

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

1 | P a g e

Flexcel Reports
Designers Guide

Documentation: May, 2010

Copyright © 2010 by tmssoftware.com bvba
Web: http://www.tmssoftware.com

Email : info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

2 | P a g e

Table of contents

Introduction ... 3
Report Elements ... 4

Tags ... 4
Named Ranges .. 5
Configuration Sheet .. 13

Debugging Reports ... 21
Introduction ... 21
Dealing with Syntax Errors .. 21
Dealing with Logical Errors ... 22

Appendix: Using FlexCel designer... 26
Screen description ... 26
Menu description ... 26
Data configuration ... 27

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

3 | P a g e

Introduction

This document has two different target audiences, developers using FlexCel and final power users
that want to customize their reports. It covers how to design an Excel template, but not the code
parts needed to run a report. Read the Reports Developer guide for the code part.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

4 | P a g e

Report Elements

There are three concepts you should understand to create or modify a report.

Tags, Named ranges and the Configuration sheet.

Tags

A tag is text that you write in a cell and that will be replaced by a different value on the generated
report. All tags are on the form <#TagName> when they don't have any parameters, and
<#TagName(param1;param2...)> when they have parameters. Notice that the parameter separator
is “;” not “,” as it is on expressions.

Tags are case insensitive, so you can write <#tag>, <#TAG> or <#Tag> as you prefer. The
convention we usually use is all lowercase, but it is up to you.

You can write multiple tags on the same place, and the result will be the concatenated string. You
may also apply different format to different tags. For example, writing “<#value1> and <#value2>”
inside a cell will be replaced by something similar to “1 and 2”

Tags will be replaced on Cells, Comments, Sheet names, Images, Hyperlinks, AutoShapes, Headers
and Footers.

Tag Reference:
The complete list of tags you can use and their descriptions is on the file FlexCelReportTags.xls.

Evaluating Expressions
Expressions can be used inside <#If> and <#Evaluate> tags. They behave like standard Excel
formulas, and you can use any formula that FlexCel can calculate. But, different from formulas, you
can also enter tags inside expressions.

For example, you could write: <#Evaluate(A1+Min(A2,<#Value>))>

Note that the parameter separator on Expressions is “,” , not “;” as it is on tags. This is to keep it
syntactically compatible with Excel.

The supported list of things you can write inside an expression is detailed on the following table:

Expression

Tags Syntax:

<#Tag>

Description:

You can enter any tag inside an expression, and it will be evaluated. The tag

might contain nested expressions too.

Example:

1+<#Value> will return the report variable “Value” plus 1.

References Syntax:

A1, $A1, Sheet1!A2, A1:A2, Sheet1:Sheet2!A1:B20, etc

Description:

Standard Excel cell references. You can use relative and absolute references

too.

Example:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

5 | P a g e

A1+A2 will return the sum of what is on cell A1 and A2. As the references are

not absolute, when copied down this expression will refer to A3, A4, etc.

Parenthesis Syntax:

()

Description:

Changes operator precedence. Standard operator precedence on expressions

is the same as in Excel, that is “1+2*3” = 1+(2*3)=7 and not (1+2)*3=9

Example:

(1+2)*3^2 will be evaluated different than 1+2*3^2

Arithmetic Operators Syntax:

+, -, *, /, %, ^ (power)

Description:

Standard arithmetic operators.

Example:

1+2*3^2 will evaluate to 19

5% will evaluate to 0.05

Equality Operators Syntax:

<, >, =, >=, <=, <>

Description:

Standard equality operators.

Example:

1>=2 will evaluate to false.

Functions You can use any formula function that FlexCel can recalculate inside an

expression. For a list of supported functions, take a look at

SupportedFunctions.xls

Named Ranges

While Tags allow you to replace complex expressions inside a sheet, with them alone we can only
make “Fill in the blanks” type reports. That is, reports that are static, like a form, and where cells
with tags will be replaced with their corresponding values.

Now we are going to introduce the concept of “Band” A Band is just a range of cells that is repeated
for each record of a table. Imagine that you define a Band on the cell range A1:C1, and associate it
with the table “Customer”. Then, on cells A1:C1 you will have the first customer, on cells A2:C2 the
second and so on. All cells that were previously on A2:C2 will be moved down after the last record
of the dataset.

If table customer has six registers, you will get something like:

Template:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

6 | P a g e

Generated report:

On FlexCel we use Named Ranges to indicate the bands. If you are not used to Excel Named Ranges,
take some time to familiarize with them, as they are one of the things that confuses most people
starting with FlexCel. Different from tags, that you can immediately see when you open a
workbook, named ranges are a little more hidden.

To create a Band on A1:C1, we would go to Menu->Insert->Name->Define.

Or in Excel 2007, go to the “Formulas” tab, then choose “Name Manager”:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

7 | P a g e

Once there, we can define a Band __Customer__ on cells A1:C1. And once the name is defined, we
can easily see it on the Names combo:

Note the “__” at the beginning and at the end of the range name. We use this to indicate FlexCel
that this is a horizontal range that inserts full rows down.

The rest of the name (“Customer”) should be the name of an existing datatable, or a custom table
defined on the config sheet.

Range Types
You can define four different kinds of bands on FlexCel:

 “__” Range: This range moves down and inserts full rows.

 “_” Range: This range is similar to “__” but cells outside of the range won't move down.

 “II_” Range: This range moves to the right and inserts full columns.

 “I_” Range: This range is similar to “II_” but cells outside of the range won't move right.

A “__” range is the same as a “_” range defined on the full rows, and the same is valid for “II_” and
“I_” ranges.

On the following example, if you name A1:D7 as “_Customer_” Cell E8 won't move when inserting
down. If you name it as “__Customer__” Cell E8 will move to the last inserted cell, because a
“__Customer__” range is equivalent to a “_Customer_” range on A1:IV7.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

8 | P a g e

Master detail
Named ranges can be placed inside others, and a master detail relationship will be automatically
created. For example, If you define a range “__Customer__” and inside it a range “__Orders__” and
there is a relationship created on the application between “Customer” and “Order” tables, it will
automatically group your orders by customer.

On the following example, the yellow cells are the range “__Customer__” and the blue ones are the
range “__Orders__”

After running this report, you will get something similar to:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

9 | P a g e

As you can see, Orders are filtered for each customer, based on the Data Relationship defined on
the application, and on the nesting on the ranges. In general, any range that is inside another is
filtered by all of its parents. You can have as many levels of master-detail relationships as you wish,
and each master band filters all of its children.

For example, if we wanted to group the customers by country we could define a __Countries__
named range on A1:F6, and it would automatically filter the data on its child and grand-child.
(Customer and Order)

There is a special Table that if present filters all the others on the sheet, acting as a parent of all
the named ranges on the sheet. This is the table that you define on the name of the sheet, when
doing a multiple sheet report. You can see the multiple sheet report demo for more information,
there every table on each sheet is filtered by category.

“X” ranges
One issue that might appear when defining named ranges is how formulas on other ranges change
when inserting the new cells.

Let's imagine we want to make a simple report on a list of items and their prices.

So, we create a new template, define a title row, and insert a named range on A2:B2 to propagate
the data. But we also want to know all the total cost of all items, so we add a formula on B3:

When you run this report, rows will be inserted between row 2 and 3, but the formula Sum(B2:B2)
won't change. Nothing has been inserted between B2 and B2, so the sum range will remain constant.

So, we need to have a Sum range that can expand. We will define:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

10 | P a g e

Now, when rows are inserted between row 2 and 3, the formula will be updated to reflect the new
rows.

On this particular case, this solution might be enough. Just leave an empty row after the range so
formulas expand, and then you can hide the extra row or just leave it there.

But, if we were for example creating a chart, this extra row will be on the chart too. If you are an
old FlexCel VCL user, you know about the “...delete row...” thing just to avoid those cases.

Well, delete row does not work anymore on FlexCel 3.0 and up, because the row would be deleted
before the range is expanded, and the formula will then point to B2:B2 again.

This is why we introduced the “X” ranges. X ranges are normal named ranges with an “X” at the
end. On this case, instead of “__Item__”, we would call the range “__Item__X” It will behave
exactly the same as a normal range, but once it is expanded it will erase the last row (or column if
it is a column range). So if we try the last example with “__Item__X”, row 5 on the last screenshot
will be deleted, and the formula would be “=SUM(B2:B4)”. Just what we were looking for. See the
chart demo for more information on using X ranges.

Fixed Bands
By default, FlexCel will always insert cells when expanding ranges, and this is what you would
normally want. If you have a template:

A1:Title

A2:<#data>

A3:Footer

You would expect that the generated report will have the Footer for example on cell A33 (if we had
30 data records), but not on A3.

But there is a situation where this is not what you expect, and this is on Fixed Form reports. Let's
imagine that you want to fill out a form with FlexCel. Most fields will be just simple expressions,
not related to datasets, but we might have a table too:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

11 | P a g e

Here, no matter if the dataset has 1 record, two or 10 (it should not have more than 10) you want
the “Total” line to be at row 23. You cannot do this with normal ranges, since you would be
inserting rows. For this you can define a “__TopOrders__FIXED” named range, that will not insert
any records. See the “Fixed Forms with Datasets” demo for more information.

Intelligent Page Breaks
Other kind of ranges you might want to create are “KeepTogether” ranges.

FlexCel will try to keep rows or columns on those ranges together when printing by inserting page
breaks at the needed places.

To create a “Row” KeepTogether range, you need to name it:

KEEPROWS_<Level>_<Whatever>

Where <Level> is the level of “keep together” of the group, and “Whatever” is anything, you can
use it to have more than one “keeptogether” range in the same sheet.

For example, you might have the ranges:

KeepRows_1_customers

and

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

12 | P a g e

KeepRows_1_orders

in the same sheet, to tell FlexCel to group the rows in both ranges together when printing. You
might also have different levels of “Keep together”, and you will normally use higher levels for
details in master-detail reports.

Once you have created the ranges, you need to write an <#auto page breaks> tag somewhere in the
sheet, and FlexCel will add page breaks when it ends the report trying to keep those ranges
together. You can customize the <#auto page breaks> to influence the way page breaks are created.

We are not covering in detail Intelligent page breaks here, since they are described in the API
guide, and it makes no sense to repeat that information here. We only cover here what is different
for reports, and this is the “KeepTogether” ranges.

So please make sure you read the section Preparing for Printing in the API guide, since most of the
concepts apply also to reports. And of course take a look at the Intelligent Page Breaks in Reports
demo.

Intelligent Page Breaks in Included Reports
You can use intelligent page breaks inside an <#included> report, but you must be aware of some
differences.

The most important difference is that the final pagination must be done in the master report, not in
the included one. Let's look at an example:

 Included report

Page Break

 Master report

 Included report

Page Break

Page break in the right

position for the included
report when printed alone.

When copied into the master, the page break

goes into a wrong location, and crashes with
the page breaks in the master.

This page break is automatically inserted by

Excel because that is the maximum page size.

In this example, we can have “KeepRows_” and “KeepColumns_” ranges in the included report, but
we should not create the actual page breaks in it. If we did it, those page breaks would be in the
wrong position when inserted in the master. (unless the report is included at cell A1). As you can
see in the drawing, the included report is copied into the master at a lower location. So if the
report goes down, the page breaks will go down too, ending up at the wrong places. Excel needs to
insert its own page break (marked with a red dotted line) in order to have the master page no
bigger than the paper size, and the old page break will create a small page that we don't want.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

13 | P a g e

So, in order to have intelligent page breaks in included report, you must follow the next simple
rules:

1. Create the “KeepRows_” and “KeepColumns_” ranges in the included report, as you would
normally do it.

2. Do not write an <#auto page breaks> tag in the included report. This will ensure FlexCel
does not add the page breaks in the included report before copying it to the master.

3. Make sure you include full rows (by using “__” or “II_” as parameter in the include tag).
This way, the KeepRows and KeepColumns ranges will be copied to the master.

4. Write an <auto page breaks> tag into the master. This way, when the master report is
finished, FlexCel will paginate the master, keeping together the rows you marked in the
included report. Pagination must be done on the master, never in the included report.

Configuration Sheet

The configuration sheet is a repository where you can configure different things on your report,
define common used expressions and so on. It is not required, you can create a report without a
configuration sheet, but it is recommended that you have one except for very simple reports.

Once the report is run, the configuration sheet will be deleted.

Note: If there are any macros assigned to the configuration sheet, FlexCel will be
unable to delete it and will just clear and “Very hide” the sheet. (Very hidden
sheets are similar to hidden sheets but the user needs to write a macro to see
them, they are not listed when you select to unhide a sheet from Excel). If you get
a macro by mistake on the config sheet and you are unable to delete it in Excel,
use the “MacroCleaner” tool included on the “Tools” folder.

The layout of the config sheet is free as long as you keep the positions, you can write the captions
you want or change any format you need. Just one advice: keep it simple. The config sheet will be
deleted from the final report, so the final user won't see it. And deleting a sheet with comments,
images formulas and so on is more time consuming than deleting a simple sheet.

An example of a config sheet is shown here:

We can note that:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

14 | P a g e

1. For a sheet to be the configuration sheet it must be named “<#Config>” or any expression
that evaluates to the string “<#Config>”. You could conditionally make a sheet the
configuration sheet depending on some parameter.

2. On cell B6 we need to write the name of the schema definition file for the dataset. This is
not required, but if you don't do it, FlexCel designer won't be able to show the available
tables.

3. Cells A10 to C10 and all rows below (A11:C11... etc) are used to define new custom tables.
You use a master table defined by the application (B10), and define a new name for it
(A10). Then you can write a filter (any filter expression available on a DataView is ok here,
for more info search at the DataView.Filter documentation on the .NET framework docs).
And also sort the table by some columns. Different search columns are separated by “,”,
and you an also define an “ASC(ending)” or “DESC(ending)” order. For example: “State,
ZipCode DESC” Again, any Sort expression valid for a DataView is valid here. For more
information consult the .NET framework docs on DataView.Sort.

4. On some places you can use tags. For example, if you write on C10 “<#mytag>” instead of
“ProductId=7” the value of mytag wil be used as a filter.

5. You can leave empty rows. For example, you can define a new table on row 10 and another
on row 12 without writing anything on row 11. This allows you to better separate your
tables.

6. On columns H and I you define custom formats. The name of the format goes on column H,
and the definition on column I. Then you can use those cell formats on <#format> tags.

7. You can write whatever you want on column I, the text is not important and you can use it
to know how the format will look like.

8. Column K is used to list the report variables. It is not used at all by FlexCel and you don't
really need to fill it, but it is used by FlexCel designer to list the available report variables.
If you do not write them here, FlexCel designer will not show them.

9. Columns M and N are probably the most important on the config sheet and are used to
create reusable expressions.

About Expressions
It is recommended that whenever you have complex chains of tags, instead of writing them directly
on the cell, you create an expression and then refer to it.
On the screenshot, we defined a <#order> tag that itself calls other report expressions to calculate
its value. Then, if you want to write the result of order on cell A1, instead of writing the full chain
of tags, you just write <#Order> On some places, like for example the name of the sheet or an
image name this might be the only choice, as the name length is limited to 32 characters. You can
use also parameters on Expressions, and for Example define <#order(row)> For more details on how
to do this, see the Expressions with parameters demo.
Defining Custom Formats
Custom formats are normally straightforward to use.
For example, you might format I10 with blue background, name it “Header” in cell H10, and then
use the format inside a <#format cell(Header)> in the template. But this will apply the full format in
cell H10 to the new cell. This means that besides the blue background, all other properties will be
copied too. The new cell will also have the same font, same alignment, same numeric format than
H10.
Now let's imagine we have a full row that we want to be blue if some condition applies. If we write
<#format row(header)> in a cell on the template, then all other attributes besides the background
will be applied to the row. This might mean that all the cells will be aligned to the left (if cell I10

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

15 | P a g e

was aligned to the left), and this is not what we want. We want to apply only the background color
on I10, keeping everything else as it is defined on the template.
To do this, you can define partial formats. You define a partial format by adding one or more
attributes to the name of the format. For example, if you name the format
Header(background;font.color) only the font and the color of cell I10 will be applied, not the full
format.
You can add as many properties as you want to be applied for the format separating them by
semicolons (“;”). Also, you can use negative properties by preceding them with a “-” sign. For
example, the following definition: Header(All; -Border; -Font) will apply all attributes in cell I10
except the border and the font.

The list of properties you can write in a cell is the following:

Name Description

All Applies the all the formats in the cell. Defining a format named “header” is the
same as defining one named “header(All)”.

You will normally use the All format when excluding formats. For example,
“header(All, -Border)” will apply all the formats except the border.

“header(-Border)” would not apply any format.

Border Applies the four borders. “header(Border)” is the same as
“header(Border.Left;Border.Right;Border.Top;Border.Bottom)”

Border.Left Applies the left border.

Border.Right Applies the Right border.

Border.Top Applies the Top border.

Border.Bottom Applies the Bottom border.

Border.Exterior This is an special setting, used to apply the borders only on the outer bounds of the
range. For example, if fmt is defined as “fmt(border; border.exterior)”, and you
write <#format range(a1:c5;fmt)> then the top row of the range (row 1) will be
formatted with the top border format of the cell, the left column or the range
(column a) will be formatted with the left border format of the cell, and so on. Inner
cells in the a1:a5 range will not have any border applied.

This tag alone has no effect; you always need to use it together with other border
tag. For example “fmt(border.exterior)” will not do anything, you need to write
“fmt(border; border.exterior)”, “fmt(border.top; border.bottom;
border.exterior)”or something similar.

Other properties (like background) are not affected by border.exterior, they will still
apply to the whole range.

Note that this tag only applies to the <#format range> tag. It makes no sense in
<#format cell>, and you cannot use it in <#format row/column> since format for

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

16 | P a g e

columns and rows do not support this.

Font Applies all the font properties. “header(Font)” is the same as
“header(Font.Family;Font.Size;Font.Color;Font.Style;Font.Underline)”

Font.Family Applies the font name.

Font.Size Applies the font size.

Font.Color Applies the font color.

Font.Style Applies the font style (bold and italics) Underline in not included in Font.Style.

Font.Underline Applies the underline.

NumericFormat Applies the numeric format of the cell.

Background Applies the background color of the cell. “header(Background)” is the same as
“header(Background.Pattern;Background.Color)”

Background.Pattern Applies the fill pattern for the cell.

Background.Color Applies the fill color for the cell.

TextAlign Applies the horizontal and vertical alignment in the cell. “header(TextAlign)” is the
same as “header(TextAlign.Horiz;TextAlign.Vert)”

TextAlign.Horiz Applies the horizontal alignment in the cell.

TextAlign.Vert Applies the vertical alignment in the cell.

Locked Applies the “Locked” attribute in the cell.

Hidden Applies the “Hidden” attribute in the cell.

TextWrap Applies the Word Wrap setting for the cell.

ShrinkToFit Applies the Shrink to fit setting.

Rotation Applies the Rotation.

TextIndent Applies the indent.

Important Note: You need to specify what the format applies to in the format
definition, but not when calling the format. You might define a format as
header(border), but you need to call it with <#Format Cell(header)>, not <#Format
Cell(header(border))> The second way will not work.

With partial formats you can apply the different formats as “layers” in your document, one
independent from the other. You can apply as many <#format cell> and <#format range> tags as you
want in a cell, as long as the applied formats are different all of them will be applied.

!

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

17 | P a g e

A last word of caution: As powerful as custom formats are, remember that they are
only useful if you want to conditionally format cells. If the format is static, just
format the cell as you want it. We have seen too many customers “over engineering”
reports with lots of format cell tags, when the simplest solution would be to format
the cells directly in the template with Excel and not use any tag.

You can see an example on how to use custom formats to have alternating rows in

the “Mutiple Sheet Report” demo.

Grouping Tables
Sometimes you might have the data for a master detail report into one table, and you want to
create two different tables based on the value of a key field.

You can use the “DISTINCT” filter on the config sheet together with the “RELATIONSHIP” tag to get
this effect. Look at the “Master detail on one table” demo for more information on how this is
done.

Note: Whenever possible, do not use this grouping as the normal way to get data.
While it simplifies the data layer, it also fetches a lot of repeated information from
the database.

For example: If you

select * from table1 join table2 on (table1.key = table2.key)

you will get results like this:

table1.value1 table1.value2 table2.value1 table2.value2

table1.value1 table1.value2 table2.value3 table2.value4

table1.value1 table1.value2 table2.value5 table2.value6

On this simple case, you fetched 12 values from the database. If you had made 2 different selects,
you would have fetched only 8 values (table1.value1 and table1.value2 for the first table, and
table2.valuen for the second). Depending on the amount of data, there might be a lot of repeated
fields on the join.

Splitting Tables
The same way sometimes you might want to group tables, other times you might want to split them
in groups of n records. For example, you might want to create a 5 column report, and you need to
split the master dataset in groups of 5 records in order to fill the columns.

This is where the Split(source, number of records) tag can be useful. In short, you write this tag on
the “Source Name” column in the config sheet, specifying the table to split on the “source”
parameter, and how many records you want on each group on the “number of records” parameter.
This will create a new table that you will name on the “Table Name” column of the config sheet.
You can then use this new table as master on a master-detail relationship with the original table.
The generated master has no columns, but you can use the pseudocolumns (#RowPos or #RowCount)
just fine. Each record of the master is related to “number of records” records on the detail.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

18 | P a g e

Note that the generated master table is a “pseudo table” n the sense that it has no columns or
data, but it has (DetailRecords.Count – 1) / NumberOfRecords + 1 rows. Also the relationship
between the master and the detail is not on real columns, since there are no columns on the
master. This creates a limitation on how you can use those tables, and it is that the master should
have the detail as a direct child. You cannot have other __ range__ between them, or FlexCel will
complain.

Take a look at the Split Datasets demo for more information.

Retrieving TOP N Records from a table
You normally should filter the data when retrieving it from the database (for example with the SQL
“Select top 10 * from customers”). But if this is not possible, you can use the Top(source, number of
records) tag to filter this from the template. Be careful with this tag. If your table has 10,000
records and you only need 10, fetching them all from the db in order to use only 10 is not a smart
idea. Take a look at the Fixed Forms With Datasets demo for more information.

Direct SQL on templates
Depending on your needs, you might want to write SQL commands directly on the templates and
avoid having a Data module on code. This allows the users to modify the data they need by
modifying the xls file, and without recompiling the executable.

But, before you continue reading, be aware that allowing your users to directly write
the SQL commands can mean a big security risk.

For example, a user could use the connection you give him to execute the SQL: “drop
table users” instead of a normal select. While FlexCel does a little validation on the
SQL written by the user (for example, it cannot contain “;” or “--”, it has to start
with “Select” etc) SQL is a very powerful language and there can always be a way to

execute a command on the server. And, even if the user does not manage to execute a command,
he might always do a “Select user, password from users” or similar command, and get dbadmin
access to the database.

So, you must supply a readonly connection, and with rights limited to the tables you want the
user to see.

The steps for allowing Direct SQL on the templates are:

1. Provide a connection to the report, by using FlexCelReport.AddConnection()
2. On the config sheet, “Source Name” column, add a string like “SQL(Select * from clients”).

Give this table a name, and you can use it as any other table on the report.

Note that also for security reasons, you can't replace expressions inside the SQL string. For example,
you can't write “SQL(select * from customers where cust_id = <#custId>)” This would open another
security hole and allow for SQL injection attacks.

SQL Parameters

You need to specify database parameters to be able to actually pass information to the SQL.

.NET can use both positional (“?”) and named (“@name” or “:name”) parameters, and some data
providers will accept one or the other. As we want to keep the template database independent (so
you can replace the db backend without changing templates), all parameters on the template are

!

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

19 | P a g e

named, with a preceding “@” (“@name”). When using a db that needs positional parameters (like
ADODB) or has another syntax for named parameters (like oracle that uses “:name”) the SQL will be
automatically converted by FlexCel into the needed one before sending it to the db.

FlexCel includes support for the most common cases, and when it does not know which db it is, it
will “guess” that the db uses named “@” parameters.

When you use a db FlexCel does not recognize (for example Oracle), you need to let FlexCel know
which kind of parameters your db needs. For this you use the SqlParameterReplace and
SqlParametersType properties on FlexCelReport. (look at the reference help on those properties to
see how to use them)

You can see a demo on how to do it on the “Direct SQL” example; more information is also available
there.

User Tables defined on the Template
Sometimes Direct SQL is not an option, because you have your own data layer that you want to use,
or because it is too big security risk to let your users run arbitrary SQL commands. But you would
like the advantages of Direct SQL. That is, to specify the data directly on the template, so
everything is self contained on the xls file and you can change your reports without recompiling the
application.

You can use the USER TABLE(Params) tag to achieve this.

User table(Params) is a very simple tag, but it allows a lot of things. You write it on the Source
Table column in the config sheet, and you can add an additional parameter on the Table Name
column. You can leave the “Sort” and “Filter” columns empty or with values, their values do not
matter.

For every “User Table(Params)” on the template, the event UserTable will be called on the report.
Anything you write in “Params” will be passed as arguments to the event, without any further
processing by FlexCel. Also, the value you write on the Table Name column will be passed to the
event. You will normally want to use this second parameter to tell FlexCel how you want to name
the table you are creating. Note that the name you write on the “Table name” column is not
guaranteed to be created; this all depends on what you write on the event handler. Also, note that
you must write something on the tablename column even if you will not use it on the event, or the
row will be ignored.

So, how do you use it? Imagine you write a tag: User Table(CUSTOMER), and define the event
UserTable so each time it gets the parameter “Customer” it loads the customer table from the
database and adds it to the report. This way you are actually telling FlexCel which tables it needs to
use on the template, allowing you to add new ones (from a list of available tables on the
application) or remove existing tables without changing the code.

Other way to use this tag could be if you have your own API to access the database, with your
defined commands, permissions and validations. You could pass the API command as parameter on
the <#User Table> tag, and use this parameter inside the event to execute the API and add the
generated table to the report. You would write something like <#User Table(get table customer on
customerId < 100)> on the template, and on the UserTable event on the report, execute the
parameter against your API, and add the resulting dataset.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

20 | P a g e

Note: When using the “User table” tag to pass arbitrary API commands to the
application, please remember to validate permissions on the UserTable event to
see if the user is allowed or not to run the query. Forgetting to do so could
generate a big security hole on your application, the same way as the SQL tag
could.

For more information on this tag, see the User Tables demo.

!

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

21 | P a g e

Debugging Reports

Introduction

Whenever you hit enough complexity in your reports, you will get expressions that do not behave as
you expect, and you will need tools to investigate what is really happening under the hood. This
chapter speaks about those tools.

FlexCel Reports are declarative instead of imperative. This means you describe what you want using
report tags, but you do not write code to tell the computer how to do it. In a way, FlexCel Reports
are similar to SQL, and different from normal code.

XlsFile xls = new XlsFile();

xls.NewFile();

xls.SetCellValue(1,1,"Table");

if (Table["test"] == null) "error"; else

xls.SetCellValue(1,1,Table["field"]);

A “declarative” report would be a template with the text “Table” in cell A1 and the tag

<#if(Table.Test =;error;<#Table.field>)>

in cell A2.

Declarative reports are normally more “resistant” to bugs because they are simpler and so it is
easier to see what is wrong. But on the other hand, they are also more difficult to debug when
there is a bug, because there is no code you can step with a debugger.

In the XlsFile example above, you could set a breakpoint in the last line and evaluate the values of
the variables before execution. In the FlexCel Report there is no way to set a breakpoint, since
there is no code to execute. But you can still find out what is going on, and this is what we will
explain here.

There are two main causes for errors in FlexCel reports; syntax errors and logical errors. They are
covered below.

Dealing with Syntax Errors

Those are the easiest to deal with. The same way a “Code” report will not compile if there is a
syntax error, a FlexCel report will raise an Exception when “compiling” the template if it finds
anything it cannot understand. The error message will normally tell you what is happening and
where, and there should be no big problem in fixing it.

If for example you write “<#tag” in a cell, you will get an error telling you that there is a closing tag
“>” marker missing.

Now, in some situations it might be useful to see all syntax errors at once, and for this FlexCel
offers a “ErrorsInResultFile” mode. In this mode, all errors related to tags will be written to the
cell where the tag is, instead of raising exceptions, and the report will continue to generate. Errors
will have a yellow background and red text.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

22 | P a g e

This mode does not cover all errors (for example a named range for a non existing table will still
raise an error), but it covers the most common issues. The others still need to raise an exception,
since if for example you have a range named “__table__” and no “Table” in the report, there is no
place where FlexCel could write this error inside the xls file. The error must be in a cell for this
mode to work.

There are two ways to enter ErrorsInResultFile mode. The first one is to change it in the code
before running the report, by changing the ErrorsInResultFile property in FlexCelReport.

For example:

FlexCelReport fr = new FlexCelReport(true);

fr.ErrorsInResultFile = true;

fr.Run(...);

The second way is to write it directly in the template, inside the config sheet.

For example:

The <#ErrorsInResultFile> tag can be anywhere in the Expressions column, and you do not need to
write anything in the Expression definition.

This second way to enter ErrorsInResultFile mode is better when you are editing a template and
want to do a debug without modifying the code, while the first way is better if you are automating
testing and do not want to modify the templates.

Note: Remember that this mode is a “debugging” mode, and you should turn it off
for production. You do not want to ship a file containing error messages in cells to
your customers.

Dealing with Logical Errors

These kinds of errors are harder to deal with, are more subtle, and can pass without notice since
they do not raise any error on FlexCel side.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

23 | P a g e

For example, imagine that you have this expression:

<#if(<#tagval>=<#refval>;OK;Error)>

This is a valid tag, and the report will compile and run without issues. Let's imagine now that tagval
is 1, and refval is “l” (lowercase L). So, when tagval is 1, the condition will evaluate to false, and
you will get the “Error” label instead of “OK”.

With this font in particular this can be a hard to spot problem, because as we said before, you
cannot really put a breakpoint in the expression and see what is inside tagval or refval.

Here is where the “Debug” mode can help.

As with the “ErrorsInResultFile” mode, there are two ways to activate debug mode. The first is by
code, by setting the “DebugExpressions” property in the FlexCelReport to true. Again, setting it in
code is useful when automating tests because you do not have to change the template.

And the second way is to write “<#Debug>” in the configuration sheet, the same way as in
ErrorsInResultFile. This second way is preferred in most cases, f.i. if you do not want to modify the
code, for example when testing a template.

The same remarks mentioned for the <#ErrorsInResultFile> apply to the <#Debug> tag.

In this mode, tags will not write their value to the cell, but they will rather write the whole chain of
calculations made to arrive to the value.

For example, for our problematic expression:

<#if(<#tagval>=<#refval>;OK;Error)>

We will get this result in the cell:

The format of the lines is as follows:

Each line has an expression in bold and a value in italics. Under that line and indented to the right
we find the subexpressions used in the main expression and their values.

In this case, we can easily see that <#tagval> is “1”, <#refval> is “1”, and <#tagval> = <#refval>
evaluates to false, so there is something wrong in the test. Having the full stack and all the
intermediate values used to compute the main expression can be a valuable tool to find out what is
going wrong, by allowing us to easily locate the exact point where the expression is not evaluating
as it should.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

24 | P a g e

Note: In order to correctly visualize the
stack in the cell, you will have to set
“Wrap Text” to true in the cell
properties. If Wrap text is false, all lines
will show in one line and it will be more
difficult to read.

Understanding the stack can be a little difficult at first time, but once you get used to it, it can be a
great help. To end up this chapter, we will present a more complex expression and its
corresponding stack explained. You can see it yourself at the “Debugging Reports” demo.

The original expression is this:

And the result we get when running this template in “debug” mode is:

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

25 | P a g e

You can see we have 4 main expressions here (they show without indentation). The first one is the
constant text “Test value is”, the second is the tag “<#test>” that evaluates to 3, the third is
other constant text “and here we will format it: ” and the fourth is an expression
“Format(<#test>;<#round(1)>)” that evaluates to 3. So the result in “normal” mode of this cell
will be “Test value is 3 and here we will format it: 3”. As there is a “format cell(red)” tag in the
evaluation stack, the result will be formatted in red format.

All tags shown below the “format” line are subexpressions used to compute it.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

26 | P a g e

Appendix: Using FlexCel designer

While you can create your reports only with Excel, writing all the tags can be a time consuming
task. FlexCel designer is a little tool created to help on this.

When you launch FlexCel designer, a screen similar to the following will open:

If no file is loaded, the listbox will only contain “Full Config”
and “Tags” entries.

Screen description
On the listbox you can select a field, a tag, a report variable
or a full configuration sheet, and drag and drop it to Excel or
Open Office.

If you press “Alt” before beginning to drag a field, the field
and the field name will be pasted on Excel.

Menu description
The following options are present on the menu:

File - Open:
Will open a new report. It will read the report variables and
dataset description file from the configuration sheet on the
report, and display them on the listbox.

The last file open will be saved when you exit FlexCel
designer, and will be restored next time you open it.

File - Exit:
Will close the application.

Options - Use Column Captions:
When checked, the column captions instead of the column names will be dropped on the report.
When using this option, make sure the corresponding FlexCelReport has UseColumCaptions property
= true.

View - Always on top:
Will maintain the window on top of the others, so it is easier to drag to Excel.

View - Opacity:
Sets the transparency of the form. Works only on Windows 2000 or later.

Copy:
Will copy the selected item to the clipboard. This can be useful when editing composed statements
(for example <#d1> <#d2>) because you can't drag and drop to the middle of a cell. But you can
copy/paste <#d2> anyway.

TMS SOFTWARE
FLEXCEL STUDIO FOR .NET

27 | P a g e

Data configuration
FlexCel designer loads its data from the configuration sheet of an xls file. If the report does not
have a configuration sheet, you can't open it with FlexCel designer.

On the sheet, it will read:
• The xsd dataset definition file, and add the dataset to the listbox. The xsd file is generated by
Visual studio when you edit a dataset schema. You should copy this file to the same folder the
template is in.
• All the user defined tables, and add them to the user defined folder.
• All the user defined variables, and add them to the report variables folder.

