the result of the operation. 

  

All operators can be divided into many categories. The most common used are unary and 

binary operators. An unary operator has one operand and can be prefix (stands in front of its 

operand) and postfix (stands behind its operand). An example of an unary prefix operator is the 

negation operator (‘-x’, ‘-’ is the operator, ‘x’ is the operand). An example of an unary postfix 

operator is the factorial operator (‘n!’, ‘!’ is the operator, ‘n’ is the operand). Binary operators 

have two operands and commonly stand between them. An example of a binary operator is the 

addition operator (‘x+y’, ‘+’ is the operator, ‘x’ and ‘y’ are the operands). 

  

Each operator has such attributes as precedence and associativity. The precedence 

determines the order of expression calculation. The operators with higher precedence applied to 

their operands before the operators with lower precedence. For example, in the expression 

‘x+y*z’ the first operation performed is the multiplication of ‘y’ and ‘z’, then the sum of ‘x’ and the 

product’s result is calculated. This is because the ‘*’ operator is of higher precedence than the 

‘+’ is. The order of calculation can be changed by using parentheses ‘()’.  The associativity 

determines how operators with the same precedence are grouped in an expression. Let us 

consider the expression ‘2^3^4’ (where the ‘^’ operator stands for the power). The result of the 

expression evaluation depends on how it is interpreted: ‘(2^3)^4=8^4’ or ‘2^(3^4)=2^81’. Left 

associativity means that operators are grouped from left to right (the first case), right 

associativity means grouping from right to left (the second case). 

  

ANALYTICS library supports all basic algebraic operators (‘+’, ‘-’, ‘*’, ‘/’, ‘^’), logical operators 

(‘&’, ‘\’, ‘¬’), relational operators (‘>’, ‘<’, ‘≡’, ‘≠’ etc.). There are also some special operators 

those can be used in advanced cases. Total list of defined operators can be found in Appendix 

A. 

   

ANALYTICS introduces the following syntax rules for the operators: 

- Algebraic binary operators have precedence as determined with common math rules. 
- Relational operators (binary) have lower precedence than algebraic ones. 
- Binary logical operators have lower precedence than relational ones. 
- Arrow operators (binary) have higher precedence than power operator. 
- Unary operators have higher precedence than binary operators. 



 
 

 

 

10 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

- Postfix operators have higher precedence than prefix operators. 
- Binary operators are all left-associative. 
 

All supported operators can be overloaded (defined) for any operand types. The following 

restrictions are applied for operator overloading: 

- New operators cannot be defined. 
- Number of operands cannot be changed. 
- Attributes of operators (precedence and associativity) cannot be changed. 

Functions 

Syntactically a function is a named operation with some data value(s) called argument(s). An 

example is the sine function ‘sin(x)’, where ‘sin’ is the name of the function and ‘x’ is the 

argument. The function name determines what operation is performed with the argument. 

  

In addition to arguments, a function can have parameters. For example, the logarithm of ‘a’ to 

base ‘b’ function logb(a) has one argument ‘a’ and one parameter ‘b’. Semantically parameters 

have the same meaning as arguments have – data values on which the operation is performed. 

Syntactically (in ANALYTICS library) parameters are enclosed in braces ‘{}’. 

 

General rules for functions: 

- Function arguments are enclosed in parentheses ‘()’. 
- Function parameters are enclosed in braces ‘{}’. 
- Function arguments and parameters are separated by spaces ‘ ’. 
- If some function has no parameter, parameter braces are not mandatory. 
- Argument parentheses are always mandatory. 
- A function can have many parameters and/or many arguments. 
- There can be many functions with the same name but different number and/or type of 

arguments and/or parameters. 
 
Some examples of syntactically correct function expressions: 

max(a b) – maximum function of two arguments; 

random() – random function with no arguments; 

log{b}(a) – logarithm of ‘a’ to base ‘b’ (one parameter ‘b’, one argument ‘a’); 

P{n m}(x) – associated Legendre function (two parameters ‘n’ and ‘m’, one argument ‘x’). 

 

ANALYTICS library contains many predefined functions of real and complex arguments. Total 

list of basic functions can be found in Appendix A. 

Indexing 

ANALYTICS library allows using indexing in expressions. Indexing is a method of accessing 

separate elements of a structured data. An example of a structured data is the array. Each array 

element has an unique index (or several indexes) by which the element value is accessed.  



 
 

 

 

11 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

By syntax rules of ANALYTICS library, the indexes are written in square brackets ‘[]’. For 

example, the i-th array element can be written as ‘A[i]’. For multiple indexes, each index must 

be written in separate brackets. For example, a matrix element can be written as ‘M[i][j]’.  

ANALYTICS syntax rules allow slicing implementation. Slicing is a method to get some part of 

a structured data, which is also a structure. Slicing syntax is implemented via index omitting. Let 

we have a matrix (two-dimensional array) ‘M’. Then, according to the slicing syntax, ‘M[i][]’ is 

the i-th matrix’ row and ‘M[][j]’ is the j-th matrix’ column. The ‘trail’ indexes can be omitted with 

their brackets. Thus, the matrix’ row can be written as ‘M[i]’ (which is equivalent to ‘M[i][]’ of the 

previous example). 

 

General indexing rules: 

- Indexing can be applied to variables only, the variables must implement indexing interface. 
- Many indexes allowed, each index must be enclosed in separate brackets ‘[]’. 
- All index expressions must return values of real type only, the values must be close to 

integer numbers. 
- Some indexes can be omitted that means slicing, slicing can only be applied to variables 

those implement slicing interface.2 
 

ANALYTICS library contains predefined array variable types. The array variables can contain 

data of any type and have default indexing and slicing implementation for arrays up to the third 

dimension. 

Arrays 

ANALYTICS library supports using array expressions. Array expression is a structured 

expression that contains other expressions as its components. An example of array expression 

is vector – one-dimensional set of ordered items. Array expressions has the dimension – the 

number of indexes by which the components of the array are ordered.  

By syntax rules of ANALYTICS library, the array expression must be enclosed by square 

brackets ‘[]’ and its components are separated by spaces. For example, the vector expression 

with three components can be written as ‘[i+1 j*2 k]’. For multiple dimensions, the components 

for each dimension must be written in separate brackets. For example, the 2x3 matrix 

expression can be written as ‘[[a b c] [d e f]]’. Only rectangular array expressions allowed.  

 

General rules for array expressions: 

- Array expressions enclosed with square brackets. 
- Each dimension of array expression must be enclosed with its own brackets. 
- Array expression’s components are separated by spaces. 
- Only rectangular array expressions allowed. 
 

ANALYTICS library supports vector and matrix expressions for boolean, real, and complex 

components. 

                                                
2  About indexing and slicing implementation see the ‘Extending ANALYTICS’ part. 



 
 

 

 

12 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Syntax summary 

- Any math expression can contain literals, arrays, variables, operators, functions and 
indexing. 

- Real and complex literals supported. Some common named math constants supported, like 
Euler number, Pi. 

- Variable names can include only alphanumeric symbols and underscore symbol. 
- Only predefined operators can be used in expressions, new operators cannot be defined. 
- Operations are performed in order of the precedence. Operations order can be changed 

using parentheses ‘()’. 
- Functions have parameters and arguments. Parameters are enclosed in braces ‘{}’, 

arguments are enclosed in parentheses ‘()’. Parameters and arguments are separated by 
spaces ‘ ’. 

- Indexing can only be applied to variables those implement special interface. Indexes are 
enclosed in brackets ‘[]’ (each index in separate brackets). Slicing is implemented by 
omitting some of the indexes. 

- Array expressions enclosed with square brackets for each dimension. Array components are 
separated by spaces. Only rectangular arrays allowed. 

 
Some examples of syntactically correct formulae: 

‘sin(b)^2+cos(b)^2’     : Pythagorean trigonometric identity formula. 

‘sin(a)*cos(b)+cos(a)*sin(b)’               : Sine of angle sum formula. 

‘log{c}(a)+log{c}(b)’     : Logarithm of product formula. 

‘A[n]*r^n*sin(n*a)+B[n]*r^-n*cos(n*a)’   : Laplace's equation solution in polar coordinates.  

‘A[n]*sinh(n*Pi/L*(x-a))*sin(n*Pi/L*(y-b))’  : Laplace's equation solution in Cartesian system. 

‘[[a b -1] [0 c -c]]×[sin(a-1) e^b a*b]’                : Matrix-Vector multiplication. 

 



 
 

 

 

13 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Using ANALYTICS 

The main functionality of ANALYTICS library is evaluation of mathematical expressions. The 

functionality realized in the Translator3 class. This class encapsulates a set of variables and a 

set of operations (registered operators and functions). Thus, it can parse string expressions and 

calculate their values for current variable values. 

 

The Translator class is not static. Various instances can have different operation and variable 

sets. Therefore, to use the functionality an instance of the class must be created. Hereinafter it 

is supposed that the instance ‘translator’ of the Translator class has been created 

 

var 

  translator: TTranslator; 

  … 

begin 

  translator:= TTranslator.Create; 

  … 

Working with variables 

The Translator class has a complete interface to add and remove variables and to change their 

values. 

 

To add a variable use the Add method. This method has many overloads to add variables of 

different types. The following code examples demonstrate the process of variable addition: 

 

- adding Real variable 
 

var 

  name: string; 

  v: TFloat; 

begin 

  name:= 'a'; 

  v:= 1.0; 

  translator.Add(name, v); 

 

… 

 

- adding Real array variable 
 

var 

                                                
3  Hereinafter in the text (not code) prefix ‘T’ is omitted for all class names. 



 
 

 

 

14 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  name: string; 

  v: TArray<TFloat>; 

begin 

  name:= 'A'; 

  v:= TArray<TFloat>.Create(-1.0, 0.0, 1.0, 2.0); 

  translator.Add(name, v); 

… 

 

There are two ways to change variable values. 

1. If the direct reference to a variable is available, the value can be changed using its Value 
property.  
 
var 

  name: string; 

  a: TFloat; 

  v: TVariable; 

begin 

  … 

  name:= 'a'; 

  a:=1.0; 

  v:= TRealVariable.Create(name, a); 

  translator.Add(v); 

  // some code here... 

  v.Value:=TValue.From<TFloat>(2.0); // changing variable value 

                                     // by direct reference 

… 

 

2. If there is no direct reference to a variable, the reference can be got with Get method of the 
Translator class (using variable’s name or index). 
 
var 

  x, y: TVariable; 

begin 

  … 

  x:=translator.Get('x');    // get the reference by name 

  x.Value:=TValue.From<TFloat>(2.0); // changing variable value 

                                     // by got reference 

  // some code here... 

  y:=translator.Get(1);     // get the reference by index 

  y.Value:=TValue.From<TFloat>(3.0); // changing variable value 

                                     // by got reference 

  … 

 



 
 

 

 

15 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

NOTE about changing variable values: do not change the type of a variable value. The value 

type is determined at the moment of the variable creation and must not be changed during its 

lifetime. In spite of the property Value of the Variable class is of type TValue (from standard 

Delphi unit RTTI), when setting new variable value its type must be the same as the initial type 

is. 

 

Use the Delete method of the Translator class to remove variables. Name or index of the 

variable can be used for this purpose. Use the DeleteAll method to remove all variables. The 

following code demonstrates the process of variable deleting. 

 

… 

translator.Delete('x'); // deleting variable with 'x' name 

// some code here... 

translator.Delete(1); // deleting variable with index 1 

f:=translator.Calculate('u+z').AsType<TFloat>; 

// some code here... 

translator.DeleteAll; // removing all variables 

… 

Evaluating expression values 

The simplest way to evaluate an expression value is using the Calculate method of the 

Translator class. The following code demonstrates this case. 

 

var 

  r: TFloat; 

  c: TComplex; 

  f1, f2: string; 

begin 

  … 

  f1:= 'sin(a)^2+cos(a)^2'; 

  r:=translator.Calculate(f1).AsType<TFloat>; 

  f2:= 'exp(z)-I*sin(z)'; 

  c:=translator.Calculate(f2).AsType<TComplex>; 

  … 

 

In the code above, it is supposed, that there are the variables “a” and “z” in the translator’s 

variable set. The variable “a” is of real type and the variable “z” is a complex one.  

Note, that the return type of the Calculate method is TValue and therefore it can return the 

value of any type, depending on the expression contents. So, the returned value must be 

directly casted to the required type for using in the subsequent code. 

 



 
 

 

 

16 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

The Calculate method can be rather slow. It parses string expression and creates internal 

structure to calculate result value. Parsing methods are not optimized for speed. They are 

optimized for strong object oriented structuring and easy extensibility. Thus, the usage of the 

Calculate method is recommended for single expression evaluation only. 

  

Another case of formula evaluation comes from the need to calculate one single expression for 

several values of the variables. In this case, it is recommended to use the following algorithm: 

1. Create a Formula object for the string expression. 
2. Change the variable values. 
3. Calculate the formula value for the current variable values. 
4. Return to the point 2 until all values calculated. 

 

The Formula class intended for internal program representation of parsed mathematical 

expressions. This class contains information about the operations to evaluate the expression 

and implements the final evaluation algorithm.  

The following code demonstrates how to use the Formula class for calculation of a table of 

function values for various argument values. 

 

var 

  s: string; 

  f: TFormula; 

  v: TFloat; 

  x: TVariable; 

  ax, ay: TArray<TFloat>; 

  i: Integer; 

begin 

  … 

  x:=translator.Get('x');  // getting reference to the variable 

  s:= '2*(sin(x)+cos(x))'; 

  f:=translator.BuildFormula(s); // parsing string expression 

 

  SetLength(ax, 100); 

  SetLength(ay, 100); 

  v:=0.0; 

  for i:=0 to 99 do 

  begin 

    ax[i]:=v; 

     // setting new variable value 

    x.Value:=TValue.From<TFloat>(v);   

    // calculating formula value for current x value 

    ay[i]:=f.Calculate.AsType<TFloat>;  

    // incrementing the value by step 

    v:=v+0.01; 



 
 

 

 

17 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  end; 

  … 

 

In the code above, the string expression is parsed only once using the BuildFormula method. It 

returns an instance of the Formula class. Then the instance is used for evaluating the built 

formula many times for various ‘x’ values. 

Checking expression syntax 

In all above code examples, it was supposed that the string expressions were syntactically 

correct. End user applications, of course, must check the syntax correctness of user defined 

expressions. The Translator class provides methods to check syntax of expressions before 

calculation. 

 

The syntax correctness checking includes three steps. The first step is checking syntax rules, 

those do not need the expression to be parsed. For example, the parentheses in a 

mathematical expression must be pairwise and it can be checked without expression 

decomposition. Such syntax rules must be checked before any calculation by the CheckSyntax 

method of the Translator class. This function returns true if all rules are fulfilled and throws an 

exception if not.  

 

The second step is to check, that an expression can be decomposed into a sequence of known 

expression types. For example, the string ‘sin(x+1)’ can be decomposed as a function with 

name ‘sin’ and one argument ‘x+1’. The argument is itself a known expression – addition 

operation for constant ‘1’ and variable with name ‘x’. This step does not need to know that the 

function ‘sin’ is defined or the variable ‘x’ exists. 

 

The third step checks that all elements in decomposed expression are defined. It means that all 

variables must exist. Moreover, this step checks the types of all intermediate results to be sure, 

that all operations can be performed. For example, in given expression, if variable ‘x’ is real, the 

operator ‘+’ must be defined for real operands and the function ‘sin’ with one real argument 

must be registered. 

 

The second and the third steps of syntax checking implemented in the BuildFormula method of 

the Translator class. This method returns built formula object, if the string expression is correct, 

and throws an exception if not. 

 

The following example code demonstrates common syntax checking algorithm: 

 

var 

  s: string; 

  f: TFormula; 



 
 

 

 

18 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  r: TFloat; 

begin 

  … 

  s:= '2*(sin(x)+cos(x))'; 

  try 

    // the first step of syntax checking 

    if translator.CheckSyntax(s) then 

    begin 

      // the second and the third steps of syntax checking 

      f:=translator.BuildFormula(s); 

      if Assigned(f) then 

      begin 

        // here the formula calculation code 

        // using f instance. 

        r:=f.Calculate.AsType<TFloat>; 

      end; 

    end; 

  except 

    on ex: Exception do 

    begin 

      // here the exception handling code. 

    end; 

  end; 

… 

 

Analytical derivative calculation 

One of the advanced features of ANALYTICS library is analytical (symbolic) calculation of 

derivatives for mathematical expressions. The Translator class contains the following method: 

 

function Derivative(const formula, vName: string): string; 

 

This method calculates analytical derivative of the formula by variable vName. The result is the 

symbolic representation of the derivative. 

 

Here are some example codes of analytical derivative calculation: 

 

var 

  formula, derivative: string; 

begin 

  … 



 
 

 

 

19 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

  // #1 

  formula:= 'A*ln(x)*sin(2*x)'; 

  derivative:= translator.Derivative(formula, 'x'); 

  // derivative = 1/x*A*sin(2*x)+cos(2*x)*2*A*ln(x) 

 

  // #2 

  formula:= 'e^(1-2*x)'; 

  derivative:= translator.Derivative(formula, 'x'); 

  // derivative = e^(1-2*x)*(-2) 

 

  // #3 

  formula:= '(x+1)^(x-1)'; 

  derivative:= translator.Derivative(formula, 'x'); 

  // derivative = ln(x+1)*(x+1)^(x-1)+(x-1)*(x+1)^(x-2) 

  … 

 

The examples show that the calculation is very simple. 

Notes about derivative calculations: 

1. The formula parameter in the Derivative method must be syntactically correct. The 
correctness can be checked by the CheckSyntax method. 

2. The Derivative method does not require that the ‘vName’ variable (or any other) is existing. 
The method manipulates variable names only, not their values. 

3. The Derivative method does some simplification before and after calculation (see the next 
part). The result expression for the derivative is syntactically and mathematically correct. 

4. Not all operators supported for derivative calculations. For example, ‘!’ operator not 
supported, because there is no derivation rule for it. However, these operators can be used 
in expressions and the derivative successfully evaluated if the operands of such operators 
do not depend on the variable. 

5. It is not possible to introduce new derivation rules for operators (without modifying the core 
library). 

6. Most of the basic special and transcendental functions supported for derivative calculation. 
Derivation rule can be introduced for any function (see below). 

 
There are also the following overloads of the method: 
 
function Derivative(const formula, vName: string; order: integer): 

string; 
 

function Derivative(const formula: string; vNames: TArray<string>): 

string; 

 
The first method calculates symbolic expression for the derivative of specified order. The 
second method evaluates mixed derivative by specified variables. All notes about derivative 
calculations also applied for the methods. 



 
 

 

 

20 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Analytical integration 

Another advanced feature of ANALYTICS library is symbolic integration of mathematical 

expressions. The Translator class contains the following method: 

 

function Integral(const formula, vName: string): string; 

 

This method calculates indefinite integral of the formula by variable vName. The result is the 

symbolic expression of the integral. 

 

Here are some examples of symbolic integration: 

 

var 

  formula, integral: string; 

begin 

  … 

 

  // #1 

  formula:= '(x+1)^(1/3)+1/(2-x)^(2/3)'; 

  integral:= translator.Integral(formula, 'x'); 

  // integral = 3/4*(x+1)^(4/3)-(2-x)^(1/3)*3 

 

  // #2 

  formula:= '(e^x+e^-x)/2+A*B^x'; 

  integral:= translator.Integral(formula, 'x'); 

  // integral = 1/2*(e^x-e^-x)+A*B^x/ln(B) 

 

  // #3 

  formula:= '2*sin(x)-B*cos(-x/2)+tan(x)'; 

  integral:= translator.Integral(formula, 'x'); 

  // integral = -2*cos(x)+B*sin(-x/2)*2-ln(cos(x)) 

  … 

 

Notes about analytical integration: 

7. The formula parameter in the Integral method must be syntactically correct. The 
correctness can be checked by the CheckSyntax method. 

8. The Integral method does not require that the ‘vName’ variable (or any other) is existing. 
The method manipulates variable names only, not their values. 

9. The Integral method does some simplification before and after evaluation (see the next 
part). The result symbolic expression for the integral is syntactically and mathematically 
correct. 

10. Not all operators supported for the integration For example, ‘!’ operator not supported, 
because there is no integration rule for it. However, these operators can be used in 



 
 

 

 

21 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

expressions and the integral successfully evaluated if the operands of such operators do not 
depend on the variable. 

11. It is not possible to introduce new integration rules for operators (without modifying the core 
library). 

12. Most of the basic special and transcendental functions supported for symbolic integral 
evaluation. Integration rule can be introduced for any function (see below). 

13. If some integral cannot be evaluated, the exception will be thrown. 
 
Symbolic expression of definite integral can be found with the following method: 
 
function Integral(const formula, vName, x1, x2: string): string; 

 
where ‘x1’ and ‘x2’ are the first and the second limits of the integration (they must be 
syntactically correct math expressions). The method’s implementation based on the Newton–
Leibniz axiom. 
 
Here are some examples of definite integral calculation: 

 

var 

  formula, integral, x1, x2: string; 

begin 

  … 

 

  // #1 

  formula:= 'A*e^x-sin(x)/2'; 

  x1:= ‘Pi’; 

  x2:= ‘sin(y)’; 

  integral:= translator.Integral(formula, 'x', x1, x2); 

  // integral = A*e^sin(y)+1/2*cos(sin(y))-A*e^π-1/2*cos(π) 

 

  // #2 

  formula:= '2*x^2'; 

  x1:= ‘3’; 

  x2:= ‘5’; 

  integral:= translator.Integral(formula, 'x', x1, x2); 

  // integral = 196/3 

  … 

 
NOTE: The limits of the definite integral must not depend on the integration variable. 
 
The value of definite integral can be evaluated with the following method: 
 
function Integrate(const formula, vName, x1, x2: string): TValue; 

 
For example, the following code evaluates the value of an integral: 



 
 

 

 

22 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
var 

  formula, x1, x2: string; 

  integral: TValue; 

  i: Tfloat; 

begin 

  formula:= '2*x^2'; 

  x1:= ‘3’; 

  x2:= ‘5’; 

  integral:= translator.Integrate(formula, 'x', x1, x2); 

  i:= integral.AsType<TFloat>(); 

  // i = 65.3333333333333 

  … 
end; 

 
NOTE: For evaluating definite integral, all variables in the final symbolic expressions must be 
defined in the Translator instance. 

Symbolic expression simpification 

Another feature of ANALYTICS library is symbolic expression simplification. The Translator 

class contains the following method: 

 

function Simplify(const value: string): string; 

 

This method simplifies the input symbolic expression and returns the simplified value as the 

result. The following main simplifications supported: 

- Remove all zero operands from sum expressions and all unit operands from product and 

power expressions. 

- Reduce minus operation pairs. 

- Reduce same expression operands in numerator and denominator. 

- Collect same expression operands in sum. 

- Reduce real (nonstandard) constants in sum expressions. 

- Reduce real (nonstandard) constants in product expressions. 

- Reduce real (nonstandard) constants in power expressions. 

Other auxiliary simplifications implemented for rare, nonstandard cases. 

 

Here are some example codes of analytical expression simplifications: 

 

var 

  formula, simplified: string; 

begin 

  … 



 
 

 

 

23 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

  // #1 

  formula:= '(A-13)*(27/4)*(-5e-1)/(9/5)/x'; 

  simplified:= translator.Simplify(formula); 

  // simplified = -15/8*(A-13)/x 

 

  // #2 

  formula:= '2*(x-1)*(3/(2*(x-1)))'; 

  simplified:= translator.Simplify(formula); 

  // simplified = 3 

 

  // #3 

  formula:= 'A*sin(Pi+1-(x-1))+B*ln(6*e/(3*x))'; 

  simplified:= translator.Simplify(formula); 

  // simplified = A*sin(π-x+2)+B*ln(2*e/x) 

  … 

 

NOTE: the standard constants such as the Euler number and Pi remains named literals and not 

applied for simplification process. 

Implicit operations in symbolic expressions 

Symbolic expressions in ANALYTICS library can contain implicit operations. Such operations 

suppose ‘implicit’ manipulation with the expression, before it is evaluated or other operation 

implemented. Examples of implicit operation are derivative and integral. 

Implicit derivative operator has the following syntax: 

 

∂<supescript>expression/∂V1<supescript>∂V2<supescript>…∂Vn<supescript> 

 

where ‘∂’ is the derivative operator symbol; superscript is a superscript digit, specifying the order 

of differentiation; <> means that the element is not obligatory; expression – symbolic 

expression, operand of the differentiation operation; ‘/’ – division operator symbol; V1, V2, .. Vn 

– names of the variables for differentiation. 

 

Implicit derivative operator implements partial differentiation of specified orders on the operand 

by specified variables. The order of the differentiation defined by one digit only, so the orders 

supported are 1..9. The total order of the derivative (superscript before the operand expression) 

must be equal to the sum of the orders of variables.  

 

NOTE: Implicit derivative operator has precedence, equal to the precedence of the division 

operation, so, it must be enclosed with parentheses where required by syntax rules. 

 



 
 

 

 

24 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

There are some examples of the syntactically correct expressions with the implicit derivative 

operator: 

1. ∂sin(x)/∂x 

2. ∂²(x^2*sin(a*x))/∂x² 

3. ∂²(y^2+1-e^-x)/∂x∂y 

4. ∂sinh(x*y)/∂x-∂ln(y/x)/∂y 

5. (∂³F/∂x³)/3!*x^3 

 

Symbolic expressions with implicit operations can be used as other expressions: evaluated, 

simplified, calculating symbolic derivative and so on. Evaluation of the expressions done for the 

result expression, after the implicit operation. Here is an example code for calculating value of 

the expression, containing implicit derivative operator: 

 

var 

  f: string; 

  v: TValue; 

begin 

  f:= 'e^(b*x)*(∂y^2/∂y)-∂sin(a*x)/∂x'; 

  v:= translator.Calculate(f); 

  // code for using ‘v’ value... 

end; 

 

The code is the same as for calculating values of any other expression – we do not need to 

calculate symbolic expressions for derivatives explicitly and substitute them into final 

expression. 

 

The advantage of using implicit operation is that there is no need to do the operation before the 

evaluation – it is done implicitly by the evaluation system. The implicit operations allows write 

some mathematical formulae in shorter and compact way, without including in the formula 

‘explicit’ results of the implicit operation. 

 

In the case where explicit expression required, there is the ‘Explicit’ method of the Translator 

class for evaluating the symbolic expression: 

 

function Explicit(const value: string): string; 

 

The method evaluates all implicit operations in the ‘value’ expression and returns explicit 

symbolic expression. The code for the case is the following: 

 

var 

  f, ef: string; 

begin 



 
 

 

 

25 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  f:= 'e^(b*x)*(∂y^2/∂y)-∂sin(a*x)/∂x'; 

  ef:= translator.Explicit(f); 

  // code for using explicit symbolic expression ‘ef’... 

end; 

 

The result explicit expression for the example is ‘e^(b*x)*(2*y)-cos(a*x)*a’. 

 

NOTE: for getting explicit symbolic expression there is no need the variables in the expression 

being added to the Translator, the ‘Explicit’ method works with symbols, not with values. The 

‘Calculate’ method requires the variables, because it evaluates values of the expressions. 

 

Applying the ‘Derivative’ method of the Translator class for an expression with implicit 

derivative operators implemented with some features. Let us consider an example of evaluating 

symbolic derivative for two expressions with implicit derivative operators: 

 

var 

  f1, f2, df1, df2: string; 

begin 

  f1:= 'a*x^2+∂²(sin(a*x)*e^(b*y))/∂x∂y'; 

  df1:= translator.Derivative(f1, 'x'); 

 

  f2:= 'a*x^2+∂²(sin(a*x)*e^(b*y))/∂a∂b'; 

  df2:= translator.Derivative(f2, 'x'); 

 

  // code for using symbolic derivatives ‘df1’ and ‘df2’... 

end; 

 

Result symbolic expressions for derivatives are the following df1=’ 

a*2*x+∂³(sin(a*x)*e^(b*y))/∂x²∂y’ and df2=’a*2*x+∂²(cos(a*x)*a*e^(b*y))/∂a∂b’. As can be seen 

from the result expressions, derivative operation applied for implicit derivative with the following 

rules: 

- If the implicit operation contains derivative by the same variable – just derivative order in the 

implicit operation increases. 

- If the implicit operation does not contain derivative by the same variable – implicit operation 

remains the same and the derivative evaluated for the operand (by the rules of analysis, 

derivative operations are distributive and their order of application can be exchanged). 

 

Implicit integral operator has the following syntax: 

 

∫expression∂V<{L1 L2}> 

 



 
 

 

 

26 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

where ‘∫’ is the integral operator; ‘∂’ is the derivative operator symbol; expression – symbolic 

expression, integrand of the operation; V – integration variable; L1, L2 – limits of the integration, 

must not depend on the integration variable, can be omitted (indefinite integral). 

 

NOTE: Implicit derivative operator has precedence, equal to the precedence of the 

multiplication operation, so, it must be enclosed with parentheses where required by syntax 

rules. 

 

There are some examples of the syntactically correct expressions with the implicit integral 

operator: 

1. ∫(A*sin(x/2)+e^-x)∂x 

2. ∫x^sin(y)∂x 

3. ∫(A*x^2-2*x+1)∂x{-2 4} 

4. ∫e^(-2*x+n)∂x{a/2 cos(b)} 

 

NOTE: Some symbolic operations with implicit integral operator, for example derivative, require 

explicit expression of the operation. So, symbolic integration will be done in this case (see 

above). 

 

Implicit sequence operator has the following syntax: 

 

Sexpression{V=MIN:MAX} 

 

where ‘S’ is the sign of the sequence operator; expression – symbolic expression, operand of 

the sequence operation; ‘V’ is the sequence variable; MIN, MAX – limits of the sequence, must 

not depend on the sequence variable. 

 

The following sequence operators are supported: ∑ - the sum; ∏ - the product. 

 

There are some examples of the syntactically correct expressions with the implicit sequence 

operators: 

1. ∑(i^2){i=0:5} 

2. ∏(x^i){i=-K:N+1} 

3. ∑A[i-1]{i=1:4} 

4. ∑(∑B[i][j]{j=0:2}){i=0:3} 

 

The algorithm of the sequence evaluation is the following:  

- evaluate the limit expressions (their values must be integer, and the following condition must 

be satisfied MIN<=MAX); 

- sequentially assign values from minimum to maximum to the sequence variable; 

- evaluate the operand for every variable value;  

- apply the operation for the values of the operand. 



 
 

 

 

27 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

NOTE: For evaluating the value of the sequence expression the sequence variable must exist in 

the current context (Translator instance). 

 

NOTE: The implicit sequence operator has the same precedence as unary prefix ones. Thus, if 

its operand expression is of lower precedence, the operand must be enclosed in parentheses. 

 

The implicit sequence operators support symbolic derivatives and integrals. The derivative 

(integral) of the sum is the sum of derivative (integral). For product sequence the explicit 

expression of the operation is used to evaluate symbolic derivatives and integrals. 

Functional operators 

Functional operators are like ‘user defined’ functions. They allow defining an expression of the 

function, depending on some variables, and then using the name of the function in different 

symbolic expressions with different arguments. For example, one can define the functional 

operator for general square polynomial: F(x a b c)=a*x^2+b*x+c and then use the operator in 

expressions with different arguments F(sin(x) a b -1), F(y 2 -4 0). The former function is 

equivalent to ‘a*sin(x)^2+b*sin(x)-1’ and the latter gives ‘2*y^2-4*y’. Functional operators can 

be used to manipulate easily with some predefined, frequently used expressions. 

For using functional operators, they must be added to the translator first. This can be done with 

the method ‘AddFunction’ of the Translator class:  

 

function AddFunction(const aName, f: string; vars: TArray<string>): 

boolean; 

 

where ‘aName’ is the name of the function, used in expressions, must be syntactically valid 

name; ‘f’ is the formula of the function; ‘vars’ is the array of variable’s names the function 

depends on (arguments). 

 

Here is the example code of defining some functional operators: 

 

translator.AddFunction('F', 'x^2+1', TArray<string>.Create('x')); 

translator.AddFunction('SH', '(e^x-e^-x)/2', 

TArray<string>.Create('x')); 

translator.AddFunction('SQRE', 'a*x^2+b*x+c', 

TArray<string>.Create('a', 'b', 'c', 'x')); 

 

Rules for adding functional operators: 

- Any functional operator must have unique name (functional operators with the same name 

and with different number of variables not allowed). 

- Variables of a functional operator must have unique (for the operator) and valid names. 



 
 

 

 

28 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

- Functional operator formula must be syntactically correct expression and can contain 

literals, variables, operators, functions (including other functional operators). The formula 

can contain as functional variables as ‘free’ variables, not in the variable names. The 

variables in the formula have not to exist in the Translator – the expression manipulates 

with symbolic data, not with the values. 

- The  functional formula must not contain indexing expressions with the functional variables. 

 

Functional operators can be deleted with the ‘RemoveFunction’ method of the Translator 

class using the name of the function. 

 

Functional operators used in symbolic expressions as other functions – using the name of the 

function with arguments in parentheses. Functional operators do not allow parameter interface, 

only arguments. When value of an expression with functional operators evaluated - the actual 

arguments substituted to the formula and the final value calculated.  

 

Here is an example code of evaluating simple formula with functional operators: 

 

var 

  f: string; 

  v: TValue; 

begin 

  translator.AddFunction('S', 'Pi*r^2', TArray<string>.Create('r')); 

 

  f:= 'S(a)-S(a/2)'; 

  v:= translator.Calculate(f); 

  // using the ‘v’ value…  

end; 

 

First we introduced the function ‘S’ with one argument ‘r’ which calculates area of a circle with 

specified radius value ‘Pi*r^2’. Then we used the function in the formula to calculate area of a 

ring with outer radius ‘a’ and inner radius ‘a/2’. The example shows that functional operators are 

useful for defining functions that used frequently in expressions with different arguments. 

 

Functional operators can be used with any other expressions, including implicit operations 

(derivatives). One allowed defining functional operators with functional arguments and so on. 

Here is the code example of a more complicated use-case of functional operators: 

 

var 

  f: string; 

  v: TValue; 

begin 



 
 

 

 

29 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  translator.AddFunction('Series', 

'1+(∂F/∂x)*x+(∂²F/∂x²)/2!*x^2+(∂³F/∂x³)/3!*x^3+(∂⁴F/∂x⁴)/4!*x^4', 

TArray<string>.Create('F', 'x')); 

 

  f:= ' Series(e^y y)'; 

  v:= translator.Calculate(f); 

  // using the ‘v’ value…  

end; 

 

The introduced function ‘Series’ is the Tailor’s series with degrees up to fourth. The functional 

operator has two arguments – function ‘F’ and variable ‘x’. When we use the functional operator 

in expressions, we can call it with different arguments. The first argument must be a function or 

an expression (‘e^y’ in the example code). It is used to evaluate implicit derivatives in the series 

formula. The second argument must be a variable name (‘y’ in the example code) because it is 

used in the denominator of the implicit derivative expressions. 

 

The substitution of actual arguments to the functional operators can be done with the ‘Explicit’ 

method (see ‘Implicit operations in symbolic expressions’). Let us consider the following 

code: 

 

var 

  f, ef: string; 

begin 

  translator.AddFunction('Laplace', '∂²F/∂x²+∂²F/∂y²', 

TArray<string>.Create('F', 'x', 'y')); // 1 

 

  f:= 'Laplace(A*sin(x)*y^2+B*cos(x)*e^-y x y)'; 

  ef:= translator.Explicit(f); // 2 

  ef:= translator.Simplify(ef); // 3 

  // using ‘ex’ symbolic expression 

end; 

 

Here we introduced the Laplace’s operator with two variables ‘x’ and ‘y’ (line 1) and then used 

the operator for evaluating symbolic formula for some expression (line 2). For the expression in 

the example ‘A*sin(x)*y^2+B*cos(x)*e^-y’ we get expression for ‘ef’: ‘(-A*sin(x)*y^2-

B*cos(x)*e^-y)+(A*sin(x)*2+B*cos(x)*e^-y)’. That is the ‘Explicit’ method substituted the 

expression into Laplace’s formula and evaluated symbolic derivatives. Then the symbolic 

expression was simplified (line 3) and the final expression is: ‘-A*sin(x)*y^2+A*sin(x)*2’. Note 

that there is no ‘B’ variable in the final expression because the Laplacian for the ‘B*cos(x)*e^-y’ 

is 0. 

 



 
 

 

 

30 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Explicit string expressions manipulation 

ANALYTICS library allows ‘explicit’ manipulations with ‘string expressions’. Let there are two 

strings inside the program, containing mathematical expressions ‘1-2*x’ and ‘sin(x)+2’. And let 

there is need to get the expression which is the multiplication of the given ones. This task can 

be done just manipulating with Delphi strings. For the above example strings, the following 

steps must be done: enclose the first expression into parentheses, enclose the second 

expression into parentheses; concatenate the result strings with the ‘*’ operator. The algorithm 

seems to be simple, but it becomes more and more complicated with the number of operations 

increase. 

 

The Expression structure simplifies such string manipulations. This structure type is just ‘simple 

string wrapper’ (pic. 3.1). It contains explicit conversion operators – from string and to string. In 

addition, it overloads operators for algebraic operations ‘+’, ‘-’, ‘*’, ‘/’. This implementation allows 

manipulating string expressions in ‘natural’ manner. 

 
Picture 3.1. Expression record. 

 

Main advantages of using the Expression structures are demonstrated in the following example 

code: 

 

var 

  f1, f2, r1, r2: string; 

  e1, e2, e: TExpression; 

begin 

  … 

  f1:='2*x-1'; 

  f2:='x+1'; 

  e1:=TExpression(f1); 



 
 

 

 

31 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  e2:=TExpression(f2); 

  … 

  e:=e1*e2; 

  r1:=string(e); // r1='(2*x-1)*(x+1)' 

  … 

  e:=TExpression.Power(e2, e1); 

  r2:=string(e); // r2='(x+1)^(2*x-1)' 

  … 

end; 

 

In the example above two expression created e1 and e2 (by explicit conversion from string). 

Then some manipulations done to get new expressions. The manipulations implemented in 

‘natural’ manner (for example e1*e2) using overloaded operators. The result expressions are 

syntactically correct – the sum expressions are enclosed in parentheses to follow the operator 

precedence. 

NOTE about using the Expression structure: all string values to manipulate with the 

Expression record must be syntactically correct; else, an exception will be thrown. The syntax 

can be checked by the CheckSyntax method. 

Managing registered operators, functions, derivatives and integrals 

ANALYTICS library uses the Delphi reflection mechanisms (RTTI information) to find and 

register the classes of analytical operations: operators, functions, derivatives. The search is 

made over the current RTTI context, so the set of the registered operations depends on the 

classed loaded into the context at the time. The operations registration is made for each 

instance of the Translator class in the constructor call.  

There are two different cases of building applications: with run-time packages and without them. 

The first case implies that there are different built packages with analytical operations, so called 

extensions (see the Introduction part). In this case, the set of registered operations depends 

on the loaded run-time packages. For example, if an application is intended to use operations 

with complex number, the Analytics.Complex package must be included in the list of the 

application run-time packages, and this package must be loaded at the start. If the dynamic 

package loading is used in an application, the registered operation set can be updated calling 

the UpdateDefault method of the translator’s property Operations. 

The second case with no run-time packages is slightly different. If the application is a 

standalone executable, the only classes, those have a direct reference in the source code, are 

included into the compiled code. The library provides a simple way of including all required 

operations set into an executable. Each of the library extensions includes the assembly ‘pas’ 

file. For example, if an application is supposed to use analytical derivative, it must include the 

assembly file into a uses list and call the Analytix.Derivatives.Assembly.InitializeAssembly 

function. Any library extension can be included into the executable by the same way. 

 



 
 

 

 

32 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Class Hierarchy 

This part explains the base class hierarchy of ANALYTICS library. There is no need to know the 

hierarchy for using main features of the library: math expressions evaluation and symbolic 

derivatives calculation. The knowledge is only useful for extending the library - introducing new 

function, overloading operators and creating new function derivation rules. 

 

The main concept of ANALYTICS library is easy external extensibility. This means that the 

library has the complete core. The core algorithms have not to be changed to add new 

functionality. The functionality can be added by attaching new external libraries (packages). So 

there is strongly structured class hierarchy to implement this concept. 

Variable classes 

A variable is a name with associated value of some type. The base abstract class for all 

variables is Variable. Its main properties are: Name, Value and ValueType.  

Two abstract classes inherited from the Variable class (pic. 2.1): ScalarVariable and 

IndexedVariable. The ScalarVariable class contains one value (scalar). The IndexedVariable 

class introduces base interface for an indexed value. An indexed value contains other values 

accessed by indexes. 

The following classes inherited from the ScalarVariable: RealVariable – contains a real value, 

ComplexVariable – contains a complex value, BooleanVariable – contains a boolean value, 

ObjectVariable – contains a value of any type.  

The BaseArrayVariable class is inherited from the IndexedVariable. This is an abstract class 

for variables those contain arrays of any dimension. Then, three abstract classes 

ArrayVariable, MatrixVariable and BlockVariable realize interfaces for one-, two- and three-

dimensional arrays accordingly. And finally, classes for real, complex, boolean and object arrays 

are realized up to the third dimension. 

 



 
 

 

 

33 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Picture 2.1. Variable class hierarchy diagram. 

 

All final classes, introduced in this hierarchy, are fully functional. That is, they realize all 

functionality to use them in calculations. All array variables realize complete indexing and slicing 

interfaces. 

 

There are other variable types realized in extension libraries (as 3D vector and tensor variables 

and). They can be used in the same way as variables built in the core of ANALYTICS library. 

Operator classes 

An operator is a symbol with associated operation on some value(s). Base abstract class for all 

operators is Operator. This class has properties and methods to define the symbol of the 

operator and the operation result type. Also it contains a reference to the function to calculate 

result value. 



 
 

 

 

34 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Picture 2.2. Operator class hierarchy diagram. 



 
 

 

 

35 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Picture 2.2. Operator class hierarchy diagram. 

 



 
 

 

 

36 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Two abstract classes inherited from this base class (pic. 2.2): UnaryOperator and 

BinaryOperator. These classes introduce interface to define operand(s) type(s). More specific 

classes, inherited from the last ones, define the operator type and its symbol (‘+’, ‘^’ and so on). 

 

The final classes, those realize the complete functionality (define the operand types and perform 

operations on the operand’s values) are not shown on the diagram. There are all realized 

operators for real and complex operands. Operators for other special operand types (3D vectors 

and tensors and other) realized in ANALYTICS extension libraries. 

 

There are also generic analogues for all operator classes. For example, generic analogue for 

AddOperator is GenericAddOperator class. These generic classes can be also used to derive 

new fully functional operator classes. The generic form of these classes simplifies inheritance 

because they already contain implementation of some methods (see operator overloading 

below). 

Function classes 

The base abstract class Function implements the concept of function. The class has interface 

to define the name, the count and type of parameters and arguments, the type of returned value 

and the method to make operation on the data values.  

The abstract class MonotypeFunction is directly inherited from the Function class (pic. 2.3). It 

implements the concept of a function with one same type for all parameters, arguments and the 

returned value.  



 
 

 

 

37 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Picture 2.3. Function class hierarchy diagram. 

 

At the next level of the hierarchy all functions are divided into Elementary and Special. This 

division is to correspond with mathematics, not for programming convenience. Further, each of 

the classes is divided into Real and Complex subclasses (functions with real and complex 

arguments accordingly). And finally, all classes are divided into Simple and Parametric 

functions. Simple functions have one argument, parametric functions have one parameter and 

one argument. 



 
 

 

 

38 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

The final classes those realize the calculation are not shown on the diagram. There are many 

realized elementary and base special functions of real and complex arguments – algebraic, 

trigonometric, inverse trigonometric, exponential, logarithmic, hyperbolic, inverse hyperbolic. 

Total list of basic functions can be found in Appendix A. 

Expression classes 

Expression classes are intended to represent parsed string data inside the core algorithms of  

ANALYTICS library.  

The base abstract class for all expressions is BaseExpression. This class defines an abstract 

interface for all expressions and implements some static methods to manipulate with 

expressions (build expressions form strings, simplify expression list and so on).  

All other classes are divided into simple expressions (do not contain other expressions) and 

structured expressions (do contain other expressions). The simple expressions are 

LiteralExpression and VariableExpression. The structured expressions include 

FunctionExpression, IndexingExpression, UnaryOperatorExpression and 

BinaryOperationsExpression (LogicalExpression, RelationalExpression, SumExpression, 

ProductExpression, PowerExpression, ArrowExpression), ArrayExpression 

(VectorExpression, MatrixExpression). All expression classes realize methods to manipulate 

with them: build expressions from strings, simplify expressions, reconstruct expressions 

(convert them back to the string), building new expressions from existing ones. 

 

There is no need to know the hierarchy of the expression classes to use the functionality of 

ANALYTICS. The hierarchy is a part of core algorithms and have to be used only for extending 

functionality of the library in the sense of analytical derivative calculation (see below). 

 

 



 
 

 

 

39 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Picture 2.4. Expression class hierarchy diagram. 

 

 



 
 

 

 

40 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Extending ANALYTICS 

ANALYTICS library provides the complete core for parsing and calculating mathematical 

expressions. It also contains many predefined functions: trigonometric, hyperbolic and others 

and many realized operators for real and complex arguments. Thus, the library can be used 

without any modification for its main purpose: provide an end user application with the interface 

to input data in the form of mathematical expressions. 

 

Another goal of the library is to provide an interface for using in math expression not only ‘base’ 

number types (real and complex), but any program specific data types. For example, let there is 

a program for signal processing. The program must allow the end user to make various math 

operations with signals – add two signals, multiply a signal with a real value, calculate 

exponents and logarithms of the signals and so on. ANALYTICS library suggests the easiest 

way to create such program. The core algorithms of ANALYTICS library work with expressions 

containing data of any type (for example, the signals). The only thing required is to define the 

operations with the data. 

 

ANALYTICS library is built by such technology that allows easily introduce operations with 

program specific data without changing core algorithms. All data operations (operators, 

functions) presented inside the library as classes. To add an operation with program specific 

data a descendant of some class must be implemented. The library will use this class to work 

with expressions, containing the program specific data. 

 

The next part explains implementation of the classes to define operations with program specific 

data. 

Overloading operators 

To overload an operator for program specific data operand types, a descendant of one of the 

defined operator classes must be implemented. There are base abstract classes for all defined 

operators (see class hierarchy): AddOperator, SubtractOperator and so on. The following 

code demonstrates the addition operator overloading for complex numbers: 

 

type 

  /// <summary> 

  /// Compex + Compex = Compex 

  /// </summary> 

  TComplexAdd=class sealed(TAddOperator) 

  protected 

    function GetOperand1Type(): PTypeInfo; override; 

    function GetOperand2Type(): PTypeInfo; override; 



 
 

 

 

41 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

    function Operation(const operand1, operand2: TValue): TValue; 

override; 

    function GetReturnType(): PTypeInfo; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

function TComplexAdd.GetOperand1Type: PTypeInfo; 

begin 

  Result:=TTypes.ComplexType; 

end; 

 

function TComplexAdd.GetOperand2Type: PTypeInfo; 

begin 

  Result:=TTypes.ComplexType; 

end; 

 

function TComplexAdd.GetReturnType: PTypeInfo; 

begin 

  Result:=TTypes.ComplexType; 

end; 

 

class function TComplexAdd.IsRealized: boolean; 

begin 

  Result:=true; 

end; 

 

function TComplexAdd.Operation(const operand1, operand2: TValue): 

TValue; 

var 

  x1, x2, x: TComplex; 

begin 

  x1:= operand1.AsType<TComplex>; 

  x2:= operand2.AsType<TComplex>; 

  x:= x1+x2; 

  result:= TValue.From<TComplex>(x); 

end; 

 

The ComplexAdd class is inherited from the AddOperator, this means it overloads the addition 

“+” operator. The class overrides GetOperand1Type, GetOperand2Type and GetReturnType 

methods. They define that the first operand, the second operand and the operation result is of 

type Complex. Another overridden method is Operation – this method implements the 



 
 

 

 

42 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

operation itself (adds two complex numbers). The overridden IsRealized method returns true, it 

means that the class is fully realized and can be used in calculations. 

 

The following example demonstrates overloading of the multiplication “*” operator for a complex 

number and a real value: 

 

type 

  /// <summary> 

  /// Compex * Float = Compex 

  /// </summary> 

  TComplexRealMultiply=class sealed(TMultiplyOperator) 

  protected 

    function GetOperand1Type(): PTypeInfo; override; 

    function GetOperand2Type(): PTypeInfo; override; 

    function Operation(const operand1, operand2: TValue): TValue; 

override; 

    function GetReturnType(): PTypeInfo; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

function TComplexRealMultiply.GetOperand1Type: PTypeInfo; 

begin 

  result:=TTypes.ComplexType; 

end; 

 

function TComplexRealMultiply.GetOperand2Type: PTypeInfo; 

begin 

  result:=TTypes.RealType; 

end; 

 

function TComplexRealMultiply.GetReturnType: PTypeInfo; 

begin 

  result:=TTypes.ComplexType; 

end; 

 

class function TComplexRealMultiply.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 



 
 

 

 

43 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

function TComplexRealMultiply.Operation(const operand1, operand2: 

TValue): TValue; 

var 

  x1, x: TComplex; 

  x2: TFloat; 

begin 

  x1:= operand1.AsType<TComplex>; 

  x2:= operand2.AsType<TFloat>; 

  x:= x1*TComplex.Create(x2); 

  result:= TValue.From<TComplex>(x); 

end; 

 

The realized operators will be used to implement appropriate operations with the operands of 

defined types. 

 

The same result, as in two previous code examples, can be achieved by using generic 

analogues of the operators. The following code demonstrates this case for overloading the 

power operator and the tilde operator (the conjugate of a complex value): 

 

type 

  /// <summary> 

  /// Compex ^ Compex = Compex 

  /// </summary> 

  TComplexPower=class sealed(TGenericPowerOperator<TComplex, TComplex, 

TComplex>) 

  protected 

    function TypedOperation(const operand1: TComplex; const operand2: 

TComplex): TComplex; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

 

  /// <summary> 

  /// ~ Compex = Compex 

  /// </summary> 

  TComplexConjugate=class sealed(TGenericTildeOperator<TComplex, 

TComplex>) 

  protected 

    function TypedOperation(const operand: TComplex): TComplex; 

override; 

  public 

    class function IsRealized: boolean; override; 



 
 

 

 

44 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  end; 

… 

 

class function TComplexPower.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 

function TComplexPower.TypedOperation(const operand1, operand2: 

TComplex): TComplex; 

begin 

  result:=TComplex.Power(operand1, operand2); 

end; 

 

class function TComplexConjugate.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 

function TComplexConjugate.TypedOperation(const operand: TComplex): 

TComplex; 

begin 

  result:=TComplex.Conjugate(operand); 

end; 

 

Using generic base operators is “shorter” because only one method (TypedOperation) must be 

overridden. The operand types and the return type are defined as the parameters of the 

inherited generic operator class. Both inheritance cases, generic and not generic, are equivalent 

for ANALYTICS core algorithms. 

Explicitly overloaded operators 

The operator overloading in ANALYTICS library is intended to implement operations on program 

specific data. Often, for such data, some operators are already overridden “inside” the program 

(that means Delphi operator overloading). ANALYTICS core algorithms support these “explicitly 

overloaded operators” for implementing appropriate operations on the data. In other words, if 

there is an “explicitly overloaded” operator, it will be used to calculate the result for the suitable 

operation. For example, let there is the Complex record type implementing complex number 

algebra and it overloads math operators, such as addition, subtraction and so on. Then, these 

operations will be performed with complex numbers in math expressions without deriving new 

operator classes. 

 



 
 

 

 

45 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

There are some constraints for using “explicitly overloaded” operators: 

1. Not all operators can be “explicitly overloaded”. The first reason is that not all ANALYTICS 
operators have analogous Delphi operators (for example the factorial operator “!”). The 
second reason is that operators “meaning” can be ambiguous (for example the power “^”). 
Considering this, only following operators can be “explicitly overloaded”: “+”, “-” (unary and 
binary), “*”, “/”. 

2. “Implicit” overloading (deriving new operator classes) has higher priority. That is, if there are 
both an “explicit” and an “implicit” operators, the second will be used to calculate the 
operation result. 

 

Both overloading methods can be used in combination. The “implicit” method can be used as for 

complimenting the “explicit” method, as for overriding its behavior. 

Introducing new functions 

Introducing new functions is another way of extending the library functionality. A function can be 

defined to work with any data types. The function must have a valid name. The function can 

have any number and type of arguments (parameters) and any return type. 

To introduce new function a descendant of one of the abstract function classes must be 

implemented. The choice of the base class depends on the number of arguments and 

parameters and on their types. For the common number types (real or complex), one of the 

predefined abstract classes can be used as the ancestor class: RealElementaryFunction, 

RealParametricElementaryFunction, ComplexElementaryFunction, 

ComplexParametricElementaryFunction.  

As example, the code of the class, implementing sine function of complex argument, is listed 

below: 

 

type 

  /// <summary> 

  /// Complex Sine function 

  /// </summary> 

  TComplexSine=class sealed(TComplexElementaryFunction) 

  protected 

    function GetName(): string; override; 

    function Func(const x: TComplex): TComplex; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

{ TComplexSine } 

 

function TComplexSine.Func(const x: TComplex): TComplex; 

begin 



 
 

 

 

46 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  result:=TComplex.Sin(x); 

end; 

 

function TComplexSine.GetName: string; 

begin 

  result:='sin'; 

end; 

 

class function TComplexSine.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 

The class is inherited from the ComplexElementaryFunction because it implements a function 

with one complex argument. The overridden methods are GetName, Func and IsRealized. The 

first defines the function name (used in expressions). The second implements the function 

operation itself (calculates sine of a complex number). The last tells that the class is fully 

realized and can be used in calculation process.  

Another example demonstrates the power function implementation of complex base and 

exponent: 

 

type 

  /// <summary> 

  /// Power of Complex value 

  /// NOTE: argument is the base and parameter is 

  ///       the exponent of the power function. 

  /// </summary> 

  TComplexPower=class sealed(TComplexParametricElementaryFunction) 

  protected 

    function GetName(): string; override; 

    function Func(const parameter, argument: TComplex): TComplex; 

override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

 

{ TComplexPower } 

 

function TComplexPower.GetName: string; 

begin 

  result:='pow'; 



 
 

 

 

47 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

end; 

 

class function TComplexPower.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 

function TComplexPower.Func(const parameter, argument: TComplex): 

TComplex; 

begin 

  result:=TComplex.Power(argument, parameter); 

end; 

 

The class is inherited from the ComplexParametricElementaryFunction because it 

implements a function with one complex parameter and one complex argument. 

 

In general case, to introduce new function the class must be inherited from the base abstract 

class Function. All its abstract methods must be overridden. The methods define the number 

and types of parameters and arguments and the function return type. The following code 

example demonstrates the implementation of Power function, where the base is a complex 

number and the exponent is a real number: 

 

type 

  /// <summary> 

  /// Complex^Float Power function 

  /// </summary> 

  TComplexRealPower=class sealed(TFunction) 

  protected 

    function GetName(): string; override; 

    function GetArgumentCount(): integer; override; 

    function GetArgumentTypes(): TArray<PTypeInfo>; override; 

    function GetParameterCount(): integer; override; 

    function GetParameterTypes(): TArray<PTypeInfo>; override; 

    function GetResultType(): PTypeInfo; override; 

    function DoCalculate(parameters, arguments: TArray<TValue>): 

TValue; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

 

{ TComplexRealPower } 



 
 

 

 

48 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

function TComplexRealPower.GetName: string; 

begin 

  result:='pow'; 

end; 

 

function TComplexRealPower.GetArgumentCount: integer; 

begin 

  result:=1; 

end; 

 

function TComplexRealPower.GetArgumentTypes: TArray<PTypeInfo>; 

begin 

  result:=TArray<PTypeInfo>.Create(TTypes.ComplexType); 

end; 

 

function TComplexRealPower.GetParameterCount: integer; 

begin 

  result:=1; 

end; 

 

function TComplexRealPower.GetParameterTypes: TArray<PTypeInfo>; 

begin 

  result:=TArray<PTypeInfo>.Create(TTypes.RealType); 

end; 

 

function TComplexRealPower.GetResultType: PTypeInfo; 

begin 

  result:=TTypes.ComplexType; 

end; 

 

class function TComplexRealPower.IsRealized: boolean; 

begin 

  result:=true; 

end; 

 

function TComplexRealPower.DoCalculate(parameters, arguments: 

TArray<TValue>): TValue; 

var 

  z: TComplex; 

  e: TFloat; 

  r: TComplex; 



 
 

 

 

49 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

begin 

  z:=arguments[0].AsType<TComplex>; 

  e:=parameters[0].AsType<TFloat>; 

  r:=TComplex.Power(z, e); 

  result:=TValue.From<TComplex>(r); 

end; 

 

The function has one complex argument, one real parameter and returns a complex value as 

the function result. 

 

A little shorter way to introduce new function for some specific data types is using one of the 

base generic function classes. These classes use generic parameters to define the types of 

arguments and parameters. Thus, only the GetName method and the calculation algorithm 

must be provided by the descendant class. The following code demonstrates an example of a 

logarithm function implementation using the base generic class: 

 

type 

  /// <summary> 

  /// Complex Logarithm function by Real base 

  /// (NOTE: the Base of logarithm is the Parameter of the function) 

  /// </summary> 

  TRealComplexLogarithm=class 

sealed(TGenericParametricFunction<TFloat, TComplex, TComplex>) 

  protected 

    function GetName(): string; override; 

    function Func(const parameter: TFloat; const argument: TComplex): 

TComplex; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

 

{ TRealComplexLogarithm } 

 

function TRealComplexLogarithm.GetName: string; 

begin 

  result:='log'; 

end; 

 

class function TRealComplexLogarithm.IsRealized: boolean; 

begin 

  result:=true; 



 
 

 

 

50 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

end; 

 

function TRealComplexLogarithm.Func(const parameter: TFloat; const 

argument: TComplex): TComplex; 

begin 

  result:=TComplex.LogN(parameter, argument); 

end; 

 

The class is inherited from the GenericParametricFunction, which means it has one argument 

and one parameter. The argument is a complex number, the parameter is a real number and 

the function result is a complex number. The first, the second and the third generic parameters 

provide this information accordingly. 

 

ANALYTICS library contains base generic function classes to implement functions with up to 

two parameters and two arguments of any type. 

 

NOTE about introducing new functions: many functions with the same name allowed if they 

have different count or/and type of arguments (parameters). 

Implementing indexing 

Indexing can be applied to variables only. A variable class, implementing indexing, must be 

inherited from the abstract class IndexedVariable (or from one of its descendants). The 

inherited class must override abstract methods defining the number of indexes, data access 

methods and slicing interface methods. 

 

As example of indexing implementation, the (partial) code of the standard MatrixVariable class 

is listed below: 

 

type 

  /// <summary> 

  /// Base abstract class for all matrix variables. 

  /// NOTE: Slicing is implemented. 

  /// </summary> 

  TMatrixVariable<TheBaseType> 

=class(TBaseArrayVariable<TArray<TheBaseType>>) 

  protected 

    function GetBaseType: PTypeInfo; override; final; 

    /// <summary> 

    /// 2 indexes 

    /// </summary> 

    function GetIndexCount: integer; override; final; 



 
 

 

 

51 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

    /// <summary> 

    /// Slicing is implemented for Matrix variables 

    /// </summary> 

    function GetSlicingImplemented(): boolean; override; 

  public 

    /// <summary> 

    /// Sliced item is array of BaseType 

    /// </summary> 

    function GetItemType(indexes: TArray<integer>): PTypeInfo; 

override; final; 

    /// <summary> 

    /// Implements Array Slicing 

    /// </summary> 

    function GetItemValue(indexes: TArray<integer>): TValue; override; 

final; 

  end; 

… 

 

{ TMatrixVariable<TheBaseType> } 

… 

 

function TMatrixVariable<TheBaseType>.GetBaseType: PTypeInfo; 

begin 

  result:= TypeInfo(TheBaseType); 

end; 

 

function TMatrixVariable<TheBaseType>.GetSlicingImplemented: boolean; 

begin 

  result:=true; 

end; 

 

function TMatrixVariable<TheBaseType>.GetIndexCount: integer; 

begin 

  result:= 2; 

end; 

 

function TMatrixVariable<TheBaseType>.GetItemType(indexes: 

TArray<integer>): PTypeInfo; 

begin 

  if 

((indexes[0]>=0)and(indexes[1]<0))or((indexes[1]>=0)and(indexes[0]<0)) 

then 



 
 

 

 

52 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

    result:= TypeInfo(TArray<TheBaseType>) 

  else 

    result:= GetBaseType; 

end; 

 

function TMatrixVariable<TheBaseType>.GetItemValue(indexes: 

TArray<integer>): TValue; 

var 

  i: integer; 

  j: integer; 

  a: TArray<TheBaseType>; 

  n: integer; 

begin 

  if (indexes[0]>=0)and(indexes[1]<0) then 

  begin 

    i:= indexes[0]; 

    a:= System.Copy(FData[i]); 

    result:= TValue.From<TArray<TheBaseType>>(a); 

    exit; 

  end 

  else 

    if (indexes[1]>=0)and(indexes[0]<0) then 

    begin 

      j:= indexes[1]; 

      n:= RowCount; 

      SetLength(a, n); 

      for i:= 0 to n-1 do 

        a[i]:= FData[i][j]; 

      result:= TValue.From<TArray<TheBaseType>>(a); 

      exit; 

    end 

    else 

    begin 

      result:= 

TValue.From<TheBaseType>(FData[indexes[0]][indexes[1]]); 

    end; 

end; 

 

The class overrides the GetIndexCount method which returns 2, because a matrix element has 

two indexes. The method GetSlicingImplemented returns true, it means that the variable 

supports slicing. The GetItemType method returns the type of indexed data, taking into account 

slicing implementation. If one of the indexes is less than zero, it means that the data must be 



 
 

 

 

53 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

‘sliced’ by this index. For matrix data, it means that the returned data is an array (matrix row or 

column). The GetItemValue method implements access to indexed data analogously to the 

GetItemType method (takes the slicing into account). The GetBaseType method returns the 

type of matrix elements (based on the generic parameter of the class). 

 

NOTE about indexing implementation: index type is always supposed to be integer and this 

cannot be redefined. 

 

Introducing function derivatives 

ANALYTICS library allows introducing derivation rules for any function. It is another way of 

extending the library functionality. This case slightly differs from the extensions, described 

above. For example, the derivative rules cannot be redefined for operators, because these rules 

are the base of math and therefore they realized as the core algorithms of the library. 

 

Only functional derivative definition allowed. To define a function derivative a descendant of the 

FunctionalDerivative class must be derived and all its abstract methods must be implemented. 

The methods are: 

 

function GetFunctionName(): string; virtual; abstract; 

function GetParameterCount(): integer; virtual; abstract; 

function GetArgumentCount(): integer; virtual; abstract; 

class function IsRealized: boolean; virtual; abstract; 

function Derivative(afunction: TFunctionExpression; const vName: string): TBaseExpression; 

virtual; abstract; 

     

The first three methods define the function signature, the derivative rule is applied for. Note that 

the types of parameters and arguments are not defined. This is due to the derivation process 

manipulates symbols only, not values or types. 

The last method defines the derivation rule itself. This method takes afunction parameter of the 

FunctionExpression class and vName parameter – the name of variable for derivative. The 

result of the method is BaseExpression object. Thus, the method must build the result 

expression from the input function expression. 

 

The IsRealized method must be overridden in descendant classes and must return true for fully 

realized function derivative. 

 

In the most common case of an elementary function with one argument, the derivative rule can 

be generalized, using the following mathematical formula (chain rule): 

 



 
 

 

 

54 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  
dx

dg

dg

df
xgf

dx

d
)(  

 

The SimpleFunctionalDerivative class implements this rule. This is an abstract class to define 

derivative rule for a function with one argument. It overrides the base Derivative method 

realizing the above chain rule formula. The class has another abstract method 

 

function BaseDerivative(argument: TBaseExpression): TBaseExpression; virtual; abstract; 

 

The argument parameter of the method is the g  function in the formula above. It is enough to 

override the BaseDerivative method in a descendant class. The chain rule formula will be 

applied then automatically to get the total derivative expression for the function. 

The implementation of the method is rather simple for most of the standard transcendental 

functions. For example, consider the code of the class, implementing the derivative for sine 

function: 

 

type 

  /// <summary> 

  /// Sine derivative 

  /// </summary> 

  TSineDerivative=class sealed(TSimpleFunctionalDerivative) 

  protected 

    function GetFunctionName(): string; override; 

    function BaseDerivative(argument: TBaseExpression): 

TBaseExpression; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

 

… 

 

function TSineDerivative.BaseDerivative(argument: TBaseExpression): 

TBaseExpression; 

begin 

  result:= TFunctionExpression.CreateSimple('cos', argument); 

end; 

 

function TSineDerivative.GetFunctionName: string; 

begin 

  result:= 'sin'; 

end; 

 



 
 

 

 

55 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

class function TSineDerivative.IsRealized: boolean; 

begin 

  result:= true; 

end; 

 

The implementation is rather simple. The method GetFunctionName tells that the derivative for 

function with name ‘sin’ is defined. The method BaseDerivative creates new expression – 

function ‘cos’ with one given argument, because     xx
dx

d
cossin  . 

As can be seen from the example, the methods of the expression classes (see class hierarchy) 

should be used to build the result expressions. There are many predefined useful methods to 

create sum, difference, product, division, power or other expressions from the existing ones. 

 

In general case of a function with many arguments and parameters it is more complicated to 

define the algorithm for the function derivative implementation. It is because the derivative rules 

for that case can be really complicated. For example, consider the derivative of the logarithm 

function: 

 

 
 

 
 

 
 )(

)(ln)(

)(ln
)(

)(ln)(

1
)(log

2)( xa
dx

d

xaxa

xg
xg

dx

d

xaxg
xg

dx

d
xa   

 

Nevertheless, the library allows defining derivation rules for any function. The methods of the 

expression classes (see class hierarchy) can be used to build the result expressions for such 

complicated derivatives. One can consider the source code of many predefined function 

derivatives in the library. The LogarithmDerivative class is the example of the code, 

implementing the complicated formula for logarithmic derivative. 

 

The algorithm of parametric functions derivative can be simplified in the case, when the 

parameter(s) does not depend on the variable. Then, the ‘chain rule’ is applicable for the 

function. The specific class ParametricFunctionalDerivative  introduced in the library for this 

case. 

 

For example, consider derivative for the special Polygamma function 

(https://en.wikipedia.org/wiki/Polygamma_function). Its derivative defined by the following 

equation: 

  )()( 1 xYxY
dx

d mm   

 

The code of the class, implementing the derivative is the following: 

 

type 

https://en.wikipedia.org/wiki/Polygamma_function


 
 

 

 

56 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  /// <summary> 

  /// Polygamma derivative 

  /// </summary> 

  TPolygammaDerivative = class sealed(TParametricFunctionalDerivative) 

  protected 

    function GetFunctionName(): string; override; 

    function BaseDerivative(parameter, argument: TBaseExpression): 

TBaseExpression;  override; final; 

  public 

    class function IsRealized: boolean; override; 

  end; 

… 

function TPolygammaDerivative.GetFunctionName: string; 

begin 

  result:= 'Y'; 

end; 

 

class function TPolygammaDerivative.IsRealized: boolean; 

begin 

  result:= true; 

end; 

 

function TPolygammaDerivative.BaseDerivative(parameter, argument: 

TBaseExpression): TBaseExpression; 

var 

  p1: TBaseExpression; 

begin 

  p1:= TSumExpression.MakeSum(parameter, TLiteralExpression.Unity); 

 

  result:= TFunctionExpression.CreateParametric('Y', p1, argument); 

end; 

 

As can be seen from the class above, the code for the derivative is not complicated: only three 

methods must be overridden. The base class ParametricFunctionalDerivative realizes the 

rest: checks that the function’s parameter does not depends on the variable; implements the 

‘chain rule’. 

Introducing function integrals 

ANALYTICS library allows also introducing integration rules for any function. To define a 

function integral a descendant of the FunctionalIntegral class must be derived and all its 

abstract methods must be implemented. The methods are: 



 
 

 

 

57 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

function GetFunctionName(): string; virtual; abstract; 

function GetParameterCount(): integer; virtual; abstract; 

function GetArgumentCount(): integer; virtual; abstract; 

class function IsRealized: boolean; virtual; abstract; 

function Integral(afunction: TFunctionExpression; const vName: string): TBaseExpression; 

virtual; abstract; 

     

The first three methods define the function signature, the integration rule is applied for. Note that 

the types of function’s parameters and arguments not specified. This is due to the integration 

process manipulates symbols only, not values or types. 

The last method defines the integration rule itself. This method takes afunction parameter of the 

FunctionExpression class and vName parameter – the name of the integration variable. The 

result of the method is BaseExpression object. Thus, the method must build the result 

expression from the input function expression. 

 

The IsRealized method must be overridden in descendant classes and must return true for fully 

realized function integral. 

 

There are some predefined descendants of the class for realizing base integrators for the most 

used functions with one argument and one or two parameters: SimpleFunctionalIntegral, 

ParametricFunctionalIntegral, BiparametricFunctionalIntegral. They provide base 

functionality – number of arguments and parameters, and introduce BaseIntegral method for 

the integration process. 

 

Let us consider the example of introducing integration rule for Sine function. Here in the code of 

the class realization: 

 

type 

  TSineIntegral = class sealed (TSimpleFunctionalIntegral) 

  protected 

    function GetFunctionName(): string; override; 

    function BaseIntegral(arg: TBaseExpression): TBaseExpression; override; 

  public 

    class function IsRealized: boolean; override; 

  end; 

 

… 

implementation 

 

function TSineIntegral.BaseIntegral(arg: TBaseExpression): TBaseExpression; 

begin 



 
 

 

 

58 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  result:= TFunctionExpression.CreateSimple(Cosine, arg); 

  result:= TUnaryOperatorExpression.Negate(result); 

end; 

 

function TSineIntegral.GetFunctionName: string; 

begin 

  result:= Sine; 

end; 

 

class function TSineIntegral.IsRealized: boolean; 

begin 

  result:= true; 

end; 

 

As can be seen from the example above, only tree methods must be overridden for introducing 

the integration rule. Two of them are elementary and provide information for the evaluation 

system: the name of the function for integration and that the class is totally realized. The main 

method to implement integration is BaseIntegral. It must build new expression, which is the 

integral of the function. In the example, it builds Cosine function of the argument and then 

makes negation, so the algorithm realized the formula: 

 

For building result expression the methods of the expression classes used. Other methods of 

the expression classes can be used to build more complicated expressions. 

 

Note that the class implements integration rule only for the base case, when the argument of the 

function is the same as the integration variable. One MUST NOT implement algorithms for 

complicated cases in the classes of function integral classes. Other cases provided 

automatically by the Integration System of the ANALYTICS library. For example, the case of 

function linearly depending on the argument is automatically realized for all functions with one 

argument. So, after introducing the class for Sine function, the system will be able to integrate 

the function for linear argument, that is: 

 

Introducing advanced integrators 

Symbolic integration is a complicated task. It differs from the symbolic differentiation, because 

integration requires different algorithms for different types of expressions, while symbolic 

differentiation can be implemented with one unified recursive algorithm. For example, the 

following two integrals 



 
 

 

 

59 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
must be evaluated with two different methods: by parts and putting the variable under the 

differential sign. More over, some integrals cannot be evaluated as explicit symbolic expression. 

For example, the following integral does not allow evaluation as an algebraic expression of finite 

number of elementary functions. 

 

ANALYTICS library core realizes all base integration rules for all expression types: integral of 

sum is the sum of integrals; constant multiplier can be put out of the integral and so on. It also 

provides all possible direct integrals for unary and binary operators: square root, power 

expression, minus and absolute operators and so on. 

 

Advanced integration algorithms can be provided to the core integration system by realizing 

special classes, inherited from the base abstract class Integrator. This class has the following 

interface: 

 

TIntegrator=class abstract 

public 

  function Integral(expr: TBaseExpression; const vName: string): TBaseExpression; virtual; 

abstract; 

  class function IsRealized: boolean; virtual; abstract; 

end; 

 

The Integral method of the class must return the indefinite integral for the given expression by 

the variable, or nil, if the integrator cannot be applied for the expression. The IsRealized 

method must be overridden in the descendant class and return True if the class is totally 

realized. 

 

There are the following abstract descendants of the Integrator class: TemplateIntegrator, 

SimplifyIntegrator, AlgorithmIntegrator. The TemplateIntegrator intended for providing 

integration of expressions, matching some known template. For example e^x*sin(x), ln(x)*x^n 

and so on. The class has the following interface: 

 

TTemplateIntegrator=class abstract (TIntegrator) 

protected 

  function Match(expr: TBaseExpression; const vName: string): TMatchData; virtual; 

abstract; 



 
 

 

 

60 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  function BuildIntegral(expr: TBaseExpression; data: TMatchData; const vName: string): 

TBaseExpression; virtual; abstract; 

public 

  function Integral(expr: TBaseExpression; const vName: string): TBaseExpression; override; 

end; 

 

It overrides the base Integral method and uses the Match method to check if the integrand 

expression matches the template. If yes, then it calls the BuildIntegral function to return the 

result expression. 

 

The SimplifyIntegrator class provides the appropriate mechanism for integrating expressions 

by simplifying them first:  

 

TSimplifyIntegrator=class abstract (TIntegrator) 

protected 

  function Simplify(expr: TBaseExpression; const vName: string): TBaseExpression; virtual; 

abstract; 

public 

  function Integral(expr: TBaseExpression; const vName: string): TBaseExpression; override; 

end; 

 

The overridden Integral method calls the Simplify function and then uses new simplified 

expression for the core integration algorithm. The Simplify method can return nil if the original 

expression cannot be simplified with the algorithm. In this case, there is no trial to integrate the 

expression. 

 

The last class AlgorithmIntegrator intended to provide general interface for advanced 

integration algorithms, such as by parts integration, substitution and so on. All descendants of 

the Integrator class will be automatically found and used by the core integration algorithm (see 

‘Managing registered operators, functions, derivatives and integrals’ for more information). 

 

As an example of realizing advanced integration, here is the code of the ExpandIntegrator 

class: 

 

type 

  TExpandIntegrator = class sealed (TSimplifyIntegrator) 

  protected 

    function Simplify(expr: TBaseExpression; const vName: string): TBaseExpression; 

override; 

  public 

    class function IsRealized: boolean; override; 

  end; 



 
 

 

 

61 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

implementation 

 

class function TExpandIntegrator.IsRealized: boolean; 

begin 

  result:= true; 

end; 

 

function TExpandIntegrator.Simplify(expr: TBaseExpression; const vName: string): 

TBaseExpression; 

var 

  be: TBinaryOperationsExpression; 

  ee: TBaseExpression; 

  ef: boolean; 

begin 

  result:= nil; 

 

  if expr is TBinaryOperationsExpression then 

  Begin 

    be:= expr as TBinaryOperationsExpression; 

    if be.OperationCount>0 then 

    begin 

      ef:= false; 

      ee:= nil; 

      try 

        ef:= true; 

        if be.CanExpand() then 

        begin 

          ee:= be.Expand(); 

          ee.Simplify(); 

          ef:= false; 

          result:= ee; 

        end; 

      finally 

        if ef then 

        begin 

          FreeAndNil(ee); 

        end; 

      end; 

    end; 

  End; 

end; 



 
 

 

 

62 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

It is inherited from the SimplifyIntegrator and overrides two methods: IsRealized and 

Simplify. The former method provides information that the class is totally realized and can be 

used in the core integration algorithm. The latter method implements the simplification algorithm 

– calls the Expand method of a binary expression. Thus, the integrator allows evaluating 

integrals for the expressions, those can be expanded to the form of other expressions. For 

example, the product expression ‘(A*x+B)*(C*x+D)’ will be expanded to the sum expression 

‘A*C*x^2+A*D*x+B*C*x+B*D’ and then integrated using base integration rules and formula for 

the power expression. The result of the symbolic integration is the following formulae 

‘A*C*x^3/3+A*D/2*x^2+B*C/2*x^2+B*D*x’. 



 
 

 

 

63 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Running commands 

The Translator class has the ‘Run’ method with the following overloaded signatures: 

 

function Run(const command: string; var v: TValue; var msg: string): boolean; overload; 

function Run(const command: string; var msg: string): boolean; overload; 

 

This method allows to execute a statement, provided by the ‘command’ argument. The result of 

the function call is true, if the statement executed successfully, and false, if an error occurred. 

The ‘v’ argument is the evaluated result of the command. Its value assigned in the case of 

assignment statement (value of the right-part expression) and expression evaluation (see next 

sections). The ‘msg’ argument provides the information about the result of the command 

running, or about the error if it is occurred. 

 

Here is the source code of the console application that uses the ‘Run’ method to simulate a 

simple ‘computer algebra system’: 

 

program Simulator; 

 

{$APPTYPE CONSOLE} 

 

{$R *.res} 

 

uses 

  System.SysUtils, 

  Analytix.Utilities, 

  Analytix.Assembly, 

  Analytix.Float.Assembly,          

  Analytix.LinearAlgebra.Assembly,  

  Analytix.Derivatives.Assembly,    

  Analytix.Integrals.Assembly,      

  Analytix.Translator; 

 

var 

  translator: TTranslator; 

  command, msg: string; 

  lines: TArray<string>; 

  i: integer; 

 

begin 

  translator:= TTranslator.Create;              

 

  while true do 



 
 

 

 

64 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  begin 

    Write('Input command: '); 

    ReadLn(command); 

    if command='' then exit; 

 

    translator.Run(command, msg);                

 

    lines:= msg.Split([#13]); 

    for i:=Low(lines) to High(lines) do 

      WriteLn(lines[i]); 

 

    WriteLn; 

  end; 

end. 

 

This application will be used in the following sections to demonstrate various commands, 

supported by the ‘Run’ method. 

 

Assignment statement 

The simplest assignment statement has the following syntax: 

 

Name=expression 

 

where ‘Name’ is a valid variable name; ‘=’ is the assignment operator; ‘expression’ is a valid 

math expression or NULL. 

 

The assignment statement creates new variable with the specified name and assigns it the 

value of the evaluated expression. If a variable with the same name already exists, the new 

value assigned to this variable instance. For the last case, the type of the new value must be the 

same as the type of the existing variable, else the error reported. If the NULL value used in the 

right part of the assignment statement, the variable with the specified name is deleted. 

 

The ‘v’ argument of the function returns result of the expression evaluation. 

 

There is the resulting console output of the ‘Simulator’ program after running several 

assignment statements: 

 

Input command: x=Pi/2 

Variable created. x=1.5707963267949 

 

Input command: A=Array{10}(-1) 



 
 

 

 

65 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Variable created. A=TArray<TFloat>[10]= 

(-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ) 

 

Input command: M=Matrix{3 4}(1) 

Variable created. M=TArray<TArray<TFloat>>[3][4]= 

( 1 1 1 1) 

( 1 1 1 1) 

( 1 1 1 1) 

 

Input command: A=NULL 

Variable removed. A 

 

With the first three commands new variables have been created: real variable ‘x’, one 

dimensional array ‘A’, and matrix ‘M’. The last command removed the existing variable ‘A’. 

 

When a variable exists, its value can be changed with the assignment statement. Here is output 

from the console: 

 

Input command: x=sin(Pi/4) 

Variable x assigned: 0.707106781186547 

 

Input command: M=1/2 

Variable type mismatch: expected TArray<TArray<TFloat>>, got TFloat. 

 

The first command assigned new value to the variable ‘x’. The second command failed with the 

error, because the type of variable cannot be changed with the assignment. 

 

Getting information 

The information about current state of the translator instance can be retrieved with the following 

command: 

 

PRINT{ITEM}() 

 

where ‘ITEM’ is one of the following constants: VARIABLES, OPERATORS, FUNCTIONS, 

USERFUNCTIONS, DERIVATIVES. 

 

If the ITEM parameter is VARIABLES, then the output is the information about existing 

variables: 

 

Input command: PRINT{VARIABLES}() 

  |  Variable              |  Name  |  Type                 |  Value 



 
 

 

 

66 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  |  Real Variable         |  x     |  Float                |  0.707106781186547 

  |  Real Matrix Variable  |  M     |  Array<Array<Float>>  |  [3][4] 

 

Analogously, the information about other items can be retrieved, for example, about functional 

derivatives (partial output shown): 

 

Input command: PRINT{DERIVATIVES}() 

  |  Function    |  Derivative 

  |  sin(x)      |  cos(x) 

  |  cos(x)      |  -sin(x) 

  |  tan(x)      |  1/cos(x)^2 

  |  cotan(x)    |  -1/sin(x)^2 

  |  sec(x)      |  sin(x)/cos(x)^2 

  |  cosec(x)    |  -cos(x)/sin(x)^2 

  |  arcsin(x)   |  1/(1-x^2)^(1/2) 

  |  arccos(x)   |  -1/(1-x^2)^(1/2) 

… 

 

Evaluating expressions 

Any valid math expression can be evaluated with the ‘Run’ method. The ‘v’ argument of the 

function returns result of the expression evaluation. The ‘msg’ parameter returns the same 

result in string format. 

 

Several examples of the expression evaluation are shown below: 

 

Input command: x^2/2 

x^2/2=0.25 

 

Input command: M 

M=TArray<TArray<TFloat>>[3][4]= 

( 1 1 1 1) 

( 1 1 1 1) 

( 1 1 1 1) 

 

Input command: M[1][3] 

M[1][3]=1 

 

Such commands can be used to calculate values of complicated math expressions and to get 

information about current values of the variables or individual items of arrays. 

 



 
 

 

 

67 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Creating user functions 

User-defined functions can be introduced with the following assignment statement: 

 

Name(v1 v2 … vN)=expression 

 

where ‘Name’ is a valid name of the function; ‘v1’, ‘v2’, ‘vN’ are valid names of the variable, the 

function depends on; ‘=’ is the assignment operator; ‘expression’ is a valid math expression or 

NULL. The ‘v’ argument of the function returns the function expression in string format. 

 

This assignment statement creates new user function with specified arguments (variables). If 

the NULL value used in the right part of the assignment statement, the function with the 

specified name and arguments is deleted. The functional expression evaluated at the function 

call for the specified arguments. 

 

Let us consider the following examples: 

 

Input command: S(R)=Pi*R^2 

Function created. S(R)->Pi*R^2 

 

Input command: D(x y)=sqrt(x^2+y^2) 

Function created. D(x y)->sqrt(x^2+y^2) 

 

Input command: S(1) 

S(1)=3.14159265358979 

 

Input command: D(3 4) 

D(3 4)=5 

 

First, two user functions have been created: ‘S’ for calculating area of a circle, and ‘D’ for 

calculating length of a 2D vector. The last two command called the functions with concrete 

parameter to evaluate the values. 

 

Indexing assignment and array slicing 

The assignment statement can be used with a left-side indexing expression in the following 

form: 

 

Name[index1][index2]…[indexN]=expression 

 

where ‘Name’ is the name of existing indexed (array) variable; ‘index1’, ‘index2’, ‘indexN’ are 

valid math expressions or empty values; ‘expression’ is a valid math expression. This 

statement assigns new value, calculated for the right-side expression, to the item of the indexed 



 
 

 

 

68 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

variable with specified indexes. The ‘v’ argument of the function returns the evaluated result of 

the expression. 

 

Here are the examples of the statements and the console output: 

 

Input command: A=[0 -1 -1 -1] 

Variable created. A=TArray<TFloat>[4]= 

(0 -1 -1 -1 ) 

 

Input command: M=Matrix{3 4}(1) 

Variable created. M=TArray<TArray<TFloat>>[3][4]= 

( 1 1 1 1) 

( 1 1 1 1) 

( 1 1 1 1) 

 

Input command: A[3]=3 

Variable A[3] assigned: 3 

 

Input command: A 

A=TArray<TFloat>[4]= 

(0 -1 -1 3 ) 

 

Input command: M[2][2]=1/2 

Variable M[2][2] assigned: 0.5 

 

Input command: M 

M=TArray<TArray<TFloat>>[3][4]= 

( 1 1   1 1) 

( 1 1   1 1) 

( 1 1 0.5 1) 

 

The assignment with indexing expression supports array slicing. That is a slice of an array (not 

individual item) can be assigned by one statement. 

 

Input command: M[2]=A 

Variable M[2] assigned: TArray<TFloat>[4]= 

(0 -1 -1 3 ) 

 

Input command: M 

M=TArray<TArray<TFloat>>[3][4]= 

( 1  1  1 1) 

( 1  1  1 1) 

( 0 -1 -1 3) 

 



 
 

 

 

69 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Input command: M[][0]=[0 0 0] 

Variable M[][0] assigned: TArray<TFloat>[3]= 

(0 0 0 ) 

 

Input command: M 

M=TArray<TArray<TFloat>>[3][4]= 

( 0  1  1 1) 

( 0  1  1 1) 

( 0 -1 -1 3) 

 

In the first assignment statement, the 2-nd row of the ‘M’ matrix assigned with the values of the 

‘A’ array. In the second assignment statement, the 3-rd column of the matrix assign to the 

specified array values. 

 

Note that for the array slicing the dimensions of the left-side and the right-side expressions must 

be the same. Indexing and array slicing support Real, Complex, and Boolean arrays up to the 3 

dimensions. 

 

Conditional statement 

Conditioanal statement has the following syntax: 

 

IF{condition}(true_statement false_statement) 

 

where ‘IF’ is the reserved word for the statement; ‘condition’ is a valid boolean expression; 

‘true_statement’ and ‘false_statement’ are valid statements or NULL. The statement 

evaluates the condition; if its value is true, the ‘true_statement’ executed; else the 

‘false_statement’ executed. In the case of any assignment inside the statement, the ‘v’ 

argument of the function returns the result of the assignment. 

 

Here is a simple example of conditional statement using: 

 

Input command: x=sin(Pi/4) 

Variable created. x=0.707106781186547 

 

Input command: IF{x>1/2}(y=Pi/2 y=e^2) 

IF: x>1/2=True, running y=Pi/2. 

Variable created. y=1.5707963267949 

 

The next example solves a square equation with the specified coefficients: 

 

Input command: a=1 



 
 

 

 

70 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Variable created. a=1 

 

Input command: b=-2 

Variable created. b=-2 

 

Input command: c=-3 

Variable created. c=-3 

 

Input command: d=b^2-4*a*c 

Variable created. d=16 

 

Input command: IF{d<0}(NULL x1=(-b+d^(1/2))/(2*a)) 

IF: d<0=False, running x1=(-b+d^(1/2))/(2*a). 

Variable created. x1=3 

 

Input command: IF{d<0}(NULL x2=(-b-d^(1/2))/(2*a)) 

IF: d<0=False, running x2=(-b-d^(1/2))/(2*a). 

Variable created. x2=-1 

 

Loop statement 

Loop statement has the following syntax: 

 

FOR{Name=min:max}(loop_body) 

 

where ‘FOR’ is the reserved word for the statement; ‘Name’ is a valid variable name; ‘=’ is the 

assignment operator; ‘:’ is the range delimiter; ‘min’ and ‘max’ are valid math expressions 

(min<=max, only integer values allowed); ‘loop_body’ is a valid statement. The statement 

creates new variable with the specified name; changes the value of the variable from min to 

max; for every variable value the ‘loop_body’ statement is executed. If an error occurred at the 

current step – the loop is interrupted. 

 

In the case of any assignment inside the statement, the ‘v’ argument of the function returns the 

result of the last assignment. 

 

Here are several examples of the loop statement running: 

 

Input command: x=0 

Variable created. x=0 

 

Input command: FOR{i=1:100}(x=x+i) 

i=1: Variable x assigned: 1 

... 



 
 

 

 

71 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

i=100: Variable x assigned: 5050 

 

Input command: A=Array{10}(0) 

Variable created. A=TArray<TFloat>[10]= 

(0 0 0 0 0 0 0 0 0 0 ) 

 

Input command: FOR{i=0:9}(A[i]=i^2) 

i=0: Variable A[i] assigned: 0 

i=1: Variable A[i] assigned: 1 

i=2: Variable A[i] assigned: 4 

i=3: Variable A[i] assigned: 9 

i=4: Variable A[i] assigned: 16 

i=5: Variable A[i] assigned: 25 

i=6: Variable A[i] assigned: 36 

i=7: Variable A[i] assigned: 49 

i=8: Variable A[i] assigned: 64 

i=9: Variable A[i] assigned: 81 

 

Input command: A 

A=TArray<TFloat>[10]= 

(0 1 4 9 16 25 36 49 64 81 ) 

 

The first loop statement calculates sum of integer numbers from 1 to 100. The second loop 

assigns to the array items the squares of the first 10 integers. 

 

The loop statement is a structured one and it can be used with other structured statements, for 

example, conditional statements. 

 

Input command: A=Array{13}(0) 

Variable A assigned: TArray<TFloat>[13]= 

(0 0 0 0 0 0 0 0 0 0 0 0 0 ) 

 

Input command: FOR{i=0:12}(IF{i<6}(A[i]=-1 A[i]=sin(Pi/i))) 

i=0: IF: i<6=True, running A[i]=-1. 

Variable A[i] assigned: -1 

... 

i=12: IF: i<6=False, running A[i]=sin(Pi/i). 

Variable A[i] assigned: 0.258819045102521 

 

Symbolic derivatives and integrals 

There are special commands to evaluate symbolic expressions of derivatives and integrals: 

 



 
 

 

 

72 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

DERIVATIVE{Name}(expression) 

 

INTEGRAL{Name}(expression) 

 

where ‘DERIVATIVE’ and ‘INTEGRAL’ are the reserved words; ‘Name’ is a valid variable name; 

‘expression’ is a valid math expression. The command evaluates symbolic expression of 

derivative or integral accordingly, and provides the result with the ‘msg’ parameter of the ‘Run’ 

method. The ‘v’ argument returns the result derivative or integral expression as string value. 

 

Consider the following examples of the commands: 

 

Input command: DERIVATIVE{x}(sin(x^3)) 

cos(x^3)*3*x^2 

 

Input command: INTEGRAL{x}(e^x*x^2) 

x^2*e^x-2*(x*e^x-e^x) 

 

The evaluated symbolic expressions can be then copied and their values for specified variable 

value can be calculated. Here is the console output of the example: 

 

Input command: x=Pi/2 

Variable x assigned: 1.5707963267949 

 

Input command: cos(x^3)*3*x^2 

cos(x^3)*3*x^2=-5.49519136707089 

 

Input command: x=2 

Variable x assigned: 2 

 

Input command: x^2*e^x-2*(x*e^x-e^x) 

x^2*e^x-2*(x*e^x-e^x)=14.7781121978613 

 

Operations with math expressions 

Symbolic operations with math expressions can be done with the following command: 

 

EVALUATE{items}(expression) 

 

where ‘EVALUATE’ is the reserved word; ‘items’ is the name for the operation or a set of 

variable names; ‘expression’ is a valid math expression. The command makes the symbolic 

operation with the expression and provides the result with the ‘msg’ parameter. The following 



 
 

 

 

73 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

special names can be used as the operation: ‘EXPLICIT’ – evaluates the explicit formula of the 

expression; ‘SIMPLIFY’ – simplifies the expression. 

 

The ‘v’ argument returns the result expression as string value. 

 

Consider the following examples of the command and the output4: 

 

Command: EVALUATE{EXPLICIT}(∫sin(x)^2∂x) 

Output: -((sin(x)*cos(x))/2)+(1/2)*x 

 

Command: EVALUATE{SIMPLIFY}(A*(x^2+1-1/3)-4*x/B/2) 

Output: A*(x^2+2/3)-2*x/B 

 

The first command evaluates the explicit expression of the implicit integral, the second 

command simplifies the specified expression. 

The names of the existing variables can be used as the ‘items’ argument. In this case, current 

values of the variables are substituted in the expression as in the following examples: 

 

Command: a=2 

Output: Variable created. a=2 

 

Command: b=-1 

Output: Variable created. b=-1 

 

Command: A=[1/2 -1 2 0] 

Output: Variable created. A=Array<Float>[4]= 

(0.5 -1 2 0 ) 

 

Command: EVALUATE{a b}(a*sin(x)+b*cos(x)) 

Output: 2*sin(x)+(-1*cos(x)) 

 

Command: EVALUATE{A}(A*e^x-B/2) 

Output: [0.5 -1 2 0]*e^x-B/2 

 

                                                
4 Not all examples can be used in the console application because the Unicode symbols are not 
acceptable. 



 
 

 

 

74 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Numerics extension for ANALYTICS 

Numerics extension for ANALYTICS library is a set of ready-to-use numerical tools totally 

integrated with the symbolic capabilities of the library, like analytical differentiation. The 

numerical tools include: least squares approximation (curve fitting and higher dimensional data 

approximation); numerical calculation of one- and two- dimensional definite integrals; ordinary 

differential equation system solution (initial value problems); function analysis (one dimensional 

function roots and extremum search); nonlinear equation systems solution. 

 

The most of numerical algorithms realized in MATHEMATICS library and the Numerics 

extension just provides special classes for the integration between the numerical analysis and 

the analytical capabilities. The integration classes allows providing all input data for the 

algorithms in the symbolic form.  

 

The advantages of using analytical data with the numerical methods: 

- Convenient data representation (as math expression) for developer and user; 

- User defined data for algorithms (for example, approximation function, integrand function); 

- Automatic derivative evaluation if required (for example, nonlinear equation solution); 

- No need to write special classes for function method references; 

- Simple result representation as a string data (for subsequent serialization or network 

transfer). 

 

The next part contains information about main classes for numerical algorithms and explains the 

common usage of realized numerical tools with the analytical capabilities. 

Approximation 

The approximation tool allows making fitting multidimensional data (depending on many 

variables) with arbitrary, user defined basis functions. The main purpose of the fitting is to find 

such coefficients of basis functions, which gives minimal error (in some math sense) between 

the data and the approximation function. 

 

The base abstract class for approximation algorithm Approximator<T> defined in 

Analytix.Numerics.Approximation unit. The main method of the class is: 

 

function Approximate(basis: T; vData: TArray<TArray<TFloat>>; fData: 

TArray<TFloat>): TArray<TFloat>; virtual; abstract; 

 

where ‘basis’ – the Basis instance for approximation; ‘vData’ - variable values (approximation 

nodes); ‘fData’ - function values. The method returns calculated coefficients for specified basis 

function and approximation data. 

 



 
 

 

 

75 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

The most popular approach of approximation is the least squares method 

(https://en.wikipedia.org/wiki/Least_squares). The LinearLeastSquares class realizes the least 

squares approximation with linear basis (linearly depending on the coefficients). 

 

The approximation algorithm requires the instance of Basis class, defined in 

Analytix.Numerics.Basis unit. This is an abstract class for base basis functionality. The main 

method of the class is the function for calculation of the basis value in specified point: 

 

function F(vValues, cValues: TArray<TFloat>): TFloat; virtual; 

 

The method accepts as arguments the variable values (point coordinate) and the coefficient 

values and returns the basis value. 

 

The fully functional basis class for linear least squares approximation is LinearScalarBasis. It 

has the following constructor: 

 

constructor Create(variables: TArray<string>; coefficient: string; 

parameters: TArray<TVariable>; functions: TArray<string>); 

 

where ‘variables’ – names of variables (commonly ‘x’, ’y’, …); ‘coefficient’ – name of coefficient 

variable (commonly ‘C’); ‘parameters’ – additional parameter variables (can be nil); ‘functions’ – 

the array of basis functions expressions (depending on specified variables and parameters). 

 

Let us consider an example of curve fitting (approximation of one-dimensional data) with 

arbitrary set of basis functions. The code for the algorithm is the following: 

 

var 

  approximator: TLinearApproximator; 

  basis: TLinearBasis; 

  variables: TArray<string>; 

  functions: TArray<string>; 

  cValues: TArray<TFloat>; 

begin 

variables:= TArray<string>.Create('x'); // 1 

functions:= TArray<string>.Create('e^x', 'sin(x)', 'e^-x', 'x^2', 

'3^x', 'sinh(2*x)'); // 2 

basis:= TLinearScalarBasis.Create(variables, 'C', nil, functions); //3 

approximator:= TLinearLeastSquares.Create; // 4 

cValues:= approximator.Approximate(basis, vData, fData); // 5 

 

// Use the basis and the calculated coefficients…     

end; 

 

As can be seen from the example above, the approximation made in five lines of code: 

https://en.wikipedia.org/wiki/Least_squares


 
 

 

 

76 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

1. Create the array of variable names (containing one value ‘x’ for one dimensional case). 

2. Create the array of basis functions (analytical expressions), containing six elements. 

3. Create the basis instance with specified basis functions. 

4. Create the approximator instance. 

5. Find the approximation coefficients. 

Once the coefficients have calculated, they can be used to evaluate the basis value for any 

point (variable values). 

 

The example code above uses the instance of LinearScalarBasis class. This class realizes the 

basis concept for scalar basis functions – it is defined by a set of functions, each function 

returns one scalar (real) value. Another functional class for linear approximation is 

LinearVectorBasis. The class realizes concept of vector linear basis – it is define by one basis 

function which returns vector value. The class has the following constructor: 

 

constructor Create(variable, coefficient: string; order, dimension: 

integer; parameters: TArray<TVariable>; f: string); 

 

where ‘variable’ – names of vector variable (commonly ‘X’); ‘coefficient’ – name of coefficient 

variable (commonly ‘C’); ‘parameters’ – additional parameter variables (can be nil); ‘f’ – the 

basis function expressions (depending on specified variables and parameters) – it must return 

vector value (array of real values); ‘order’ – order of basis; ‘dimension’ – dimension of basis. 

 

Here is the code for curve fitting using linear vector basis: 

 

var 

  approximator: TLinearApproximator; 

  basis: TLinearBasis; 

  variable, func: string; 

  parameters: TArray<TVariable>; 

  exponents: TArray<TFloat>; 

  A: TVariable; 

  order: integer; 

  cValues: TArray<TFloat>; 

begin 

  exponents:= TArray<TFloat>.Create(0.0, 0.5, -0.5, 2.5, -3.0, 4.5, -

4.2); // 1 

  order:= Length(exponents); // 2 

  A:= TRealArrayVariable.Create('A', exponents); // 3 

  parameters:= TArray<TVariable>.Create(A); // 4 

  func:= 'e^(A*X[0])'; // 5 

  basis:= TLinearVectorBasis.Create('X', 'C', order, 1, parameters, 

func); // 6 



 
 

 

 

77 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 

  approximator:= TLinearLeastSquares.Create; // 7 

  cValues:= approximator.Approximate(basis, vData, fData); // 8 

end; 

 

The latter example’s general algorithm is the same as the former: create basis instance, create 

appropriate approximator and calculate the basis’ coefficients. The difference is in the basis 

instance creation. First, only one basis function required (line 5), not an array of functions. The 

basis function must be vector function – must return array of real values. For this purpose, 

commonly, it requires additional parameters of vector type (lines 3 and 4). Finally, the dimension 

and order of the basis must be directly specified in constructor. 

 

Advantages of using vector basis are the following: 

- Simple basis function expression (in vector form). 

- Easily create high-order basis (using big array parameter). 

- Change the basis without changing the function (use another parameter array). 

The advantages only remain when using basis function of the same type (exponents in the 

case). When functions of different type required it is recommended using the scalar basis. 

 

There are predefined basis classes for commonly used cases of basis functions. The classes do 

not require the function expressions and the parameter variables for construction, they 

implement the functionality internally. The classes are: 

- GeneralizedExponential (a^x basis functions). 

- ExponentBasis (e^x basis functions). 

- Fourier (sine and cosine Fourier series). 

- Polynomial (x^k basis functions). 

- Taylor ((x-a)^k basis functions – Taylor series). 

- Fourier2D (sine and cosine Fourier series for two- dimensional case). 

 

For nonlinear least squares approximation (https://en.wikipedia.org/wiki/Non-

linear_least_squares) there is the fully functional descendant of NonlinearBasis – 

NonlinearScalarBasis which has the following constructor: 

 

constructor Create(variables, coefficients: TArray<string>; 

parameters: TArray<TVariable>; f: string); overload; 

 

where ‘variables’ – names of variables (commonly ‘x’, ’y’, …); ‘coefficients’ – names of 

coefficient variables (commonly ‘A’, ‘B’, …); ‘parameters’ – additional parameter variables (can 

be nil); ‘f’ – basis function expression (depending on specified variables, coefficients and 

parameters). 

 

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Non-linear_least_squares


 
 

 

 

78 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Besides the nonlinear basis, a special nonlinear approximator must be used for nonlinear least 

squares. The GaussNewtonLeastSquares is recommended for this purpose.  

 

Here is the code of a nonlinear least squares approximation example: 

 

var 

  approximator: TNonlinearApproximator; 

  basis: TNonlinearBasis; 

  variables: TArray<string>; 

  coefficients: TArray<string>; 

  func: string; 

  opt: TSolverOptions; 

  cValues: TArray<TFloat>; 

begin 

  variables:= TArray<string>.Create('x'); // 1 

  coefficients:= TArray<string>.Create('A', 'B'); // 2 

  func:= 'sin(A*x)*e^(B*x)'; // 3 

  basis:= TNonlinearScalarBasis.Create(variables, coefficients, nil, 

func); // 4 

  approximator:= TGaussNewtonLeastSquares.Create; // 5 

  approximator.C0:= TArray<TFloat>.Create(0.0, -1.0); // 6 

  opt:= TSolverOptions.Create(true); 

  opt.MaxIterationCount:= 100; 

  opt.SolutionPrecision:= 0.02; 

  approximator.Options:= opt; // 7 

  cValues:= approximator.Approximate(basis, vData, fData); // 8 

 

 // Use the basis and the calculated coefficients…     

end; 

 

The approximation algorithm consists of the following steps: 

1. Create the array of variable names (containing one value ‘x’ for one dimensional case). 

2. Create the array of nonlinear basis coefficient names. 

3. Set up one basis function, depending on the variables, coefficients and optionally on 

parameters. 

4. Create the basis instance with specified parameters. 

5. Create the approximator instance. 

6. Set up the initial guess for the coefficient values. 

7. Set up the appropriate nonlinear solution options. 

8. Find the approximation coefficients. 

 

The nonlinear approximation algorithm is slightly complicated than the linear one. It requires 

setting the initial guess for the approximation coefficients and the appropriate nonlinear solution 

options (such as the solution precision). Nonlinear least squares approximation uses nonlinear 

iterative solvers for finding the optimal coefficient values. The convergence of the process 



 
 

 

 

79 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

depends on the initial guess for the unknown variables. It is recommended to set up the initial 

guess for the solution accurately (close to the optimal values), based on some special 

knowledge of the problem. The base class NonlinearApproximator has special property 

‘SolutionResult’ that is assigned after call of the ‘Approximate’ method. The structure contains 

data about the solution convergence and can be used for analyzing the nonlinear approximation 

convergence. 

Numerical integration 

The numerical integration tool allows calculating definite integrals for one- and two- dimensional 

functions. The numerical algorithms of integration realized in Mathematix.Integration unit. The 

base classes for 1D and 2D integration are Integrator1D and Integrator2D accordingly. They 

have the following functions for definite integral calculation: 

 

class function Integral(f: TFunction1D; const x1, x2: TFloat; n: 

integer): TFloat; virtual; 

 

class function Integral(f: TFunction2D; const x1, x2, y1, y2: TFloat; 

nx, ny: integer): TFloat; virtual; 

 

The input parameters for the functions are the method references to the integrand functions, 

limits of integrations and the number of integration nodes. The return value in the definite 

integral of the specified function over the specified integration region. 

 

There are the following realized integrator classes for 1D integration: RectIntegrator, 

SimpsonIntegrator, Gauss2NodeIntegrator, Gauss3NodeIntegrator; and the following for 

2D case: BrickIntegrator, Gauss4NodeIntegrator2D, Gauss9NodeIntegrator2D. 

 

For using analytical capabilities with the integration tool, there are the classes of symbolic 

functions, realized in the Analytix.Numerics.Functions unit. The classes are 

SymbolicFunction1D and SymbolicFunction2D for one- and two- dimensional cases 

accordingly. They have the following constructors: 

 

constructor Create(const v, f: string; parameters: TArray<TVariable> = 

nil); 

constructor Create(const v1, v2, f: string; parameters: 

TArray<TVariable> = nil); 

 

The variable names, analytical function expression and additional parameter variables must be 

specified for construction. The classes have the methods for evaluating them in any point which 

can be used for numerical integration: 

 

function F(const v: TFloat): TFloat; 



 
 

 

 

80 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

function F(const x, y: TFloat): TFloat; 

 

Below here is the code for example of numerical integration of 1D function: 

 

var 

  sf1D: TSymbolicFunction1D; 

  integrator: TIntegrator1DClass; 

  ivalue: TFloat; 

begin    

  integrator:= TGauss3NodeIntegrator; 

  sf1D:= TSymbolicFunction1D.Create('x', ‘sin(x)*e^(x^2/8)’); 

  ivalue:= integrator.Integral(sf1D.F, 1.0, 3.0, 10); 

  // Code for using integral value ‘ivalue’…   

end; 

 

The integration algorithms is simple: choose the appropriate integrator class; create the 

integrand function instance; calculate the definite integral value. 

NOTE: there is no need to create an instance of the integrator, because of using virtual class 

function for polymorphic behavior realization.  

Ordinary differential equation solution 

This tool allows solving initial value problems 

(https://en.wikipedia.org/wiki/Initial_value_problem) for the systems of ordinary differential 

equations. The numerical solution algorithms realized in the Mathematix.ODE.Solver unit. The 

base abstract class for solving the problems is ODESolver. And the only its method is: 

 

class function Solve(system: TODESystem; y0: TArray<TFloat>; const t1: 

TFloat; N: integer; var t: TArray<TFloat>): TArray<TArray<TFloat>>; 

virtual; 

 

The method solves the initial value problem for specified ODE system5, initial condition and time 

interval. The result of the solution is the array of function values on each time strep (the time 

steps returned as var method parameter). 

 

There are the following classes implementing the ODE solver functionality: EulerSolver, 

RungeKutta4Solver, FehlbergSolver. 

 

The Solve method requires the instance of the ODESystem (defined in the 

Mathematix.ODE.System unit) class as the first parameter. The main method of the class is 

the following: 

 

                                                
5  All equation must specify the ODE of the first order. The systems of higher orders must 

be transformed first to the equivalent systems of the first order. 

https://en.wikipedia.org/wiki/Initial_value_problem


 
 

 

 

81 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

function Evaluate(const t: TFloat; y: TArray<TFloat>): TArray<TFloat>; virtual; 

 

The method evaluates the equations of the system for the specified variable value and functions 

values. 

 

For using analytical capabilities with the ODE solution tool, there is the base abstract class of 

the symbolic ODE function - AnalyticalODE. Its implementation ScalarODE has the following 

constructor: 

 

constructor Create(const v: string; fv, equations: TArray<string>; 

parameters: TArray<TVariable> = nil); 

 

where ‘v’ is the variable name; ‘fv’ is the unknown function names; ‘equations’ is the array of 

analytical expressions representing the equations. 

 

As an example, let us consider the solution of the initial value problem for one ordinary 

differential equation. The code for the example is the following: 

 

var 

  solver: TODESolverClass; 

  ode: TAnalyticalODE; 

  fv, equations: TArray<string>; 

  y0: TArray<TFloat>; 

  t: TArray<TFloat>; 

  y: TArray<TArray<TFloat>>; 

begin 

  fv:= TArray<string>.Create('y'); 

  equations:= TArray<string>.Create('2*sin(t)+t/y'); 

  ode:= TScalarODE.Create('t', fv, equations);  

  solver:= TRungeKutta4Solver; 

  y0:= TArray<TFloat>.Create(1.0); 

  y:= solver.Solve(ode, y0, 10.0, 1000, t); 

  // Code for using ‘y’ values …  

end; 

 

The example demonstrates common steps for the initial value problem solution: create the 

analytical ODE system with specified equation expressions; select the appropriate solver; 

specify the initial values; solve the system with specified time interval and number of discrete 

steps. 

 

NOTE: the number of returned time and function values can differ from the specified time steps. 

There are automatic time step solvers, like Fehlberg’s method, which select the step by some 

precision formula. The only thing guaranteed is that the last time value is more or equal to the 



 
 

 

 

82 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

specified. The precision of the step selected can be specified using the ‘StepTolerance’ 

property of the solver’s class. 

 

Another implementation of the analytical ODE system VectorODE is intended for modeling 

systems set up in ‘matrix’ form (https://en.wikipedia.org/wiki/Matrix_differential_equation). The 

class has the following constructor: 

 

constructor Create(const v, fv, equation: string; dimension: integer; 

parameters: TArray<TVariable> = nil); 

 

The constructor requires one unknown function name and one equation. The unknown function 

is supposed to be an array of float values as well as the equation return. The extension package 

‘Analytics.LinearAlgebra’ must be initialized to support all array/matrix operations. 

 

The following code demonstrates an example of solving an initial value problem for a vector 

ODE system: 

 

var 

  t1: TFloat; 

  N: integer; 

  solver: TODESolverClass; 

  ode: TAnalyticalODE; 

  A, B: TVariable; 

  ma: TArray<TArray<TFloat>>; 

  vb: TArray<TFloat>; 

  prms: TArray<TVariable>; 

  y0, t: TArray<TFloat>; 

  y: TArray<TArray<TFloat>>; 

begin 

  // Create parameter variables. 

  SetLength(ma, 2, 2); 

  ma[0,0]:= 3; ma[0,1]:=-4; 

  ma[1,0]:= 4; ma[1,1]:=-0.7; 

  A:= TRealMatrixVariable.Create('A', ma); // A-matrix. 

  SetLength(vb, 2); 

  vb[0]:=-1; vb[1]:= 1; 

  B:= TRealArrayVariable.Create('B', vb); // B-vector. 

  prms:= TArray<TVariable>.Create(A, B); 

 

  y0:= TArray<TFloat>.Create(1.0,-1.0); // Initial conditions. 

 

  solver:= TFehlbergSolver; // Use the Fehlberg solver. 

 

  ode:= TVectorODE.Create('t', 'y', 'A×y+B/(t^2+1)', 2, prms); 

 

  y:= solver.Solve(ode, y0, 3.0, 1000, t);  

https://en.wikipedia.org/wiki/Matrix_differential_equation


 
 

 

 

83 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 // Code for using ‘y’ values …  

end; 

 

As can be seen from the code above, the matrix/array parameters must be created and added 

to the ODE system constructor. This is because the result of the equation must be array of float 

values. The constructor parameter must also directly provide the dimension of the system. But 

only one equation required to set up the system. 

Function analysis 

The analysis tool provides functionality for finding roots and extremum points for univariate 

functions. The base abstract class for function root search is RootFinder defined in the 

Mathematix.Analysis unit. It has the following function: 

 

class function Solve(f, df: TFunction1D; const x1, x2: TFloat; const 

opt: TSolverOptions; var xr: TFloat): TSolutionResult; virtual; 

 

The function solves the nonlinear equation f(x)=0 for the specified univariate function, interval 

and solution options (defining the precision, maximum iteration count and so on). The returned 

result contains the information about solution convergence, made iterations and so on. The 

found root returned via var ‘xr’ parameter. 

All solvers requires the method reference of type Function1D (defined in the 

Mathematix.Numerics unit). Some solvers require also the reference to the derivative function. 

The method DerivativeRequired of the class defines if the derivative required for the solver. 

 

There are the following classes, implementing the root search: Bisection, Secant, Newton. 

 

NOTE: All algorithms for root search can find only one root on the specified interval. The 

convergence depends on the algorithm and the specified parameters. 

 

The SymbolicFunction1D class (defined in the Analytix.Numerics.Functions unit) provides 

the functionality for finding roots of the analytical functions, including automatic derivative 

calculation. 

 

The simple code example for finding a root of a function is the following: 

 

var 

  sf1D, dsf1D: TSymbolicFunction1D; 

  solver: TRootFinderClass; 

  opt: TSolverOptions; 

  xr: TFloat; 

  sr: TSolutionResult; 

begin 

  solver:= TNewton; // 1 



 
 

 

 

84 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  sf1D:= TSymbolicFunction1D.Create('x', 'sin(x^2)*e^-x'); // 2 

  dsf1D:= sf1D.Derivative;               

  opt:= TSolverOptions.Create(true); // 3          

  sr:= solver.Solve(sf1D.F, dsf1D.F, 1.0, 3.0, opt, xr); // 4 

  if sr.Converged then 

  // Code for using the root value 'xr'... 

end; 

 

The example consists of the following steps:  

1. Select the appropriate solver. 

2. Create the instance of the symbolic function and get its derivative. 

3. Set up the options for the solver. 

4. Solve the nonlinear equation. 

 

The class FunctionAnalyser from the Analytix.Numerics.Analysis unit provides advanced 

functionality – it allows finding many roots and extremums on some interval. Let us consider an 

example of the analysis. 

 

var 

  sf1D: TSymbolicFunction1D; 

  solver: TRootFinderClass; 

  opt: TSolverOptions; 

  points: TArray<TFunctionPoint>; 

begin   

  solver:= TNewton; 

  sf1D:= TSymbolicFunction1D.Create('x', 'sin(x^2)*e^-x'); 

  opt:= TSolverOptions.Create(true);      

  points:= TFunctionAnalyser.Analyse(sf1D, solver, opt, 1.0, 3.0, 10);  

  // Code for using found special function points ‘points’… 

end; 

 

In the code above, the Analyse method divides the specified interval [1.0..3.0] by 10 uniform 

subintervals and try to find a root and an extremum on each of them. The result is the array of 

found special points. Each point contains variable value, function value and the type – root, 

minimum or maximum. 

Nonlinear equation systems solution 

The base abstract class for solving nonlinear equation systems is the NonlinearSolver defined 

in the Mathematix.NL.Solver unit. It has the following method: 

 

function Solve(system: TNonlinearSystem; x0: TArray<TFloat>; const 

options: TSolverOptions; var x: TArray<TFloat>): TSolutionResult; 

virtual; 



 
 

 

 

85 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

where ‘system’ is the definition of a nonlinear equation system; ‘x0’ is the initial guess for 

solution; ‘options’ specifies such parameters as precision, number of iterations and so on. The 

method returns as result the information about solution convergence. The found root of the 

system returned as the var ‘x’ parameter. 

 

There implemented nonlinear solver class is NewtonRaphsonSolver. 

 

The class AnalyticalSystem from the Analytix.Numerics.Nonlinear unit implements full 

functionality for definition of nonlinear systems in symbolic form, including analytical Jacobian 

calculation. 

 

Here is the code of example for solving three-dimensional nonlinear system, which comes from 

the problem of intersection of three nonlinear surfaces. 

 

var 

  variables, equations: TArray<string>; 

  system: TAnalyticalSystem; 

  x0, x: TArray<TFloat>; 

  opt: TSolverOptions; 

  solver: TNonlinearSolver; 

  r: TSolutionResult; 

begin 

  variables:= TArray<string>.Create('x', 'y', 'z'); 

  equations:= TArray<string>.Create( 

    'x^2+y^2+z^2-1' {sphere equation}, 

    'x^2+y^2-z'     {paraboloid equation - along x-axis}, 

    '-x+2*y^2+z^2'  {paraboloid equation - along z-axis}); 

 

  system:= TAnalyticalSystem.Create(variables, equations);  

  x0:= TArray<TFloat>.Create(1.0, 1.0, 1.0); 

  opt:= TSolverOptions.Create(true); 

  solver:= TNewtonRaphsonSolver.Create(); 

  r:= solver.Solve(system, x0, opt, x); // solving the system 

  if r.Converged then 

  // Code for using the solution 'x'... 

end; 

 

The solution algorithm is simple: construct the analytical system instance with provided arrays of 

variable names and equations; set up the initial guess and options for the solution; create the 

solver instance; solve the problem for the specified data. 

 

Linear algebra extension for ANALYTICS 

Linear algebra extension for ANALYTICS library introduces the operations on N-dimensional 

arrays and matrices of real numbers for using in the analytical expressions. All common 



 
 

 

 

86 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

array/matrix operators realized – addition, multiplication, summation and so on. All elementary 

functions and base special functions (see Appendix A) are applicable for the array/matrix data 

and evaluated for each data element. 

 

The next part contains detailed information about the operators and functions, realized in the 

Linear Algebra extension library and the. 

Introducing arrays and matrices 

There are two ways to use N-dimensional arrays and matrices in the analytical expressions. The 

first one is to add array/matrix variables to the translator instance. The following code is an 

example of adding an array and a matrix variable: 

 

var 

  av: TArray<TFloat>; 

  mv: TArray<TArray<TFloat>>; 

  A: TRealArrayVariable; 

  M: TRealMatrixVariable; 

begin 

  av:=TArray<TFloat>.Create(0.2, -0.1, 0.4, -0.25); 

  A:=TRealArrayVariable.Create('A', av); 

  translator.Add(A); 

 

  SetLength(mv, 3, 4); 

  mv[0,0]:= 0.5; mv[0,1]:=-0.4; mv[0,2]:= 0.33; mv[0,3]:= 0.44; 

  mv[1,0]:=-0.3; mv[1,1]:= 0.1; mv[1,2]:= 0.28; mv[1,3]:= 0.25; 

  mv[2,0]:=-0.4; mv[2,1]:=-0.2; mv[2,2]:=-0.75; mv[2,3]:= 1.0; 

  M:=TRealMatrixVariable.Create('M', mv); 

  translator.Add(M); 

    …  

 

After the code, the variables ‘A’ and ‘M’ can be used in analytical expressions. The ‘A’ variable 

represent the array of 4 components, the ‘M’ variable is the 3x4 matrix. 

 

Another way is using special constructing functions directly in the expressions. The constructing 

functions are: 

 

Array{N}(x) – returns the array with N elements, each element is x; 

Matrix{M N}(x) – returns the MxN matrix, each element is x; 

Diagonal{N}(x) – returns the square diagonal NxN matrix, each diagonal element is x; 

Antidiagonal{N}(x) – returns the square antidiagonal NxN matrix, each element on the 

antidiagonal is x. 

Array and matrix operators 



 
 

 

 

87 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

The following binary operators are defined for Real/Array/Matrix operands:  ‘+’, ‘-‘, ‘*’, ‘•’, ‘×’, ‘/’, 

‘^’. These operators are implemented to satisfy common linear algebra rules for vector and 

matrix operations where applicable. The following implementation features have to be taken into 

account: 

- Addition operations ‘+’, ‘-‘ for Array and Matrix operands implemented by rows – the array 

elements added to (subtracted from) each matrix row. 

- Cross product ‘×’ of Arrays and Matrices implemented with common vector/matrix rules. For 

two matrices it is the matrix multiplication. For two arrays it is the outer product – result is a 

matrix. For mixed array/matrix operands: when array is the first operand it is treated as a 

‘row-vector’, when it is the second operand – as a ‘column-vector’. 

- Multiplication ‘*’ of Arrays and Matrices implemented as ‘by-element’ operation. When 

applied for mixed Array/Matrix operands the by-component operation is implemented by 

rows (as addition or subtraction). 

- The dot product operation ‘•’ defined for Array operands only and follows common rules of 

linear algebra. 

- Division ‘/’ of Arrays and Matrices implemented as ‘by-element’ operation (see multiplication 

operator). 

- The power ‘^’ operation for arrays and matrices is implemented by components. 

 

The unary operators for Array and Matrix arguments are: 

- Number operator ‘#’: number of elements in an array or a matrix. 

- Minus operator ‘-’: sign inverse of elements. 

- Square root operator ‘√’: square root of elements. 

- Sum operator ‘∑’: sum of an array elements; sum of a matrix rows (array). 

- Delta operator ‘∆’: finite difference D[i]=A[i+1]-A[i] for array elements; for a matrix the 

operator evaluates by each row. 

- Product operator ‘∏’: product of an array elements; product of a matrix rows (array). 

- Apostrophe operator ‘'’: transposition of a matrix. 

- Accent operator ‘`’: inverse of a matrix (applicable for square matrices only). 

- Absolute operator ‘||’: absolute values of array or matrix elements. 

- Norm operator ‘‖‖’: vector L2 norm of an array or a matrix. 

 

Here is the code for examples of using array/matrix operators. It is supposed that the array ‘A’ 

and the matrix ‘M’ variables added as in the previous section. The first example is to calculate 

the standard statistics deviation (https://en.wikipedia.org/wiki/Deviation_(statistics)). 

 

var 

  f: string; 

  v: TValue; 

  d: TFloat; 

begin 

  f:= '∑((A-1/2)^2)/#A'; 

  v:= ftranslator.Calculate(f); 

https://en.wikipedia.org/wiki/Deviation_(statistics))


 
 

 

 

88 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  d:= TUtilities.FromValue<TFloat>(v); 

  // d – the deviation value 

end; 

 

The deviation value calculated for the mean ½. Note that there are obligatory the parentheses 

for the power operator, because the unary prefix sum operator is of higher precedence than the 

binary power one. 

 

The next example is the solution of an overdefined system of linear equations by the least 

squares method (https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)). 

 

var 

  f: string; 

  v: TValue; 

  x: TArray<TFloat>; 

begin 

  f:= 'M'×A×(M'×M)`'; 

  v:= ftranslator.Calculate(f); 

  x:= TUtilities.FromValue<TArray<TFloat>>(v); 

 // x – the system solution 

end; 

 

NOTE: use the ‘TUtilities.FromValue<Generic Type>’ method to convert TValue to a generic 

type (like TArray<TFloat>). This method solves the problem of using generics types with run-

time Delphi packages. 

Array and matrix functions 

All elementary and base special functions (see Appendix A) are applicable for array/matrix 

arguments. These functions apply the evaluation to every component of an array or a matrix 

and return an array or a matrix of the same size. Parametric functions, like ‘log{b}{a}’, allow as 

array/matrix parameters as real parameters and arguments. 

 

There are also specific functions for array/matrix arguments: 

 

Min(X), Max(X) – minimal/maximal component of an array or a matrix. 

Range{i1 i2}(A) – range of an array components from ‘i1’ to ‘i2’ inclusively.  

Range{i1 i2 j1 j2}(M) – submatrix of ‘M’ containing ‘i1’-‘i2’ rows an ‘j1’-‘j2’ columns inclusively. 

RowCount(M), ColumnCount(M) – number of rows/columns of a matrix. 

Diagonal(M), Antidiagonal(M) – main diagonal/antidiagonal of a matrix. 

Row{N}(M), Column{N} (M) – ‘N’-th row/column (array) of a matrix. 

Minor{i j}(M) – minor (matrix) of the [i,j]-th matrix’ element. 

CumSum(X) – cumulative sum of the array (for matrix it is evaluated for each separate row). 

CumProduct(X) – cumulative product of the array (for matrix it is evaluated for each row). 

https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)


 
 

 

 

89 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Outer(X Y) – outer product of two arrays, the result is the matrix. 

det(M) – determinant of a square matrix. 

tr(M) – trace of a square matrix. 

adj(M) – adjoint of a square matrix. 

cond(M) – condition number of a square matrix (using L2 norm). 

pinv(M) – pseudo-inverse of a rectangular matrix. 

Logical array and matrix operations 

The Linear Algebra extension also introduces operations with logical array and matrices 

(containing Boolean values) and comparison operations with Real/Array/Matrix values. 

The following logical operators supported for logical array and matrix operands: not  ‘¬’, or ‘\’, 

and ‘&’. The comparison operations are: ‘≡’, ‘≈’, ‘≠’, ‘>’, ‘<’, ‘≥’, ‘≤’. The logical and comparison 

operations are element-wise ones, the operation’s result is logical array or matrix of the same 

size as operands are. Binary operations also supported when one of the operands is a scalar 

value. The multiplication operator ‘*’ also applicable for real/array/matrix operand and logical 

array/matrix. The operation is equivalent to the element-wise multiplication for logical values 

‘true’=1 and ‘false’=0. 

The following functions, described above, are also applicable for the logical arrays and matrices: 

Range, RowCount,  ColumnCount, Row, Column, Minor; and constructors Array, Matrix.  

The special function Count{x}(A) returns the number of ‘x’ values (true or false) in logical array 

‘A’. There are special variants of ‘if’ function for the real arrays and matrices with logical 

parameter: if{B}(X Y). Here the ‘B’ parameter is logical array or matrix of the same size as the 

‘X’ and ‘Y’ arguments – real arrays or matrices. The result is also real array or matrix, which 

elements are the results of element-wise ‘if’ function. 

 

Let us consider as an example of the logical array application the following problem solution: 

there are two currencies course data (arrays) for the same ten periods; we need to calculate, 

how many periods the course difference was more than 0.1. 

The code for the problem solution is the following: 

 

var 

  a1, a2: TArray<TFloat>; 

  f: string; 

  x: TFloat; 

begin 

  a1:=TArray<TFloat>.Create(1.10, 1.15, 1.20, 1.17, 1.17, 1.18, 1.20, 

1.17, 1.15, 1.16); 

  a2:=TArray<TFloat>.Create(1.31, 1.32, 1.32, 1.33, 1.30, 1.28, 1.27, 

1.25, 1.23, 1.22); 

  translator.Add('A1', a1); 

  translator.Add('A2', a2); 

 

  f:= 'Count{true}(A2-A1>0.1)'; 



 
 

 

 

90 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

  x:= translator.Calculate(f).AsType<TFloat>; 

  // x – is the number of periods 

end; 

 

For the example course values the answer is 6 periods. In the code above, logical array using is 

implicit: logical array returned by the comparison operation ‘>’ and then its components used to 

count the number of ‘true’ values. 

The array if{B}(X Y) function allows mixed X and Y arguments, that is one of them can be 

scalar (real) value. Then the result of the function is also the array of the same as B size and the 

scalar value used to fill the elements of the array according to the condition. 

As an example, let us consider the following problem: calculate the sum of array’s elements 

those are greater than the specified value. The code for solution is: 

 

var 

  av: TArray<TFloat>; 

  f: string; 

  s: TFloat; 

begin 

  av:=TArray<TFloat>.Create(0.2, 0.2, 0.1, 0.25, 0.35, 0.15, 0.04, 

0.01, 0.12, 0.1, 0.02, 0.1, 0.15, 0.25, 0.05, 0.4); 

  translator.Add('A', av); 

 

  f:= '∑if{A>1/10}(A 0)'; 

  s:= translator.Calculate(f).AsType<TFloat>; 

  // use s value... 

end; 

 

The output for the example is: 

 

∑if{A>1/10}(A 0) = 2.07 

 

The example formula contains 0 value as the second argument of ‘if’ function with array 

condition, so, when the condition is true, the result array element picked from ‘A’ array, else the 

element is 0. Then the sum of the elements evaluated with the ‘∑’ operator and it is the solution 

of the stated problem. 

  

Statistics extension for ANALYTICS 

Statistics extension for ANALYTICS library introduces base statistical analysis functions for real 

sample data. It allows evaluating base statistical properties of the sample, such as mean value, 

median, mode, standard deviation, variance and covariance. Other functionality includes: 

generation of number sequences (Fibonacci, prime numbers and many others); creating 

arithmetic, geometric and harmonic progressions; working with probability distributions. 

 



 
 

 

 

91 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

The next part contains detailed information about the functions, realized in the Statistics 

extension library and base processing cases. 

Base statistical functions 

Most of statistical functions work with real array data. The most of the functions also realized for 

real matrices and they processed by rows, that is statistical analysis is made for each separate 

row and the result is array of data for each row.  

 

Evaluating base statistical characteristics: 

Mean{P}(X)– mean of the X array (matrix rows); here P parameter is the ‘power’ of the mean 

algorithm (https://en.wikipedia.org/wiki/Mean#Power_mean), -1 – harmonic, 0 – geometric, 1 – 

arithmetic, 2 – quadratic. 

Median(X) – median of the X array (matrix rows). 

Mode(X) – mode of the X array (matrix rows), commonly used for arrays of integer values. 

Variance(X) – variance of the X array (matrix rows). 

Deviation(X) – standard deviation of the X array (matrix rows). 

Covariance(X Y) – covariance of the X and Y arrays (matrix rows). 

 

Processing data: 

Sort{P}(X)– sorts the X array values; here P parameter is the order of sorting -1 – descending 

order, 1 – ascending order. 

Sort{C P}(X)– sorts the X matrix rows; here P parameter is the order of sorting -1 – descending 

order, 1 – ascending order; C parameter is the column number for sorting the matrix’ rows. 

Array(M) – transforms the M matrix to the array (by rows). 

Array{min max}(N) – generates array of N uniform real values on the interval [min..max]. 

Reverse(X) – reverses the order of the X array elements. 

Odd(X) – elements of the X array (rows of matrix) with odd indexes (the first index is 0). 

Even(X) – elements of the X array (rows of matrix) with even indexes (the first index is 0). 

Sample(X) – different samples in the X array (matrix rows) in ascending order, commonly used 

for integer values. 

Frequency(X) – number of different samples (in ascending order) in the X array (matrix rows), 

commonly used for integer values. 

Histogram{N}(X)– creates the histogram for X array values (matrix rows) with N subintervals. 

Values{min max}(X) – extracts values from the X array (matrix rows) laying on the [min..max] 

interval. The order of values kept as in the X. 

Items{N}(X) – extracts items of the X array (matrix rows) with indexes, defined in the N array 

(must contain integer values). The number of indexes can be greater than the length of X, the 

indexes with the same values allowed many times, the order of items defined by the indexes. 

 

Here is the example code for base statistical characteristics evaluation of a real array: 

 

https://en.wikipedia.org/wiki/Mean#Power_mean


 
 

 

 

92 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

var 

  av: TArray<TFloat>; 

  f: string; 

  m, mn, md, v, d: TFloat; 

begin 

  av:=TArray<TFloat>.Create(0.2, 0.2, 0.1, 0.25, 0.35, 0.15, 0.04, 

0.01, 0.12, 0.1, 0.02, 0.1, 0.15, 0.25, 0.05, 0.4); 

  translator.Add('A', av); 

 

  f:= 'Mean{1}(A)'; 

  m:= translator.Calculate(f).AsType<TFloat>; 

  f:= 'Median(A)'; 

  mn:= translator.Calculate(f).AsType<TFloat>; 

  f:= 'Mode(A)'; 

  md:= translator.Calculate(f).AsType<TFloat>; 

  f:= 'Variance(A)'; 

  v:= translator.Calculate(f).AsType<TFloat>; 

  f:= 'Deviation(A)'; 

  d:= translator.Calculate(f).AsType<TFloat>; 

 

  // using the values 

end; 

 

The output result for the data is: 

 

Mean      of A = 0.155625 
Median    of A = 0.135 
Mode      of A = 0.1 
Variance  of A = 0.012124609375 
Deviation of A = 0.440447215906742 

 

Number sequences and progressions 

The Statistics extension contains functions for generating sequences of special numbers. There 

are the following functions for three special cases: 

 

xxx(N) – generates sequence of N numbers. 

xxx{X0}(N) – generates sequence of N numbers beginning from the X0 value. 

xxx(X1 X2) – generates sequence of numbers on the interval [X1..X2]. 

 

Here xxx is the name of the sequence to generate. The following sequences supported: 

Fibonacci, Primes, Composites, Naturals, Integers, Odds, Evens, Squares, Cubes, 

Factorials. The type of numbers generated follows directly from the name. The X0 parameter in 

the second function can be not a member of the sequence, and then the first generated value is 

greater or equal to X0.  



 
 

 

 

93 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Another type of number sequence is progression. The library supports arithmetic, geometric and 

harmonic progressions. There are the following functions for working with progressions: 

 

xxx{A1 P}(N) – generates N values of progression with the first member A1 and parameter P. 

xxx{N}(A1 P) – generates N-th element of progression (the first number is 1) with the first 

member A1 and parameter P. 

xxxSum{A1 P}(N) – calculates sum of N members of progression with the first member A1 and 

parameter P. 

 

Where xxx is the name of progression: Arithmetic, Geometric or Harmonic. 

Let us consider simple example code for generating number sequences: 

 

var 

  f: string; 

  v1, v2: TValue; 

  pn, gp: TArray<TFloat>; 

begin 

  f:= 'Primes(0 100)'; 

  v1:= translator.Calculate(f); 

  pn:= TUtilities.FromValue<TArray<TFloat>>(v1); 

 

  f:= 'Geometric{2 1/2}(10)'; 

  v2:= translator.Calculate(f); 

  gp:= TUtilities.FromValue<TArray<TFloat>>(v2); 

 

  // using pn and gp values… 

end; 

 

The output for the code is the following: 

 

Prime numbers = TArray<TFloat>[25]= 
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97) 
Geometric progression = TArray<TFloat>[10]= 
(2 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625) 
 

The first function generated the sequence of all prime numbers on the interval [0..100]. The 

second function produced first ten members of geometric progression with initial value 2.0 and 

common ratio 0.5. 

Probability distributions 

Probability distributions allow generate discrete values for probability distribution functions 

(PDF), cumulative distribution functions (CDF), inverse distribution functions (quantiles) and 

random numbers. The functions for the purposes are: 

 



 
 

 

 

94 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

xxxPDF{X0 P}(X1 X2 N) – generates N values of the PDF on the interval [X1..X2] (X0 and P 

are the parameters of the distribution according to 

https://en.wikipedia.org/wiki/List_of_probability_distributions). 

xxxCDF{X0 P}(X1 X2 N) – generates N values of the CDF on the interval [X1..X2]. 

xxxQuantile{X0 P}(X1 X2 N) – generates N values of the quantile function on the interval 

[X1..X2]. 

xxxRnd{X0 P}(X1 X2 N) – generates N random values for the distribution on the interval 

[X1..X2]. 

 

Here xxx is the name of distribution. The following distributions supported: Gauss (normal 

distribution), Laplace, Cauchy, Gumbel, Logistic, Exponential (exponential distribution has 

one parameter only and all functions for it must be called without the X0 value). 

 

Let us consider a simple example code of using random values generators: 

 

var 

  f: string; 

  v: TValue; 

  h: TArray<TFloat>; 

begin 

  f:= 'Histogram{11}(GaussRnd{4 1}(0 5 1000000))'; 

  v:= translator.Calculate(f); 

  h:= TUtilities.FromValue<TArray<TFloat>>(v); 

 

  // using the h value… 

end; 

 

The output for the code is: 

 

Histogram = TArray<TFloat>[11]= 
(211 957 3794 12404 33147 71146 125464 179899 211445 202334 159199) 

 

The function ‘GaussRnd{4 1}(0 5 1000000)’ generates one million of random numbers on the 

interval [0..5] distributed according to the Gauss probability function with parameters µ=4 and 

σ=1. Then the histogram of the values created for 11 subintervals. As it is expected, the 

maximum number of values is in the 9-th subinterval that includes the point 4 (the mean or 

expectation of the distribution). 

 

https://en.wikipedia.org/wiki/List_of_probability_distributions


 
 

 

 

95 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Converting expressions to external formats and drawing formulae 

ANALYTICS library works with formulae, written as plain Delphi strings (using Unicode 

characters). The main reason for this is providing simple interface for dealing with formulae in 

the code. As plain text is not a natural form for math expression representation, the library uses 

special syntax to write some types of operations: power operator, vector and matrix expressions 

and so on. Math expressions, written using the syntax can be converted to external formats to 

show the result of symbolic evaluations as math formula. 

Conversion classes realized in Exversion package. The base class for formula conversion is 

AnalyticsConverter that has the following main method: 

 

function Convert(const value: string): string; virtual; abstract; 

 

This method converts any symbolic expression, written according the sysntax of ANALYTICS 

library, to some external format. The realized descendant of the class is 

AnalyticsTeXConverter that converts formulae to TeX format 

(https://en.wikibooks.org/wiki/LaTeX/Mathematics). TeX format is widely used for creating 

scientific articles and there are many software tools to draw TeX formula and convert them to 

DOC or PDF formats. 

 

Common conversion algorithm is the following: 

 

var 

  f, texf: string; 

  converter: TAnalyticsConverter; 

begin 

  f:= 'A*sin(n*x)+B/2*e^(m*y)'; 

  converter:= TAnalyticsTeXConverter.Create; 

  try 

    texf:= converter.Convert(f); 

  except on E: Exception do 

    // Show exception message... 

  end; 

 

  // Using formula in TeX format... 

end; 

 

First, an instance of converter created. Then the method ‘Convert’ used for converting string to 

the TeX format. After the code execution, the ‘texf’ variable will have the following value: 

 

{{{A}\cdot{{sin}\left({{n}\cdot{x}}\right)}}+{{\frac{B}{2}}\cdot{{e}^{{m}\cdot{y}}}}} 

 

https://en.wikibooks.org/wiki/LaTeX/Mathematics


 
 

 

 

96 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

This TeX string can be then used to draw the expression as natural math formula in desktop or 

Web application. For example, to draw the formula in Web browser, the MathJax CDN service 

(https://en.wikipedia.org/wiki/MathJax) can be used. For doing this it is enough to create a file 

with the following HTML code: 

 

<!DOCTYPE html> 

<html> 

<head> 

    <script type="text/javascript" 

src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-

MML_HTMLorMML"></script> 

    <title> TMS Analytics & Physics </title> 

</head> 

<body> 

    $$ XXX $$ 

</body> 

</html> 

 

Here ‘XXX’ must be replaced with the TeX formula to draw. Opening the file with Web browser, 

the formula will be drawn like this: 

 
The TeX converter supports all types of expressions, defined in ANALYTICS library. Here are 

the examples of conversion for different types of expressions with features description: 

Power expressions shown as superscripts: ‘(x+1)^(y-2)’ 

 
Multiple powers enclosed with parentheses to keep the order of operations: ‘(x^y)^-z’ 

 
Multiple division/multiplication operations presented as a sequence of fractions: ‘(x-

1)/2*(x+1)/A/B*(x-A)*(x+B)’ 

 
Indexed data (array and matrix elements) shown with subscripts: ‘A[i+1][j-1][n*k]’ 

 
Parametric (special) functions use subscripts for parameters: ‘log{a}(x+1)’ 

https://en.wikipedia.org/wiki/MathJax


 
 

 

 

97 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

 
Special functions with two parameters use super- and sub- scripts: ‘P{m n}(x+1)’ 

 
Special operators use special symbols and format: ‘√(x^2-1)*∑(A*x/N!)’ 

 
Implicit derivative operator drawn as partial derivative: ‘∂²ψ(δ*ε)/∂ε²+∂³(ζ(α)^η(β))/∂α∂β²’ 

 
Implicit integral operator shown as indefinite or definite integral:  

‘∫(sin(x)-ln(x)/12*e)∂x{A-1 B*e^y}’ 

 
Matrix and vector expressions shown with brackets and braces: ‘[[x y z] [0 -1 a]]×[i j k]’ 

 
Note that one-dimensional arrays are shown as column vectors. Use two-dimensional arrays 

with one row to get a row vector: ‘[[A B]]×[[x y z] [0 -1 a]]’ 

 
Thus, all symbolic expressions can be shown in natural form of math formulae. 

 

There are some options in the AnalyticsConverter class to change the format of formula 

representation. The ConvertFunctions boolean property used for forcing some standard 

functions presented as predefined math operations. The supported functions are: ‘sqrt’, ‘root’, 



 
 

 

 

98 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

‘pow’, ‘abs’, ‘exp’. Here is the example of formula representation ‘sqrt(x^2-

1)+root{3*n}(x/2)*abs(x-A)-exp(x^2)*pow{n/2}(x+1)’. 

 

Function conversion is off: 

 
 

Function conversion is on: 

 
 

Another feature of the Exversion package is converting formula written in an external format to 

a formula for analytical evaluation. The ASCIIMathAnalyticsConverter class realizes 

conversion of the ASCII Math (http://asciimath.org/) formulae to the internal format of Analytics 

library. The following code template shows a common usage of the class: 

 

uses 

  … 

  Exversion.Converter, 

  Exversion.Converters.Analytix, 

  … 

 

var 

  asciif, f: string; 

  converter: TBaseConverter; 

begin 

  asciif:= ' A*log _(10)x+(x^2)/(sqrt(alpha))'; 

  converter:= TASCIIMathAnalyticsConverter.Create; 

  try 

    f:= converter.Convert(asciif); 

  except on E: Exception do 

    // Show exception message... 

  end; 

 

  // Using formula f for evaluation... 

end; 

 

http://asciimath.org/


 
 

 

 

99 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

In the code above the formula ‘A*log _(10)x+(x^2)/(sqrt(alpha))’ in ASCII Math 

format converted to the Analytics formula ‘A*log{10}(x)+((x^2)/(√(α)))’ that can be then used for 

evaluation, symbolic derivative or integral calculation and so on. 

 

The converter supports the following ASCII Math constructions. 

 

Greek letters: 'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 

'mu', 'nu', 'xi', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega', 'Gamma', 'Delta', 'Theta', 

'Lambda', 'Xi', 'Pi', 'Sigma', 'Phi', 'Psi', 'Omega'. 

 

Math operators (Analytics equivalents  shown in parentheses): '+' (+), '-' (-), '*' (*), '/' (/), '^' (^), '!' 

(!), '|' (|), '<' (<), '>' (>), '<=' (≤), '>=' (≥), '!=' (≠), '~~' (≈), '-=' (≡), 'xx' (×), 'and' (&), 'or' (\), 'not' (¬), 

'uarr' (↑), 'darr' (↓), 'rarr (→)', 'larr (←)', 'harr (↔)', 'abs' (||), 'norm' (‖‖), 'sqrt' (√). 

 

Special symbols: subscript ‘_’ and superscript ‘^’; digit delimiter ‘.’; infinity ‘oo’; grouping 

parentheses ‘()’; matrix brackets ‘[]’. 

 

Special functions with sub- and super- scripts: integral ‘int’, sum ‘sum’, product ‘prod’. 

 

Derivative expressions: simple derivatives d(f(x))/d(x), higher order derivatives d^2(f(x))/dx^2. 

 

The subscript symbol is used to denote parametric functions or indexed data in Analytics math 

expressions. The superscript symbol is used to denote bi-parametric functions or power 

operator. Grouping parentheses are used to denote function parameters, multiple indexes, or to 

change order of operations. The matrix brackets are used to denote vector, matrix, or higher 

order array expressions. When using integral, derivative, sum, and product expressions it is 

always recommended to use parentheses for their arguments. 

 

There are several examples of ASCII Math formula conversions to Analytics format: 

 

ASCII Math formula                                             Analytics formula 

A*sqrt(alpha)+(B)/(beta^2)*sin (x)/(pi)   A*√(α)+((B)/(β^2))*sin((x)/(π)) 

log _(10)x+root(3)(gamma*x)               log{10}(x)+root{3}(γ*x) 

P_m^n(cos x)-P_(n-1)(cos x)/x             P{m n}(cos(x))-P{n-1}((cos(x))/x) 

[[x,y,z],[0,-1,a]]xx[i,j,k]               [[x y z] [0 -1 a]]×[i j k] 

A_(i,j)*r^i+B_(j,i)*r^(-i)                A[i][j]*r^i+B[j][i]*r^(-i) 

if_(x>=lambdaandx>0)(x^2,-lambda)         if{x≥λ&x>0}(x^2 -λ) 

sum _(i=1)^n(i^2)                         ∑(i^2){i=1:n} 

prod _(j=0)^K(A_j+M_(2,j))                ∏(A[j]+M[2][j]){j=0:K} 

int _1^A(x^2*sin (x))dx                   ∫(x^2*sin(x))∂x{1 A} 

(d^2(e^x*sin(x)))/(dx^2)                  (∂²(e^x*sin(x))/∂x²) 

 



 
 

 

 

100 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Notes about using ASCII math formulae with Analytics library: 

- The ASCII Math format is a markup language to draw mathematical formula. This language 

is very permissive concerning the syntax. Be careful while using the formulae, converted 

from ASCII Math format, for evaluation purposes. It is always recommended to use 

parentheses for functional parameters, subscript and superscript expressions, and fractions. 

- Not all ASCII Math formulae can be converted to Analytics expressions (because the library 

does not support such math operations). 

- If an ASCII Math formula is converted successfully into Analytics expression, it does not 

mean it is syntactically correct and can be evaluated with the Translator. The converter does 

not check syntax, it must be verified with the Translator class. 

- An ASCII Math formula’s meaning can differ from Analytics interpretation. The ASCII Math 

language is intended for drawing purposes, while Analytics parser uses its own predefined 

syntax rules. For example, in Analytics formulae unary operations has higher precedence 

than binary ones, and the expression ‘-x^2’ is interpreted as ‘(-x)*(-x)’. Using ASCII Math 

formula for evaluation purposes, you must explicitly follow the Analytics syntax. If the aim is 

to get ‘-(x*x)’, the corresponding ASCII Math formula is ‘-(x^2)’. 

 



 
 

 

 

101 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Appendix A. Analytics operators and functions 

 
Table A.1. List of operators, defined in ANALYTICS library. 

Operator Symbol Type Derivative6 Commutative 

  Logical And              &    Binary     False    Yes 

  Logical Or               \    Binary     False    Yes 

  Identically equal     ≡    Binary     False    Yes 

  Approximately equal   ≈    Binary     False    Yes 

  Not equal         ≠    Binary     False    Yes 

  Greater          >    Binary     False    No 

  Less             <    Binary     False    No 

  Greater or equal   ≥    Binary     False    No 

  Less or equal      ≤    Binary     False    No 

  Add            +          Binary     True     Yes 

  Subtract       -          Binary     True     No 

  Multiply       *          Binary     True     Yes 

  Divide         /          Binary     True     No 

  Dot            •          Binary     False    No 

  Cross            ×          Binary     False    No 

  Power          ^          Binary     True     No 

  Left arrow       ←   Binary     False    No 

  Right arrow      →   Binary     False    No 

  Up arrow         ↑   Binary     False    No 

  Down arrow       ↓   Binary     False    No 

  Left-right arrow  ↔   Binary     False    No 

  Up-down arrow     ↕   Binary     False    No 

  Logical Not             ¬   Unary, Prefix      False    –  

  Question        ?   Unary, Prefix      False    – 

  Number          #   Unary, Prefix      False    – 

  Minus          -          Unary, Prefix      True     – 

  Tilde          ~          Unary, Prefix      False    – 

  Square Root  √   Unary, Prefix      True     – 

                                                
6  If derivative is not defined for some operator, you can still use it in expressions and 

get symbolic derivative for this expression in the case when operand(s) for the operator do not 

depend on the variable. Dot operator may not be used in symbolic derivation process in any case. 



 
 

 

 

102 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Operator Symbol Type Derivative6 Commutative 

  Delta        ∆   Unary, Prefix      True    – 

  Sum          ∑   Unary, Prefix      True     – 

  Product      ∏   Unary, Prefix      False    – 

  Factorial      !          Unary, Postfix      False    – 

  Apostrophe     '          Unary, Postfix      False    – 

  Accent   `   Unary, Postfix      False    – 

  Absolute  ||   Unary, Outfix      True     – 

  Norm  ‖‖   Unary, Outfix      False     – 

  Derivative   ∂   Implicit      True     – 

  Integral     ∫   Implicit      True     – 

 

Table A.2. List of basic functions, defined in ANALYTICS library. 

Function7 Name Example Derivative8 

Absolute value  abs       abs(x)        sgn(x)                                 

Signum R  sgn        sgn(x)        2*delta(x)                             

Dirac delta function R  delta  delta(x)  not defined 

Heaviside step function R  H          H(x)          delta(x)                               

If (conditional) function  if if{x>0}(x x^2)  if{x>0}(1 2*x) 

Ceiling function R  ceil  ceil(x)  not defined 

Floor function R  floor  floor(x)  not defined 

Fractional part R  frac  frac(x)  not defined 

Rounding function R  round  round(x)  not defined 

Truncation function R  trunc  trunc(x)  not defined 

Sine  sin        sin(x)        cos(x)                                 

Cosine  cos        cos(x)       -sin(x)                                

Tangent  tan        tan(x)        1/cos(x)^2                             

Cotangent  cotan      cotan(x)     -1/sin(x)^2                            

Secant  sec        sec(x)        sin(x)/cos(x)^2                        

Cosecant  cosec      cosec(x)     -cos(x)/sin(x)^2                       

Inverse sine  arcsin     arcsin(x)     1/(1-x^2)^(1/2)                        

Inverse cosine  arccos     arccos(x)    -1/(1-x^2)^(1/2)                       

Inverse tangent  arctan     arctan(x)     1/(1+x^2)                              

Inverse cotangent  arccot     arccot(x)    -1/(1+x^2)                             

                                                
7  Most of the basic functions support real and complex arguments/parameters. If some 

function does not support complex numbers – it is marked with ‘R’. 
8  If derivative is not defined for some function, you can still use it in expressions and 

get symbolic derivative for this expression in the case when arguments/parameters for the 

function do not depend on variable. 



 
 

 

 

103 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Function7 Name Example Derivative8 

Inverse secant  arcsec     arcsec(x)     1/(x^2*(1-1/x^2)^(1/2))                

Inverse cosecant  arccsc     arccsc(x)    -1/(x^2*(1-1/x^2)^(1/2))               

Hyperbolic sine  sinh       sinh(x)       cosh(x)                                

Hyperbolic cosine  cosh       cosh(x)       sinh(x)                                

Hyperbolic tangent  tanh       tanh(x)       1/cosh(x)^2                            

Hyperbolic cotangent  coth       coth(x)      -1/sinh(x)^2                           

Hyperbolic secant  sech       sech(x)      -tanh(x)*sech(x)                     

Hyperbolic cosecant  cosech     cosech(x)    -coth(x)*cosech(x)                   

Inverse hyperbolic sine  arsinh     arsinh(x)     1/(x^2+1)^(1/2)                        

Inverse hyperbolic cosine  arcosh     arcosh(x)     1/(x^2-1)^(1/2)                        

Inverse hyperbolic 

tangent  artanh     artanh(x)     1/(1-x^2)                              

Inverse hyperbolic 

cotangent  arcoth     arcoth(x)     1/(1-x^2)                              

Inverse hyperbolic secant  arsech     arsech(x)    

-1/((x^2*(1/x-

1)^(1/2))*(1/x+1)^(1/2)) 

Inverse hyperbolic 

cosecant  arcsch     arcsch(x)    -1/(x^2*(1+1/x^2)^(1/2))               

Logarithm to base  log     log{a}(x)     1/(ln(a)*x)                            

Natural logarithm  ln         ln(x)         1/x                                    

Decimal logarithm  lg         lg(x)         1/(ln(10)*x)                           

Binary logarithm  lb         lb(x)         1/(ln(2)*x)                            

Exponent  exp        exp(x)        exp(x)                                 

Square root  sqrt       sqrt(x)       1/(2*x^(1/2))                          

Root (with index)  root  root{a}(x)    1/a*x^(1/a-1)                        

Power  pow  pow{a}(x)     a*x^(a-1)                              

BetaD function9  Β     Β(x y)     Β(x y)*(ψ(x)-ψ(x+y))                                

Incomplete BetaD  Β  Β{n m}(x)  x^(n-1)*(1-x)^(m-1)                                 

GammaR function  Γ      Γ(x)       Γ(x)*ψ(x)                                           

Logarithm of GammaR  Γlog    Γlog(x)    ψ(x)                                                

Incomplete gammaD  Γ    Γ{n}(x)   -(x^(n-1)*e^-x)                                     

Digamma functionD  ψ      ψ(x)       ψ{1}(x)                                             

PolygammaD function  ψ    ψ{n}(x)    ψ{n+1}(x)                                           

ErrorR function  erf     erf(x)     (2/π^(1/2))*e^-(x^2)                                

ComplementaryR error  erfc    erfc(x)   (-2/π^(1/2))*e^-(x^2)                               

Inversed error functionR  erfi  erfi(x) √π/2*e^(erfi(x)^2) 

                                                
9  For all functions, marked with ‘D’ symbol, only symbolic derivatives defined, they cannot 

be evaluated. 



 
 

 

 

104 

 

TMS SOFTWARE  

TMS Analytics Delphi Development 

DEVELOPERS GUIDE 

Function7 Name Example Derivative8 

BesselR function of order 

0 

 J₀       J₀(x)      -J₁(x)                                              

BesselR function of order 

1 

 J₁       J₁(x)       J₀(x)-J₁(x)/x                                       

BesselR function of the 

second kind, order 0 

 Y₀       Y₀(x)      -Y₁(x)                                              

BesselR function of the 

second kind, order 1 

 Y₁       Y₁(x)       Y₀(x)-Y₁(x)/x                                       

Modified BesselR function 

of order 0 

 I₀       I₀(x)       I₁(x)                                               

Modified BesselR function 

of order 1 

 I₁       I₁(x)       I₀(x)-I₁(x)/x                                       

Modified BesselR 

function, second kind, 

order 0 

 K₀       K₀(x)      -K₁(x)                                              

Modified BesselR 

function, second kind, 

order 1 

 K₁       K₁(x)      -K₀(x)-K₁(x)/x                                      

BesselD function of order 

n 

 J    J{n}(x)   -J{n+1}(x)+n*J{n}(x)/x                            

BesselD function of the 

second kind, order n 

 Y    Y{n}(x)   -Y{n+1}(x)+n*Y{n}(x)/x                            

ModifiedD Bessel function 

of order n 

 I    I{n}(x)    I{n+1}(x)+n*I{n}(x)/x                             

ModifiedD Bessel 

function, second kind, 

order n 

 K    K{n}(x)   -K{n+1}(x)+n*K{n}(x)/x                            

Legendre polynomialR 

 P    P{n}(x)   (n+1)/(x^2-1)*(P{n+1}(x)-

x*P{n}(x))               

Legendre polynomialR of 

the second kind 

 Q    Q{n}(x)   (n+1)/(x^2-1)*(Q{n+1}(x)-

x*Q{n}(x))               

Associated Legendre 

polynomialD 

 P  P{n m}(x) ((n+1-m)*P{n+1 m}(x)-

(n+1)*x*P{n m}(x))/(x^2-

1) 

Associated Legendre 

polynomialD of the 

second kind 

 Q  Q{n m}(x) ((n+1-m)*Q{n+1 m}(x)-

(n+1)*x*Q{n m}(x))/(x^2-

1) 

 

 


