

GEO Services with Delphi and TMS

1/11

Using GEO services in Delphi applications with TMS components

Introduction

In the past few years, a vast aray of services related to a position on our

planet earth became available. With a wide range of components, TMS
software offers seamless access to these services from Delphi VCL desktop

applications, IntraWeb web applications and FireMonkey mobile applications

running on iOS or Android. As such, it's mostly your imagination that is the
limitation of what you can do these days with geo services in your applications.

Basis of geo services

The fundament on which all geo services are built is the determination of a

position on our planet. For this, in almost all cases, the system of longitude
and latitude is used. The latitude is a value between -90 and +90 that defines

the angle of the position between south pole and north pole. The longitude is a
value between -180 and +180 that defines the position along the equator.

These values are typically expressed in decimals or with degrees, minutes and
seconds. For ease of calculation, most services use the decimal notation.

Types of geo services

If there is a classification to make for what geo services are being used, we'd
divide these in following categories:

- Mapping: techniques for displaying & manipulating maps and visualize

information on maps
- Geocoding / reverse geocoding: techniques for converting an address to a

longitude and latitude and vice versa

GEO Services with Delphi and TMS

2/11

- Geolocation : techniques to obtain the longitude and latitude of a computing

device

- Geo POI services : services that provide information / data about points of
interest at a specific position

- Routes : calculate the routes between two or more positions

In this article, we have examples for using each of these different services
from Delphi applications.

Mapping

The 3 major services that provide digital maps are Google Maps, Microsoft Bing

and Open Street Maps. Digital maps are provided via a HTTP service and can
be displayed via a browser. These mapping services are targetted mainly at

browser usage, so if we want to take advantage of these maps from a Delphi
application, the main two challenges are calling a Javascript API from the

Delphi application that is executed in the browser and handle Javascript events

that are being triggered from the map and that ideally are exposed as class
events to a Delphi application. For a Windows applpication, to call Javascript

functions from a Delphi application for a map displayed in a browser, the
HTMLWindow.execScript() function can be used. To handle Javascript events

from a browser at Delphi application level, it is required to implement the
IDocHostUIHandler interface. Fortunately, this is somewhat easier from an

IntraWeb application as the map is displayed typically on the same page where
the IntraWeb application page is rendered. For a FireMonkey mobile

application, a technique similar to the Windows desktop application is
necessary but in this case with the browser that runs on the mobile device.

Fortunately, TMS software offers components for desktop, web and mobile
application with the same interface, so this makes using the maps ease on any

of these platforms.

To get started with using Google maps, drop the TMS TWebGMaps component

on the form and add the code:

 webgmaps1.MapOptions.DefaultLatitude := 51.2;

 webgmaps1.MapOptions.DefaultLongitude := 4.37;

 webgmaps1.Launch;

This code snippet initializes the map for position 51.2 / 4.37 that is Antwerp,

Belgium. Next we can add a marker at this location. Markers are exposed via a
markers collection. By default a marker with a hint is added with this code:

 webgmaps1.Markers.Add(51.2,4.37,'Antwerpen')

Next task is to draw a polyline on this map. To illustrate this, code will be
added to draw a triangle between 3 cities: Antwerpen, Gent, Brussels. To draw

a polygon, we basically create a path, i.e. a collection of coordinates between

which the polygon is drawn. The path is of the type TPath and this collection

GEO Services with Delphi and TMS

3/11

contains TPathItem that holds the longitude and latitude of each point. When

this path collection is created, it is added to the PolyLines collection that is

available at TWebGMaps level. This results in code:

var

 pt: TPath;

 pti : TPathItem;

begin

 pt := TPath.Create(webgmaps1);

 pti := pt.Add;

 pti.Latitude := 51.2;

 pti.Longitude := 4.37;

 pti := pt.Add;

 pti.Latitude := 51.05;

 pti.Longitude := 3.7;

 pti := pt.Add;

 pti.Latitude := 50.85;

 pti.Longitude := 4.35;

 pti := pt.Add;

 pti.Latitude := 51.2;

 pti.Longitude := 4.37;

webgmaps1.Polylines.Add(false,false,false,nil,pt,clred,255,2,true,

100);

 pt.Free;

end;

GEO Services with Delphi and TMS

4/11

Geocoding / reverse geocoding

Geocoding is the process of converting an address to a longitude and latitude

coordinate. Reverse geocoding means obtaining an address starting from a
longitude and latitude coordinate. This is typically performed by a company

that has all the required mapping data to perform this function. Some of the
services that provide this are: Google Maps, Microsoft Bing, OpenAddresses,

Yahoo PlaceFinder and several smaller services. When looking at the
performance, reliability and quality of the service, Google easily comes out

best. Therefore, we created two components that make using the Google
geocoding and reverse geocoding service very easy. This is

TWebGMapsGeocoding and TWebGMapsReverseGeocoding. To use these
components is as simple as specifying the address and retrieving the result

longitude and latitude and vice versa.

To demonstrate geocoding, we'll lookup the geolocation of Embarcadero have

it displayed on a map and switch to streetview.

With a TWebGMapsGeoCoding component and TWebGMaps component on the
form, following code obtains the longitude & latitude of the Embarcadero office

in Scotts Valley, adds a marker on the map and pans the map to it:

GEO Services with Delphi and TMS

5/11

begin

 // set the address

 WebGMapsGeocoding1.Address := '5617 Scotts Valley Dr #200,

Scotts Valley, CA';

 // launch geocoding

 WebGMapsGeocoding1.LaunchGeocoding;

 // pan map to location retrieved

 WebGMaps1.MapPanTo(WebGMapsGeocoding1.ResultLatitude,

WebGMapsGeocoding1.ResultLongitude);

 // add a marker

 WebGMaps1.Markers.Add(WebGMapsGeocoding1.ResultLatitude,

WebGMapsGeocoding1.ResultLongitude,'Embarcadero');

end;

To have a streetview on the location retrieved, following code can be used:

 // set coordinates of location to see with street view

 WebGMaps1.StreetViewOptions.DefaultLatitude :=

WebGMapsGeocoding1.ResultLatitude;

 WebGMaps1.StreetViewOptions.DefaultLongitude :=

WebGMapsGeocoding1.ResultLongitude

 // let the map switch to streetview

 webgmaps1.StreetViewOptions.Visible := true;

Geolocation

GEO Services with Delphi and TMS

6/11

Geolocation is the name used for all kinds of techniques that provide

information about the location of a device. These days, most mobile devices

have a GPS built-in and this can return the longitude and latide of the device
immediately. From Delphi XE4, the non-visual component TLocationSensor is

provided that allows you to get this information. Using TLocationSensor is
easy. Set LocationSensor.Active = true and via the event OnLocationChanged,

the position is returned. The accuracy of determining this location is around 10
metres typically. When no GPS is available, we must resort to different

techniques. These techniques can be:

- ISP IP address based: many ISPs have a database of what IP address range
is being used in what area. Services exist that gather this information that can

be used to retrieve location information based on an IP address.

- Cell phone based: when a mobile device is connected to a cell phone access
point, the position of the cell phone access point is known and thus also the

area the signal of this cell phone access point covers. There are also services

that collect this information and make it accessible. OpenCellID is an example.
See: http://www.opencellid.org/cell/map

- WiFi service based: Similar as with cell phone based geolocation, wifi based

geolocation could be an option when a device is connected via a WiFi access

point and the location of the WiFi access point is known. An example of a
service that collects information on the position of WiFi access points is

http://www.skyhookwireless.com

For mobile devices, typically a fallback mechanism is used. First, there is a
check if a GPS exists. When not, it can try to see if it can find a position based

on the IP address, the connected cell phone access point or WiFi access point.
This is the mechanism that is built-in these days in any HTML5 compliant

browser. This allows web applications to determine where the device is located
that connects to it. This is known in the HTML5 standard as HTML5 Geolocation

API.

GEO Services with Delphi and TMS

7/11

To make it easy for desktop applications to determine as good as possible the

location of a machine, TMS software offers a component TAdvIPLocation that
uses the FreeGEOIP service. To make it easy for IntraWeb web applications,

we have a component TTIWIPhoneGeolocation that uses the HTML5
Geolocation API to determine the location.

Sample code:

 if AdvIPLocation1.GetIPLocation then

 begin

 webgmaps1.MapOptions.DefaultLatitude :=

AdvIPLocation1.IPInfo.Latitude;

 webgmaps1.MapOptions.DefaultLongitude :=

AdvIPLocation1.IPInfo.Longitude;

 webgmaps1.Launch;

 memo1.Lines.Add(AdvIPLocation1.IPInfo.ZIPCode + ' ' +

AdvIPLocation1.IPInfo.City);

 memo1.Lines.Add(AdvIPLocation1.IPInfo.CountryName);

 end;

This code snippet uses the non-visual component TAdvIPLocation to obtain the
location based on the IP address of the machine and shows this location on a

map and adds the location city name, ZIP code and country in a memo.

GEO POI services

Geo POI services is the name of services that provide point of interest
information at a specific location. This includes things as railway stations,

musea, restaurants, sports infrastructure etc... Typically, a service can provide
a list of points of interest that matches a requested category and a specific

location. It can then offer information such as address, description,
recommendations, opening hours of the points of interest. Many services exist

that offer this kind of information but the main suppliers with the biggest
amount of information are FourSquare, Google Place, Bing Spatial Data

Services, Factual...
As FourSquare is one of the leading services, TMS software has a component

TAdvFourSquare that makes using this service very easy. Typically, all we need

to do is specify a location, i.e. longitude & latitude, specify category of points
of interest we're interested in and possibly also a radius. The service then

returns a list of points of interests of which we can query a description, photo,
etc..

To illustrate this, we'll use the component TAdvFourSquare, available in the

TMS Cloud Pack. To start using this component, it is necessary to first obtain a
(free) FourSquare application key and secret. You can register for this at

https://developer.foursquare.com

GEO Services with Delphi and TMS

8/11

First we obtain the different categories and subcategories of points of interests

that FourSquare has and fill a listbox with this:

var

 i,j: integer;

 id: string;

begin

 AdvFourSquare1.App.Key := FourSquare_AppKey;

 AdvFourSquare1.App.Secret := FourSquare_AppSecret;

 AdvFourSquare1.GetCategories;

 for i := 0 to advfoursquare1.Categories.Count - 1 do

 begin

 listbox1.Items.Add(AdvFourSquare1.Categories[i].Summary);

 for j := 0 to AdvFourSquare1.Categories[i].SubCategories.Count

- 1 do

 begin

listbox1.Items.Add(AdvFourSquare1.Categories[i].SubCategories[j].S

ummary + '/'+AdvFourSquare1.Categories[i].SubCategories[j].ID);

 end;

 end;

end;

Next, when we click on a category in the listbox, we perform a query of the top
10 points of interests nearby the computer location (obtained with

TAdvIPLocation) and fill the listbox with this info:

procedure TForm1.ListBox1Click(Sender: TObject);

var

 id: string;

 i: integer;

 la,lo:double;

begin

 id := listbox1.Items[listbox1.ItemIndex];

 id := copy(id,pos('/',id)+1, 255);

 listbox2.Items.Clear;

 AdvIPLocation1.GetIPLocation;

 orgla := AdvIPLocation1.IPInfo.Latitude;

 orglo := AdvIPLocation1.IPInfo.Longitude;

 // This fills the AdvFourSquare Venues collection with points of

interest:

GEO Services with Delphi and TMS

9/11

 AdvFourSquare1.GetNearbyVenues(orgla,orglo,'','',id);

 // add the summary line to a listbox
 for i := 0 to advfoursquare1.Venues.Count - 1 do

 begin

 listbox2.Items.Add(AdvFourSquare1.Venues[i].Summary);

 end;

end;

Other than the summary information, FourSquare makes a lot more
information available. This includes the longitude & latitude of the point of

interest, the address, phone number, website URL when available, opening
hours when available etc... All this information is made easily accessible via

the TFourSquareVenue class in the Venues collection.

Routes

A final important part in useful geo information based services we can
consume from Delphi applications, is getting routing or directions information

to travel from a location A to a location B. Again, the three major suppliers of
these services are Google with the Google Directions API, Microsoft with Bing

Routes API and the Openroute service (http://www.openrouteservice.org/).
Such service typically works in following way: we make a request based on two

locations, either specified as two sets of longitude/latitude of two sets of

addresses, the start address and end address. The service than returns one
route or a set of routes that can be used to travel from start point to end point.

Note that some services also support waypoints, i.e. points between the start
point and end point the route must go along. A route is typically returned as a

series of textual descriptions of the route to follow. Each part of the route that
is described is called a leg. A set of routes can be returned when alternative

GEO Services with Delphi and TMS

10/11

routes exist. Along the textual description, typically also polygon data is

returned and this polygon data can be used to visualize the route on a map.

In this example, we use the TWebGMaps component as well as the

TWebGMapsDirectionList. TWebGMapsDirectionList is a component especially
created to visualize HTML formatted directions information returned by Google.

Getting directions is as simple as calling WebGMaps.GetDirections with start
and end address. Here we obtain directions information from San Francisco

center to the Embarcadero offices in Scotts Valley:

var

 from_address, to_address: string;

begin

 from_address := 'San Francisco';

 to_address := '5617 Scotts Valley Dr #200, Scotts Valley, CA';

 webgmaps1.GetDirections(from_address,to_address);

 // fill the list component WebGMapsDirectionList with route

description

 webgmaps1.FillDirectionList(WebGMapsDirectionList1.Items);

 // render the route on the map

 webgmaps1.RenderDirections(from_address,to_address);

end;

Many more options are available, such as specifying waypoints, route types,

language, travel mode (walking/bike/car) etc... that can be explored with the
TMS TWebGMaps component.

GEO Services with Delphi and TMS

11/11

Summary

It is amazing what amount of rich (and in many cases free) geo information
and geo services are available to us Delphi programmers these days. With this

information, we can add useful functionality to Delphi Windows based
applications, IntraWeb web based applications and FireMonkey mobile

applications for iOS and Android devices. At TMS software, we offer a wide
range of components that allow you to consume these services right-away.

This allows you to avoid studying the various APIs yourself and be productive
immediately to integrate these in your applications. The several products

covered in this article to make use of these services are:

TMS WebGMaps: http://www.tmssoftware.com/site/webgmaps.asp
TMS WebOSMaps: http://www.tmssoftware.com/site/webosmaps.asp

TMS Cloud Pack: http://www.tmssoftware.com/site/cloudpack.asp
TMS Cloud Pack for FireMonkey:

http://www.tmssoftware.com/site/tmsfmxpack.asp

TMS WebGMaps for FireMonkey:
http://www.tmssoftware.com/site/tmsfmxwebgmaps.asp

TMS WebOSMaps for FireMonkey:
http://www.tmssoftware.com/site/tmsfmxwebosmaps.asp

TMS IntraWeb WebGMaps: http://www.tmssoftware.com/site/webgmaps.asp
TMS IntraWeb WebOSMaps:

http://www.tmssoftware.com/site/webosmaps.asp
TMS IntraWeb iPhone controls pack:

http://www.tmssoftware.com/site/tmsiwiphone.asp

