

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

1 | P a g e

Exporting Excel files
to PDF

Documentation: May, 2010

Copyright © 2010 by tmssoftware.com bvba
Web: http://www.tmssoftware.com

Email : info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

2 | P a g e

Table of contents

Introduction ... 3
Creating PDF files .. 4

Introduction ... 4
Using PdfWriter ... 4
Using FlexCelPdfExport .. 4

Preparing a file for printing .. 5
Font Management .. 6

Selecting which fonts to use .. 6
Accessing True Type data ... 6
Going Unmanaged .. 7

Fonts and Excel 2007 .. 8
Setting the “Normal” font .. 8
Dealing with missing fonts and glyphs .. 10

Signing Pdf Files .. 13
Customizing the Signing Engine .. 13

Export to PDF and FlexCel recalculation .. 15
Using FlexCelPdfExport on MONO (linux) .. 16

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

3 | P a g e

Introduction

FlexCel comes with a full PDF writer that allows you to natively export Excel files to PDF, without

needing to have Acrobat or Excel installed. While the output will not be exactly the same as Excel, a
lot of effort has been done to make it as similar as possible.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

4 | P a g e

Creating PDF files

Introduction

FlexCel provides two ways to create a PDF file. At higher level, you can use FlexCelPdfExport

component to natively convert an xls file into pdf. At the lower level, you have the PdfWriter class,
that provides a primitive API to create pdf files.

Using PdfWriter

 PdfWriter is the low level option, and it was really not designed to be used directly, but to provide the

methods FlexCelPdfExport needs to do its job.

But, it can be used standalone to create a PDF file for scratch, or most likely to modify the output

from FlexCelPdfExport using one of the Before/After CreatePage events.
We will not cover it in detail here since methods are documented in FlexCel.chm, but we will mention

that you can find an example in how to use PdfWriter in the API Demos.

Using FlexCelPdfExport

This is the high level option, and the one you would normally use. To export an xls file to pdf, you

need to:

1.Drop a FlexCelPdfExport component into a form. (Or you might create it directly by code)

2.Set the FlexCelPdfExport properties. You will find there are not a lot of properties (things like

margins, printing gridlines or not, etc) and this is because all this information is read from the Excel
file. If you need to change them, change the associated properties on the attached XlsFile.

3.Attach an XlsFile to the FlexCelPdfExport component, by assigning :

flexCelPdfExport1.Workbook = someXlsFile.

4.Export the file. You can use .Export to export only the active sheet, or
BeginExport/ExportSheet/EndExport to export more than one.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

5 | P a g e

Preparing a file for printing

Excel printing is “printer dependent”, that is, it can print different things to different printers.

A rectangle printed to a standard laser printer can be 11 x 11 cm. and the same rectangle printed to a

dot matrix printer might be 11.5 x 11.5 cm. As you can imagine, this might prove problematic when
your file is designed to be printed in one page at 100% zoom. In some printers, it might actually print

in one page, but in others it might print in two, or even in 4.

In the example above, if your file was 11x11 and you were printing in an 11x11 page, it will fit in one

page. But if the printer prints a little bigger, 11.5, it will actually need 4 pages to fit.

Different from Excel, FlexCel printing is resolution independent (using GDI+) and it

will print the same size everywhere. So when we calibrated the printing, we had to
choose a mix of all possibilities. If Excel prints a rectangle 10cm. wide in one printer,

11 in other and 12 in other, FlexCel will print the same in all of them. We settled by
emulating printing in a 600 dpi laser printer, but even this is not 100% exact. Laser

printers don't print exactly the same either in Excel. In short, FlexCel results might
not be the same size as Excel results for your particular printer.

So whenever you need to “fit” into a page, it is recommended that you use the “Print to Fit” setting in
Excel. Look at the “Preparing for printing” section in the API guide for details on this. But if you don't

want to use print to fit, make sure you leave a large enough margin at the right and at the bottom, so
the page prints fine everywhere, including FlexCel.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

6 | P a g e

Font Management

Due to some .NET limitations the font handling can be problematic, so here we discuss some concepts

that might help with the issue.

Selecting which fonts to use

First of all, you need to know that there are two different kinds of fonts supported by FlexCel's

PdfWriter.

1. PDF internal fonts. PDF defines 14 standard fonts that must be available to any PDF viewer,
so you don't need to embed the fonts on the PDF document. They will always be supported

by the PDF viewer. Those fonts include a Serif (Times New Roman-like), a Monospace
(Courier-like) and a Sans Serif (Arial-like) alternatives, on four variants each (regular, bold,

italic and bold italic) and two Symbol fonts.

2. True Type fonts. Those are standard Windows fonts.

When exporting to PDF, you can chose between three different ways to handle fonts, depending on

the value you set on the FontMapping property.

1. ReplaceAllFonts. This will replace all fonts on the xls file to the most similar ones on the 14

standard fonts. This way you get the minimum file size and the maximum portability, but the
exported PDF file might not look exactly the same, as you will lose all fancy fonts.

2. ReplaceStandardFonts. This is a compromise solution. It will only replace Arial, Times New

Roman and Courier for the standard fonts, and use True type for all the others. You will get a

bigger PDF file (if you embed the true type fonts), but it will look as the xls file.

3. DoNotReplaceFonts. This will only use true type fonts. It will be the one that better
matches the xls file, but it will be a lot larger (if you embed the true type fonts) or might not

look good when the user does not have the fonts you used installed (if you don't embed

them)

Also, you can choose whether to embed the True Type fonts or not. If you embed
them, the file will be bigger, but also will render well when the user does not have

the fonts on his machine. To avoid issues, it is normally recommended that you
embed all fonts.

Note that if you use Unicode characters, the fonts will always be embedded no
matter which embed option you choose, because this is needed to ensure the

 Unicode mapping will remain correct.

Accessing True Type data

There is limitation .NET framework because there is no way to access the internal font data for a true
type font. This data is needed to embed the font and also access font metrics not available on the

framework.

There were two alternatives for us to take:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

7 | P a g e

1. We could have used unmanaged code to call GetFontData on the Win32 API and get the

actual data. This option was discarded because we want FlexCel to remain 100% managed.

Staying 100% managed allows it to run on 64 bits, mono and everywhere, and it made no
sense to go unmanaged just for one missing method.

2. We could read the font files (*.ttf) directly. This option is better, but is not perfect either. The

problem here is that the .NET framework gives the standard folder for lots of system folders,

but not for the fonts folder. Again, to access the system fonts folder (where *.ttf are) we
would need to go unmanaged.

As going unmanaged is out of question (for us), we adopted a compromise solution. We use solution

2) and assume fonts are on the

<System Folder>\..\Fonts (On Windows). This is true for all installations of Windows we are
aware of, but it might not be true for some or in the future, or in mono and Unix.

If <System Folder> is empty, then we assume we are running on Linux, and we will try

“/usr/X11R6/lib/X11/fonts/truetype”.

If this folder does not exist, FlexCel will search on “<folder where FlexCel.dll is>/Fonts”. If you

are running Linux, you might create a symbolic link to the place where the fonts are installed. (see
the MONO section below for more information)

As a last resort, FlexCel provides a OnGetFontFolder event that allows you to specify where fonts

are stored on your system. Here you can tell FlexCel where the fonts are.

Avoid using this event if you can, since when you use it your code will not

transparently run on MONO and Windows, you will have to have two different
binaries. A Symbolic link from the FlexCel installation folder to the fonts folder should

be a more elegant solution.
Of course, you will not face any of these problems when using only standard PDF

fonts (and no Unicode)

Going Unmanaged

By the way, note that we said going unmanaged is out of question for us. If your application already

uses unmanaged code, you can use the GetFontData event on FlexCelPdfExport to call GetFontData
on the Win32 API, and return the font information to FlexCel. This way you will avoid scanning the

font folder completely, and it can speed up a little PDF export.

While we do not recommend that you go unmanaged for this since scanning the font folder is fast

anyway, you have all options. Do what you prefer.

For a demo on using the GetFontData event, see the ExportPdf demo.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

8 | P a g e

Fonts and Excel 2007

Excel 2007 changed the default font in a new file to be “Calibri” instead of “Arial”. This might bring

you problems if you develop in a machine that has Excel 2007 installed, but you deploy in a server
that doesn't. There are two solutions for this:

1. You can copy the Excel 2007 fonts to the server, and make sure you embed the fonts

in the PDF file. Note that if you do not embed the fonts, any user who does not have Excel

2007 will not be able to see your PDF file correctly.

2. If you want maximum portability, make sure you change all fonts to Arial or Times new
Roman in your template before exporting.

Setting the “Normal” font

Especially important when changing the fonts is to make sure the “Normal” format

uses a known font. You can see/change the normal font this way:

1.In Excel 97-2003: Go to “Menu->Format->Style...” You should see the following dialog:

Verify that the “Normal” style has a known font like “Arial”

2.In Excel 2007: In the home tab in the Ribbon, select Cell Styles, right click in “Normal” and choose

modify. Note that depending on your screen resolution, “Cell Styles” might show as a button or just
display the “Normal” box directly in the ribbon.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

9 | P a g e

You will get a similar dialog to the one you got in Excel 2003. Again, make sure the normal style uses
a font you have in your server.

The “Normal” style is used not only for empty cells, but to set the column widths. For example, this is

how an empty sheet looks with “Normal” style using Arial 10:

And this is how it looks using Script MT 36:

As you can see, the font used in the “Normal” style is used to draw the headings “A”, “B”, “1”, etc.,

and even more important, it is used to calculate the column width. Column with is measured as a

percentage of the “0” character width in the normal font. If you change the normal font, column
widths will change.

If you do not have the “Normal” font installed in your server, Windows will replace it with a substitute,

and it will probably have a different width for the “0”, leading to a wrong column width. So it is
important that you have that font installed in your server.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

10 | P a g e

Dealing with missing fonts and glyphs

There are three main font-related problems you might find when converting an xls file to PDF, and we
are going to cover them in this section. The errors are non fatal, and that means that the file will be

generated anyway, but it will not look as good as it could.

You can control what to do when any of these errors happen by hooking an event to the
FlexCelTrace static class. From this event, you could write a log file when any of these errors

happen, warn the user, or just raise an exception if you want to abort file generation.

Problem 1: Missing fonts
This is normally the easiest one to solve, and normally happens when deploying an application to a

server. As explained in the section above, this often happens with “Calibri” font that gets installed by

Excel 2007, and probably will not be installed in the server. As FlexCel needs the font to be present in
order to create the pdf file, it will substitute it with a “similar” font, normally Arial or Microsoft sans

serif.

This might not be an issue if there are any fonts in the system that are similar to the one being

replaced, but it can be a big issue with Calibri, since that font has very different metrics from the font
it gets replaced (Arial). As an example, here you can see an Excel 2007 exported to PDF in a machine

that has Calibri installed an in other that doesn't:

With Calibri installed in the fonts folder:

Without Calibri installed (Replaced by Arial):

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

11 | P a g e

As you can see in the images, Calibri is much narrower than Arial, so the text in cell B2 “This Text is in

Calibri” is cut and only “Calibri” shows in the second screenshot. If you are seeing lots of cut text in

the server while the files are exported fine in your development machines, this is probably the cause.

The solution for this problem is easy; make sure you have all the fonts you use installed in your
system. If you want to get notified whenever this automatic font replace happens, you can catch the

“FlexCelError.PdfFontNotFound” errors in FlexCelTrace, and use it to notify the user he should install

the missing fonts.

Problem 2: Missing Glyphs
This problem happens when you are using a font that doesn't contain the character you want to

display. If you for example write

“日本 に行きたい。”

inside a cell and keep the font “Arial”, you will see the correct characters in Excel, but when exporting
you might see blank squares like this:

The reason for this is that “Arial” doesn't actually contain Japanese characters, and Excel is “under the

hood” using other font (normally MS Mincho) to display the characters. To emulate this behavior,
FlexCel provides a “FallbackFonts” property, where you can enter a list of fonts to try if the font that

was supposed to be used doesn't have the character. If no font in the FallbackFont chain contains the
glyph, you will see a blank square.

The solution in this case is to use fonts that actually have the characters you want to display, or

ensure that some fonts in the FallbackFonts properties have them. By default FlexCel uses “Arial

Unicode MT” as a fallback font, but you can add as many others as you need.
If you want to get notified when this happens

so you can warn the user to change the fonts, you can catch the “FlexCelError.PdfGlyphNotInFont”
and “FlexCelError.PdfUsedFallbackFont” errors in FlexCelTrace.

Problem 3: Faux Italics and Bolds
The last problem is related to fonts that don't have a specific “Italic” or “Bold” variant. Normally, a

quality font comes with four files including four variants of the font: Bold, Italic and BoldItalic. If you
look in your font folder, you will see things like this:

That is, a different file for each font variant. If the font comes with only one “Normal” file, the italics
can be faked by the system by slanting the characters, and bold can be faked by adding some weight

to the characters. But of course this leads to low quality results, and should be avoided whenever
possible.

There is other problem with “fake” Italics and Bold, and that is that Acrobat will not show them when

you embed the fonts.

The solution to this problem is to use fonts that include the variants you need.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

12 | P a g e

Normally this is not a problem, since all quality fonts designed to be used with Italics and Bold already

come with files for those variants. But if absolutely you need to use fonts that don't come with the
variants, you might at least not embed the fonts, so the “fake” style will show.

To be notified whenever FlexCel finds a “fake” style, you can use the

“FlexCelError.PdfFauxBoldOrItalics” notifications in FlexCelTrace.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

13 | P a g e

Signing Pdf Files

FlexCel allows you to sign your PDF files with a certificate, so any change to the file will invalidate it.

This is how a signature looks like in Acrobat 8:

In Acrobat 7 you will see the same sidebar at the left, but there is no blue bar at the top.

Important Note: FlexCel signing algorithm is supported only in Acrobat 7 or newer, it
will not work in Acrobat 6 or 5 since those versions do not have the required support.

Because of this reason, the header in the generated PDF file will automatically switch
to say that the file is “Adobe 7 or newer” compatible when you include a signature in

your files. If there are no signatures, the default header specifies the file is “Acrobat 5

or newer” compatible.

It is also worth noting that users will still be able to see the generated files in Acrobat 5
or 6, but they will get a warning when opening them and the signature will not validate.

Concepts of signing are outside the scope of this document, but you can find a lot of information in
signing in the Acrobat documentation or just in Internet. A good place to start might be:

http://msdn.microsoft.com/msdnmag/issues/07/03/NETSecurity

Customizing the Signing Engine

FlexCel comes with a built-in signing implementation, but it allows you to change it by your own.

There are two reasons you might want to do that:

1. .NET 1.1 does not have support for PKCS7 messages, so the built-in engine does not work in
.NET 1.1. But if you want to do so, you can create your own engine by doing P/Invokes to the

!

http://msdn.microsoft.com/msdnmag/issues/07/03/NETSecurity

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

14 | P a g e

CryptoAPI Windows API, or by using a third party security library that supports PKCS7. If you

get that PKCS7 support, implementing your own engine is quite simple. Just override a couple

of methods in FlexCel described below in this section, and make them call your security library
to get the results.

2. Even if using .NET 2.0, the built-in engine is not optimal. It uses the standard .NET 2.0 PKCS

classes, and those classes do not allow for incremental signing. This means that the whole

PDF document must be kept in memory so we can pass all the contents as a byte array to the
signing method in .NET. If you have a library that supports incremental signing, that is, each

time a small group of bytes is written you recalculate the hash instead of calculating the
whole hash at the end, you can save memory by creating your own engine. Just make sure

you need the extra performance before doing so, because normally the built in

implementation is good enough, and has the advantage of being 100% managed and built-in
in the framework.

If you decide to create your own Signer class, you need to implement two simple abstract classes:

1. TPdfSigner:

This is the class that implements the signing. You need to override three methods:

Write, GetSignature and EstimateLength. The first method is called each time some bytes are
written to the file. You should use them to calculate a PKCS7 signature with them. If you can't

calculate the signature incrementally you will need to buffer them and calculate it when GetSignature
is called. The second method, GetSignature, is called only once at the end of the pdf file and it should

return the PKCS encoded signature as an array of bytes. The third method must return the length of

the byte array that will be returned by GetSignature or a bigger number, but never smaller. Note that
this third method will be called before the signature is computed so you might need to estimate the

length.

2. TPdfSignerFactory:
This class is really simple, and it just should return an instance of the particular TPdfSigner child you

created in 1).

When creating your own classes, it might be helpful to look at the TBuiltInSigner implementation on

file Signatures.cs. Also look at PdfExport demo.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

15 | P a g e

Export to PDF and FlexCel recalculation

When you create a report with FlexCel most formulas are recalculated, but some are not. This is not

an issue when opening the xls file on Excel, as Excel will recalculate the whole file again, but will be
an issue when exporting the xls file directly to PDF.

FlexCel implements over 200 Excel functions, and most used formulas are all there so you should not

experience big issues. But you need to make sure you do not use any not implemented function to get

a properly recalculated sheet. You can find a list of currently implemented functions on the file
SupportedFunctions.xls. All functions mentioned there are safe to use.

FlexCel comes with a little utility, the demo “Validate Recalc” that will allow you to check if all the

formulas on an xls file are ok to use. And of course you can use the code on this demo inside your

own application to tell your users when they use a not supported formula.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

16 | P a g e

Using FlexCelPdfExport on MONO (linux)

Mono is an incredible platform to deploy your .NET applications, and as FlexCel.NET is 100% managed

code, most of the time running a FlexCel.NET application on MONO means just to copying the files to
a linux server.

But in the case of Pdf export there are two issues that you need to consider:

1. FlexCel on .NET 1.1 uses Visual J# libraries to compress the pdf files. As MONO does not
implement Visual J#, you need to use SharpZipLib to do the compression. (SharpZipLib is

installed by default on MONO). For instructions on how to configure FlexCel to use
SharpZipLib, see CONFIGURING_FLEXCEL.txt. Note that this is not needed in .NET 2.0,

as compression is built in. You should try use at least .NET 2.0 when running in

mono

2. As explained before on this document, in Linux the True-Type fonts are not installed on
“\Windows\Fonts”, and might be on “/usr/X11R6/lib/X11/fonts/truetype” (this folder might

change with the Linux distribution) . You can find where the ttf files are by writing

find / -name *.ttf

 on a terminal window.

Note that FlexCel will search for files with a ttf extension in

lowercase. Fonts in Windows might be uppercase (i.e. SYSTEM.TTF),
and you need to rename them (i.e. SYSTEM.ttf).

If your ttf fonts are not on “/usr/X11R6/lib/X11/fonts/truetype”, you should

make a symbolic link between the place where flexcel.dll is and the Font
folder. For example,

ln -s /font_folder Path_Where_FlexCel.dll_is/Fonts

If you prefer, instead of creating a symbolic link you can create an OnGetFontFolder event. The
drawback of this is that the folder will be hardcoded on the application, and it will not be so easy to

move it from a machine to other.

By the way, you will probably want to install the core Windows true type fonts on Linux:

http://corefonts.sourceforge.net/

Your Linux distribution might have those core fonts available as RPM too.

!

http://corefonts.sourceforge.net/

