
Overview
TMS RemoteDB is a set of Delphi components that allows you to create 3-tier database

applications. It allows your client db application to execute SQL statements through an Http

server, instead of directly accessing the database server. It is targeted for performance, stability,

and as an easy path to convert client-server applications into 3-tier applications. At the server-

side you can choose a wide range of database-access components to connect to database

server, including FireDac, dbExpress, dbGO (ADO) and many others. TMS RemoteDB uses TMS

Sparkle as the core communication library.

TMS RemoteDB product page: https://www.tmssoftware.com/site/remotedb.asp

TMS Software site: http://www.tmssoftware.com

TMS RemoteDB allows you to create database applications that perform SQL operations on a

remote HTTP server, instead of a database server, using a TDataset descendant named

TXDataset. This makes it easy to convert existing Delphi client-server applications into 3-tier

applications with minimal changes in source code.

The following picture provides an overview of RemoteDB architecture.

The RemoteDB Server is a Delphi application/service that listen to HTTP requests. When clients

perform requests, the RemoteDB Server will forward the requests to the actual database server

being used, using the specified database-access component. The SQL is performed and the

results are returned back to the client. You can choose the components that will perform the SQL

statements from a wide-range of options such as FireDac, dbExpress, dbGo (ADO), among

others, using component adapters. The SQL database can be any database server supported by

the components used, and must be thread-safe (most are).

From the Delphi client application, you can use as many TXDataset components as you need to

perform the regular SQL operations. All TXDataset components are linked to a

TRemoteDBDatabase component via a Database property. The RemoteDBDatabase component

is the one in charge of forwarding the SQL requests to the RemoteDB Server and retrieving back

the values. All operations on the client are transparent and just like any TDataset usage: you

specify the SQL statement, Open the dataset (or ExecSQL), define the list TField components,

Params, connect TDatasource components to it, etc..

TMS RemoteDB 2.17.3.4 Page 1 of 35

https://www.tmssoftware.com/site/sparkle.asp
https://www.tmssoftware.com/site/sparkle.asp
https://www.tmssoftware.com/site/remotedb.asp
http://www.tmssoftware.com

TMS RemoteDB also allows you to use the TXDataset to connect directly to the database server

in a traditional client-server approach. For that, you could just use TGenericDatabase instead of

TRemoteDBDatabase. TXDataset component can be connected to any of the two. This allows you

to have a single application, a single dataset component, but switch the database access

between a remote, cloud HTTP access to the database, or a regular, local network direct access

to the database.

In this section:

Creating RemoteDB Server

How to create a new TMS RemoteDB server and how to configure it.

RemoteDB Client Applications

How to create Delphi client applications that connect to a TMS RemoteDB server.

TMS RemoteDB 2.17.3.4 Page 2 of 35

Creating RemoteDB Server
The following topics explain how to create a new TMS RemoteDB server and how to configure it.

Ways to Create the RemoteDB Server
You have four different ways to create a RemoteDB Server app, as follows.

RemoteDB Server Wizard

The easiest and more straightforward way to get started with RemoteDB is using the wizard.

From Delphi IDE, choose File > New > Other and then look for the "TMS RemoteDB"

category under "Delphi Projects".

There you find the following wizard to create a new XData Server Application:

TMS RemoteDB VCL Server: Creates a VCL application that runs a RemoteDB server using

http.sys

Choose the wizard you want, double-click and the application will be created.

The wizard will create the design-time components for you. You still need to drop the database-

access component to be used to connect to the database - e.g., TFDConnection (FireDac),

TUniConnection (UniDac), TSQLConnection (dbExpress), etc. - and then associated it to the

TAureliusConnection component.

You can also create the server manually, using design-time components or from non-visual code.

Using Design-Time Components

Another way to create a TRemoteDBServer is by using the design-time components. If you want

the RAD, component dropping approach, this is the way to go.

Drop a dispatcher component on the form (for example, TSparkeHttpSysDispatcher);

Drop a TRemoteDBServer component on the form;

Associate the TRemoteDBServer component with the dispatcher through the

Dispatcher property;

Specify the BaseUrl property of the server (for example, http://+:2001/tms/remotedb);

Set the Active property of the dispatcher component to true;

Drop a TAureliusConnection on the form and configure it so that it connects to your

database (you will need to drop additional database-access components, e.g.

TFDConnection if you want to use FireDac, and then associate it to the

TAureliusConnection.AdaptedConnection).

Associate the TRemoteDBServer component to the Aurelius connection through the

Connection property.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

TMS RemoteDB 2.17.3.4 Page 3 of 35

http://www.tmssoftware.biz/business/aurelius/doc/web/taureliusconnection.html

That is enough to have your RemoteDB server up and running!

Legacy Wizard for RemoteDB Server

There is a legacy wizard which don't use design-time components but you can still use.

To create a new RemoteDB Server using the legacy wizard:

Choose File > New > Other and then look for "TMS Business" category under "Delphi

Projects". Then double click "TMS RemoteDB Server".

Chose the kind of applications you want to server to run on, then click Next. Available

options are VCL, FMX, Service and Console. You can choose multiple ones (for example,

you can have a VCL project for quick test the server and a Service one to later install it in

production, both sharing common code.

Chose the Host Name, Port and Path for the server, then click Next. Usually you don't

need to change the host name, for more info check URL namespace and reservation. Port

and Path form the rest of base URL where your server will be reached.

Select the Driver (component to access database) and the SQL Dialect (type of database

server), then click Create.

The new server will be created and ready to run.

Creating the Server Manually

If you don't want to use the RemoteDB Server wizard and do not want to use design-time

components, you can create a server manually, from code. This topic describes how to do it, and

it's also a reference for you to understand the code used "behind-the-scenes" by the design-

time components.

TMS RemoteDB is based on TMS Sparkle framework. The actual RemoteDB Server is a Sparkle

server module that you add to the Sparkle Http Server.

Please refer to the following topics to learn more about TMS Sparkle servers:

Overview of TMS Sparkle Http Server

Creating an Http Server to listen for requests

TMS Sparkle Server Modules

To create the RemoteDB Server, just create and add a RemoteDB Server Module

(TRemoteDBModule object, declared in unit RemoteDB.Server.Module) to the Sparkle Http

Server. To create the RemoteDB Module, you just need to pass the base URL address of the

server, and an IDBConnectionFactory interface so that the server can create connections to the

actual SQL database server. Here is an example (try..finally blocks removed to improve

readability):

1.

2.

3.

4.

•

•

•

TMS RemoteDB 2.17.3.4 Page 4 of 35

http://www.tmssoftware.biz/business/sparkle/doc/web/url_namespace_and_reservation.htm
http://www.tmssoftware.biz/business/aurelius/doc/web/component_adapters.html
http://www.tmssoftware.biz/business/aurelius/doc/web/sql_dialects.htm
http://www.tmssoftware.biz/business/aurelius/doc/web/sql_dialects.htm
http://www.tmssoftware.biz/business/sparkle/doc/web/index.html?http_server.htm
http://www.tmssoftware.biz/business/sparkle/doc/web/index.html?httpsysserver.htm
http://www.tmssoftware.biz/business/sparkle/doc/web/index.html?server_modules.htm

The code above will create a new RemoteDB server which base address is http://localhost:2001/

tms/business/remotedb. That's the address clients should use to connect to the server. The server

will use dbExpress to connect to the database, and the TSQLConnection component must be

properly configured in the CreateNewIDBConnection function.

There are many other ways to create the IDBConnection interface, including using existing

TDataModule. You can refer to the following topics for more info.

uses

 {...},

 Sparkle.HttpSys.Server, RemoteDB.Drivers.Base,

 RemoteDB.Drivers.Interfaces, RemoteDB.Server.Module;

function CreateNewIDBConnection: IDBConnection;

var

 SQLConn: TSQLConnection;

begin

 // Create the IDBConnection interface here

 // Be sure to also create a new instance of the database-access component here

 // Two different IDBConnection interfaces should not share the same database-

access component

 // Example using dbExpress

 SQLConn := TSQLConnection.Create(nil);

 { Define SQLConn connection settings here, the server

 to be connected, user name, password, database, etc. }

 Result := TDBExpressConnectionAdapter.Create(SQLConn, true);

end;

var

 Module: TRemoteDBModule;

 Server: THttpSysServer;

begin

 Server := THttpSysServer.Create;

 Module := TRemoteDBModule.Create('http://localhost:2001/tms/business/remotedb',

 TDBConnectionFactory.Create(

 function: IDBConnection

 begin

 Result := CreateNewIDBConnection;

 end

));

 Server.AddModule(Module);

 Server.Start;

 ReadLn;

 Server.Stop;

 Server.Free;

end;

TMS RemoteDB 2.17.3.4 Page 5 of 35

IDBConnectionFactory Interface
The IDBConnectionFactory interface is the main interface needed by the RemoteDB server to

work properly. As client requests arrive, RemoteDB Server might need to create a new instance of

a database-access component in order to connect to the database. It does that by calling

IDBConnectionFactory.CreateConnection method to retrieve a newly created IDBConnection

interface, which it will actually use to connect to database.

To create the factory interface, you just need to pass an anonymous method that creates and

returns a new IDBConnection interface each time it's called.

It's possible that you already have your database-access component configured in a

TDataModule and you don't want to create it from code. In this case, you can just create a new

instance of the data module and return the IDBConnection associated to the component. But

you must be sure to destroy the data module (not only the database-access component) to

avoid memory leaks:

uses

 {...}, RemoteDB.Drivers.Base;

var

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 SQLConn: TSQLConnection;

 begin

 // Create the IDBConnection interface here

 // Be sure to also create a new instance of the database-access component

here

 // Two different IDBConnection interfaces should not share the same

database-access component

 // Example using dbExpress

 SQLConn := TSQLConnection.Create(nil);

 { Define SQLConn connection settings here, the server

 to be connected, user name, password, database, etc. }

 Result := TDBExpressConnectionAdapter.Create(SQLConn, true);

 end

));

 // Use the ConnectionFactory interface to create a RemoteDB Server

end;

TMS RemoteDB 2.17.3.4 Page 6 of 35

IDBConnection Interface
The IDBConnection interface represents a connection to a database in RemoteDB. Every

connection to a database in the server is represented uses this interface to send and receive data

from/to the database.

IDBConnection wraps the data access component you are using, making it transparent for the

framework. Thus, regardless if you connect to the database using dbExpress, ADO, IBX, etc., you

just need an IDBConnection interface.

To obtain an IDBConnection interface you use existing adapters (drivers) in RemoteDB. The

adapters just take an existing data access component (TSQLConnection, TADOConnection, etc.)

and give you back the IDBConnection interface you need to use. To create database connections

it's important to know the available:

Component Adapters

SQL Dialects

In summary, to obtain an IDBConnection interface:

1. Create and configure (or even use an existing one) component that makes a connection

to your database.

If you use dbExpress, for example, you need to create a TSQLConnection component, and create

the adapter that wraps it:

var

 ConnectionFactory: IDBConnectionFactory;

begin

 ConnectionFactory := TDBConnectionFactory.Create(

 function: IDBConnection

 var

 MyDataModule: TMyDataModule;

 begin

 MyDataModule := TMyDataModule.Create(nil);

 // The second parameter makes sure the data module will be destroyed

 // when IDBConnection interface is released

 Result := TDBExpressConnectionAdapter.Create(MyDataModule.SQLConnection1,

MyDataModule);

 end

));

 // Use the ConnectionFactory interface to create a RemoteDB Server

end;

•

•

function CreateDBExpressConnection: TSQLConnection;

begin

 Result := TSQLConnection.Create(nil);

 // Configure Result with proper connection settings

 // Don't forget setting LoginPrompt to false

end;

TMS RemoteDB 2.17.3.4 Page 7 of 35

2. Instantiate an adapter passing the connection component.

Note the second parameter when calling Create constructor. It indicates that when

IDBConnection interface is destroyed, the wrapped TSQLConnection component is also

destroyed.

For more information about how to create adapters, see Component Adapters.

Component Adapters
There is an adapter for each data-access component. For dbExpress, for example, you have

TDBExpressConnectionAdapter, which is declared in unit RemoteDB.Drivers.dbExpress. All

adapters are declared in unit RemoteDB.Drivers.XXX where XXX is the name of data-access

technology you're using. You can create your own adapter by implementing IDBConnection

interfaces, but RemoteDB already has the following adapters available:

Technology Adapter class Declared in unit

Adapted

Component Vendor Site

Advantage TAdvantageConnectionAdapter RemoteDB.Drivers.Advantage TAdsConnection http://www.sybase.com

dbExpress TDBExpressConnectionAdapter RemoteDB.Drivers.dbExpress TSQLConnection Delphi Native

dbGo

(ADO)

TDbGoConnectionAdapter RemoteDB.Drivers.dbGo TADOConnection Delphi Native

ElevateDB TElevateDBConnectionAdapter RemoteDB.Drivers.ElevateDB TEDBDatabase http://elevatesoftware.com/

FireDac TFireDacConnectionAdapter RemoteDB.Drivers.FireDac TFDConnection Delphi native

NexusDB TNexusDBConnectionAdapter RemoteDB.Drivers.NexusDB TnxDatabase http://www.nexusdb.com

SQL-Direct TSQLDirectConnectionAdapter RemoteDB.Drivers.SqlDirect TSDDatabase http://www.sqldirect-soft.com

UniDac TUniDacConnectionAdapter RemoteDB.Drivers.UniDac TUniConnection http://www.devart.com/unidac

You can also use native database drivers:

Database Driver Name Connection class Declared in unit

Microsoft SQL Server MSSQL TMSSQLConnection Aurelius.Drivers.MSSQL

For more information on using native drivers, please refer to TMS Aurelius documentation.

function CreateIDBConnection: IDBConnection;

var

begin

 MyConnection := TDBExpressConnectionAdapter.Create(CreateDBExpressConnection, T

rue);

 // return the newly created IDBConnection to the caller

 Result := MyConnection;

end;

TMS RemoteDB 2.17.3.4 Page 8 of 35

http://www.sybase.com
http://elevatesoftware.com/
http://www.nexusdb.com
http://www.sqldirect-soft.com
http://www.devart.com/unidac
http://www.tmssoftware.biz/business/aurelius/doc/web/native-database-drivers.html

Creating the adapter

To create the adapter, you just need to instantiate it, passing an instance of the component to be

adapted. In the example below, a dbExpress adapter constructor receives a TSQLConnection

component.

The adapter usually detects the SQL Dialect automatically, but you can force the adapter to use a

specific dialect, using one of the following overloaded constructors.

Note that for RemoteDB, the SQLConnection1 cannot be shared between different

IDBConnection interfaces. Thus, you must create one database-access component for each

IDBConnection interface you create.

Overloaded constructors

There are some overloaded versions of the constructor for all adapters:

AConnection: specify the database-access component to be adapted.

AOwnsConnection: if true, the component specified in AConnection parameter will be

destroyed when the IDBConnection interface is released. If false, the component will stay

in memory.

ASQLDialect: defines the SQL dialect to use when using this connection. If not specified,

Aurelius will try to discover the SQL Dialect based on the settings in the component being

adapted.

OwnedComponent: specifies the component to be destroyed when the IDBConnection

interface is released. This is useful when using data modules (see below).

Memory Management

Note the second boolean parameter in the Create constructor of the adapter. It indicates if the

underlying connection component will be destroyed when the IDBConnection interface is

destroyed. This approach is borrowed from TMS Aurelius, but for RemoteDB, you should not

keep the component alive after the IDBConnection interface is released. Always destroy the

component with the interface (parameter must be true).

MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, True);

constructor Create(AConnection: T; AOwnsConnection: boolean); overload; virtual;

constructor Create(AConnection: T; ASQLDialect: string; AOwnsConnection:

boolean); overload; virtual;

constructor Create(AConnection: T; OwnedComponent: TComponent); overload;

virtual;

constructor Create(AConnection: T; ASQLDialect: string; OwnedComponent: TComponen

t); overload; virtual;

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 9 of 35

In the example above ("Creating the adapter"), the SQLConnection1 component will be

destroyed after MyConnection interface is out of scope and released. Quick examples below:

Alternatively, you can inform a different component to be destroyed when the interface is

released. This is useful when you want to create an instance of a TDataModule (or TForm) and

use an adapted component that is owned by it. For example:

The previous code will create a new instance of data module TConnectionDataModule, then

create a IDBConnection by adapting the SQLConnection1 component that is in the data module.

When MyConnection is released, the data module (MyDataModule) will be destroyed (and in

turn, the SQLConnection1 component will be destroyed as well). This is useful if you want to

setup the connection settings at design-time, or have an existing TDataModule with the

database-access component already properly configured. Then you just use the code above in

RemoteDB server to create one IDBConnection for each instance of the data module.

dbGo (ADO) Adapter

Currently dbGo (ADO) is only officially supported when connecting to Microsoft SQL Server

databases. Drivers for other databases might work but were not tested.

SQL Dialects
When creating an IDBConnection interface using an adapter, you can specify the SQL dialect of

the database server that RemoteDB server connects to.

Currently this is only used by TMS Aurelius and does not affect RemoteDB behavior if you are

just using TXDataset and not using any Aurelius clases. But RemoteDB might need it in future for

some operations, so we suggest you create the server passing the correct SQL Dialect.

When you create an IDBConnection interface using a component adapter, usually the adapter

will automatically retrieve the correct SQL dialect to use. For example, if you are using dbExpress

components, the adapter will look to the DriverName property and tell which db server you are

using, and then define the correct SQL dialect name that should be used.

var

 MyConnection: IDBConnection;

begin

 MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, True);

 // ...

 MyConnection := nil;

 { MyConection is nil, the TDBExpressConnectionAdapter component is destroyed,

 and SQLconnection1 is also destroyed}

end;

MyDataModule := TConnectionDataModule.Create(nil);

MyConnection := TDBExpressConnectionAdapter.Create(MyDataModule.SQLConnection1, M

yDataModule);

TMS RemoteDB 2.17.3.4 Page 10 of 35

Note that in some situations, the adapter is not able to identify the correct dialect. It can happen,

for example, when you are using ODBC or just another data access component in which is not

possible to tell which database server the component is trying to access. In this case, when

creating the adapter, you can use an overloaded constructor that allows you to specify the SQL

dialect to use:

The following table lists the valid SQL Dialect strings you can use in this case.

SQL dialect String identifier Database Web Site

Advantage Advantage http://www.sybase.com

DB2 DB2 http://www.ibm.com

ElevateDB ElevateDB http://www.elevatesoftware.com

Firebird Firebird http://www.firebirdsql.org

Interbase Interbase http://www.embarcadero.com

Microsoft SQL Server MSSQL http://www.microsoft.com/sqlserver

MySQL MySQL http://www.mysql.com

NexusDB NexusDB http://www.nexusdb.com

Oracle Oracle http://www.oracle.com

PostgreSQL PostgreSQL http://www.postgresql.org

SQLite SQLite http://www.sqlite.org

TRemoteDBModule settings
Before creating the RemoteDB Server by adding the TRemoteDBModule object to the Http

Server, you can use some of its properties to configure the server module.

Basic authentication properties

Use these properties to specify UserName and Password required by the server, using Basic

authentication. By default, the values are: UserName = remotedb, Password = business. Since

basic authentication is used, be sure to use Http secure (Https) if you don't want your user

name/password to be retrieved by middle-man attack. If you don't use Http secure, user name

and password are transmitted in plain text in http requests.

MyConnection := TDBExpressConnectionAdapter.Create(SQLConnection1, 'MSSQL',

False);

property UserName: string;

property Password: string;

TMS RemoteDB 2.17.3.4 Page 11 of 35

http://www.sybase.com
http://www.ibm.com
http://www.elevatesoftware.com
http://www.firebirdsql.org
http://www.embarcadero.com
http://www.microsoft.com/sqlserver
http://www.mysql.com
http://www.nexusdb.com
http://www.oracle.com
http://www.postgresql.org
http://www.sqlite.org

Instance Timeout

TMS RemoteDB Server keeps database-access components in memory while clients are

connected. It will destroy everything when client is normally closed. However, there might be

situations where the client crashes and never notifies the server to destroy the database-access

component. In this case, the server will eventually destroy the component after the instance

timeout is reached, i.e., the time which the component didn't receive any request from the client.

This value must be specified in milliseconds, and default value is 60000 (1 minute).

TRemoteDBServer Component
TRemoteDBServer component wraps the TRemoteDBModule module to be used at design-time.

Properties

Name Description

Connection:

TAureliusConnection

Contains a reference to a TAureliusConnection component. This

will be used as the connection factory for the TRemoteDB server-

side database instances.

DefaultInstanceTimeout:

Integer

Defines for how long a connection component should stay alive in

the server without any contact from the client. After such time, the

instance will be destroyed and any further request from the client

will recreate a new component.

UserName: string;

Password: string;

Defines user name and password to be used for Basic

authentication.

Events

Fired when the TRemoteDBModule instance is created.

Module parameter is the newly created TRemoteDBModule instance.

property InstanceTimeout: integer;

OnModuleCreate: TRemoteDBModuleEvent

TRemoteDBModuleEvent = procedure(Sender: TObject; Module: TRemoteDBModule) of obj

ect;

TMS RemoteDB 2.17.3.4 Page 12 of 35

http://www.tmssoftware.biz/business/aurelius/doc/web/taureliusconnection.html

Server-Side Events
TRemoteDBServer (and TRemoteDBModule) publish several events that you can use to monitor

what's going on server-side. The only difference between the two is that TRemoteDBServer

includes a "Sender" parameter of type TObject, which is the standard for design-time events. All

the other parameters are the same for TRemoteDBServer and TRemoteDBModule. Of course, you

can define event-handlers for TRemoteDB server from the IDE (since it's a design-time

component), and for TRemoteDBModule you need to set it from code.

The events are mostly used for logging purposes.

RemoteDB events

OnDatabaseCreate and OnDatabaseDestroy

OnDatabaseCreate event is fired right after a database-access component is created in the server

(from a call to IDBConnectionFactory interface). On the other hand, OnDatabaseDestroy is called

right before the component is about to be destroyed. Event signature is the following:

Look below to see what's available in IDatabaseInfo interface.

BeforeStatement and AfterStatement

BeforeStatement and AfterStatement events are fired right before (or after) an SQL statement is

executed server-side. Event signature is the following:

Look below to see what's available in IStatementInfo interface. It's worth noting that when the

SQL statement execution raises an exception, BeforeStatement event is fired, but AfterStatement

is not.

IDatabaseInfo interface

Represents a database connection in the server. The following properties are available.

Name Description

Id: string The internal Id for the database connection.

LastAccessed:

TDateTime

The last time (in server local time zone) the connection was

requested (used) by the client.

ClientID: string The ID of the client which created the connection.

ClientIP: string The IP address of the client which created the connection.

procedure(Sender: TObject; Info: IDatabaseInfo)

procedure(Sender: TObject; Info: IStatementInfo)

TMS RemoteDB 2.17.3.4 Page 13 of 35

Name Description

Connection:

IDBConnection

The underlying IDBConnection interface used to connect to the

database.

IStatementInfo interface

Represents the SQL statement being executed. The following properties are available.

Name Description

Database: IDatabaseInfo The IDatabaseInfo interface (database connection) associated

with the statement being executed.

Sql: string The SQL statement to be executed.

Params:

TEnumerable<TDBParam>

The parameters to be bound to SQL statement. TDBParam is a

TMS Aurelius object which contain properties ParamName,

ParamType and ParamValue.

Operation:

TStatementOperation

The type of operation being performed with the statement. It can

be one of the these values. Note that depending on client

behavior, statement-related events can be fired more than once:

one with FieldDefs operation (to retrieve SQL fields) and then a

second one with Open operation, to return actual data.

Sometimes, a single operation that does both will be executed

(FieldDefsOpen).

Dataset: TDataset The underlying TDataset component used to retrieve data. Note

Dataset can be nil (in the case of Execute operation, for example).

TStatementOperation

Open: Execution of a statement that returns data (SELECT).

Execute: Execution of a statement that does not return data (INSERT, UPDATE, DELETE).

FieldDefs: Retrieval of field definitions of a statement that returns data. The SQL will not be

actually executed.

FieldDefsOpen: Retrieval of field definitions and data return.

Administration API
RemoteDB provides an administration API that helps you to know status of existing database

connections in the server and drop existing connections, if needed. The API is disabled by

default. To enable, you have to set EnableAPI property to true (in either TRemoteDBServer or

TRemoteDBModule):

•

•

•

•

Module.EnableApi := True;

TMS RemoteDB 2.17.3.4 Page 14 of 35

The API provides the following endpoints (relative to server base URL):

Retrieve database connections

Returns a JSON array with information about the existing database connections. For example:

Drop existing connection

Drops an existing database connection, identified by is Id.

GET api/databases

[

 {

 "Id": "8FFDF133-286E-4C04-94D0-4479342FE389",

 "LastAccess": "2019-07-04T18:50:41.068Z",

 "ClientId": "Client A",

 "ClientIP": "::1",

 "Connected": true,

 "InTransaction": false

 }

]

DELETE api/databases/{id}

TMS RemoteDB 2.17.3.4 Page 15 of 35

RemoteDB Client Applications
The following topics provide detailed info about how to create Delphi client applications that

connect to a TMS RemoteDB Server.

TRemoteDBDatabase Component

TRemoteDBDatabase component is the one you should use to configure connection settings to a

RemoteDB Server. Once you have created and configured the component, you can link any

TXDataset to it to execute SQL statements in the RemoteDB server. It's a regular Delphi

component so you can drop it in a form or data module to use it.

Usage example:

Key Properties

Specifies the Url of the RemoteDB server.

Set this property to true to establish a connection to the RemoteDB server. As most of Delphi

database components, TRemoteDBDatabase component will try to automatically connect to the

server when a TXDataset tries to execute an SQL statement.

uses

 {...}, RemoteDB.Client.Database;

function CreateRemoteDBDatabase: TRemoteDBDatabase;

var

begin

 Result := TRemoteDBDatabase.Create(nil);

 Result.ServerUri := 'http://localhost:2001/tms/business/remotedb/';

 Result.UserName := 'remotedb';

 Result.Password := 'business';

 Result.Connected := true;

end;

property ServerUri: string;

property Connected: boolean;

property UserName: string;

property Password: string;

TMS RemoteDB 2.17.3.4 Page 16 of 35

Defines the UserName and Password to be used to connect to the server. These properties are

initially set with the default values (remotedb:business). In production environment, build a server

with different values, set these properties accordingly to make a connection, and use Https to

ensure user name and password are encrypted in client/server communications.

Defines the lifetime of inactive server-side database objects. The server-side database

connection will be kept alive while the client keeps sending requests to it. If the client suddenly

interrupts the requests without explicitly destroying the database, the object will remain in the

server for the period specified by the server by default. You can use Timeout property to define

such time at client-side in a per-database manner. Value must be in milliseconds.

Defines a value to identity the current client. This is useful to identify the client from the server.

Such information is avaliable, for example, in server-side events, or administration API, to identify

the client ID associated with an existing database connection.

Key Methods

Use the above methods to start, commit and rollback transactions, respectively. The

InTransaction property allows you to check if a transaction is already active. Only a single

transaction can exist per database component.

Key Events

OnHttpClientCreate event is fired when a new Sparkle THttpClient object is created by the

RemoteDB database. THttpClient is used for the low-level HTTP communication with RemoteDB

server and this event is an opportunity to do any custom configuration you want in that object.

TGenericDatabase Component

TGenericDatabase component is used if you want to connect to your database server directly, in

a traditional client-server architecture, using your preferred database-access component through

component adapters.

property Timeout: integer;

property ClientID: string;

procedure BeginTransaction;

procedure Commit;

procedure Rollback;

function InTransaction: boolean;

TRemoteDBHttpClientEvent = procedure(Sender: TObject; Client: THttpClient) of obj

ect;

property OnHttpClientCreate: TRemoteDBHttpClientEvent

TMS RemoteDB 2.17.3.4 Page 17 of 35

By switching the Database property of a TXDataset between TGenericDatabase and

TRemoteDBDatabase you can easily build one single client application that can communicate

directly with the database server in traditional client-server approach (TGenericDatabase) and

communicate with a RemoteDB server through http (TRemoteDBDatabase). And you can do that

without needing to change the dataset component you use to access the local or remote

database: just use the same TXDataset component.

TGenericDatabase doesn't actually contains the code to connect to the database. It's just a

wrapper for the component adapter. To use it, you need to set its Connection property to point

to an IDBConnection interface.

Usage example using FireDac to connect to the database:

Key Properties

Specifies the IDBConnection interface used to connect to the database.

Set this property to true to establish a connection to the database server. Available at runtime.

Key Methods

Use the above methods to start, commit and rollback transactions, respectively. The

InTransaction property allows you to check if a transaction is already active. Only a single

transaction can exist per database component.

uses

 {...}, RemoteDB.Client.GenericDatabase, RemoteDB.Drivers.FireDac;

function CreateGenericDBDatabase: TGenericDatabase;

var

begin

 Result := TGenericDatabase.Create(nil);

 Result.Connection := TFireDacConnectionAdapter.Create(FDConection1, False);

 Result.Connected := true;

end;

property Connection: IDBConnection;

property Connected: boolean;

procedure BeginTransaction;

procedure Commit;

procedure Rollback;

function InTransaction: boolean;

TMS RemoteDB 2.17.3.4 Page 18 of 35

TXDataset Component

TXDataset is the main component you will use to perform SQL statements on the RemoteDB

Server. It's a TDataset descendant so you can use it anywhere in your Delphi application that

supports TDataset components.

Its usage is very similar to any TDataset component:

Set the Database property to the property TRemoteDBDatabase component to be used.

Use the SQL property to define the SQL statement.

Use Params property to define SQL param values, if any.

Create persistent TField components, if needed.

Open the dataset to retrieve results (for SELECT statements) or call Execute method to

execute the SQL statement

Simple example:

See additional topics about TXDataset below.

Updating Records

When you call Post or Delete methods in TXDataset, data is modified in the internal database

buffer, but no modification is automatically done directly in database. The only way to modify

data is by executing INSERT, UPDATE or DELETE SQL statements. You have two options here: let

RemoteDB do it automatically for you, using AutoApply property, or do it manually using events.

1.

2.

3.

4.

5.

uses

 {...}, RemoteDB.Client.Dataset;

var

 Dataset := TXDataset.Create(Self);

begin

 Dataset.Database := RemoteDBDatabase1;

 Dataset.SQL.Text := 'Select * from Customers';

 Dataset.Open;

 while not Dataset.EOF do

 begin

 {process}

 Dataset.Next;

 end;

 Dataset.Close;

 Dataset.Free;

end;

TMS RemoteDB 2.17.3.4 Page 19 of 35

Automatic update

You can set TXDataset.AutoApply property to true (default is false) to let RemoteDB

automatically perform SQL statements to modify data when data is posted or deleted in the

dataset.

There is only one thing you need to define manually: tell RemoteDB what are the key (primary

key) fields of the table. This way it can build the proper WHERE clause when executing the SQL

statements.

You have two ways for doing that:

Use TXDataset.KeyFields property, providing the key field names in a semicolon-separated

list.

or

Set pfInKey flag in ProviderFlags property of dataset persistent fields.

In summary, use the following properties (you can also set at desing-time):

RemoteDB will automatically try to retrieve the name of the table to be updated, from the SQL

statement. It might not be able to do it in some more complex SQL statements. In this case you

can provide the name of the table to be udpated using UpdateTableName property:

Updating manually using events

When AutoApply is false (default), calls to Post and Delete update the in-memory cache, but do

not perform any SQL update/insert/delete operation on the RemoteDB Server (and, in turn, in

the SQL database server).

In this mode you have more flexibility to perform updates, but then you must manually provide

the code to perform such operations, using TXData events:

OnRecordInsert

OnRecordUpdate

OnRecordDelete

Those events are called in the proper time you need to execute the SQL statement to

respectively INSERT, UPDATE and DELETE a record in the database server.

You can then use ModifiedFields property to verify which fields were modified by the dataset. It

can be useful in case you want to perform UPDATE or INSERT SQL statements and only update/

insert the fields modified by the user.

•

•

XDataset1.AutoApply := True;

XDataset1.KeyFields := 'Id';

XDataset1.UpdateTableName := 'Customers';

•

•

•

property ModifiedFields: TList<TField>;

TMS RemoteDB 2.17.3.4 Page 20 of 35

You also need to execute the SQL statements yourself, either using a different TXDataset

component for that, or calling TRemoteDBDatabase.ExecSQL method directly.

Master-Detail Setup

You can setup a master-detail relationship between two TXDataset components using the

Datasource property. That property behaves as specified in Delphi documentation. According to

this source:

Setting DataSource property will automatically fill parameters in a query with field values from

another dataset. Parameters that have the same name as the fields in the other dataset are filled

with the field values. Parameters with names that are not the same as the fields in the other

dataset do not automatically get values, and must be programmatically set. For example, if the

SQL property of the TXDataset contains the SQL statement below and the dataset referenced

through DataSource has a CustNo field, the value from the current record in that other dataset is

used in the CustNo parameter:

Other Methods and Properties

This topic lists some key methods and properties of TXDataset component, in addition to those

inherited from TDataset component.

Executes an SQL for data modification (Insert, Delete, Update statements).

Retrieves all remaining records for the dataset and closes the internal data provider.

Provides a list of fields which values were modified. Useful in record update operations.

Contains the SQL statement to be executed in the server.

Use to to define the values for the params in SQL statement. Params should be declared in SQL

using commands (:paramname). The list of params is updated automatically when you change

the SQL property.

SELECT *

FROM Orders O

WHERE (O.CustNo = :CustNo)

procedure Execute;

procedure FetchAllRecords;

property ModifiedFields: TList<TField>;

property SQL: TStrings;

property Params: TParams;

TMS RemoteDB 2.17.3.4 Page 21 of 35

http://docwiki.embarcadero.com/Libraries/en/Data.DB.TDataSet.DataSource

Defines the datasource where param values will be automatically retrieved. Used to setup

master-detail datasets.

Points to the database (usually TRemoteDBDatabase) where the SQL statements will be executed

to.

Events for updating records.

Set Unidirectional property to true to save memory and increase performance if you are going to

retrieve records from the dataset in a unidirectional way. If Unidirectional is set to true and you

try to return to a previous record (using First or Prior methods for example), an error will be

raised.

Batch Updates

If you want to insert, update or delete several records at the same time, using the same SQL

statement, you can use the batch update feature - also known as Array DML.

In this mode, a single SQL statement is sent to the server, and multiple values are passed for

each parameter. For example, consider the following SQL statement:

If you want to insert three records using the same statement, this is how you should do it:

The advantage of this approach is that a single HTTP request containing the SQL statement and

all parameters will be send to the server. This increases performance, especially on environments

with high latency.

property DataSource: TDataSource;

property Database: TXDatabase;

property OnRecordInsert: TNotifyEvent;

property OnRecordUpdate: TNotifyEvent;

property OnRecordDelete: TNotifyEvent;

property Unidirectional: boolean;

XDataset1.SQL.Text := 'INSERT INTO Cities (Id, Name) VALUES (:Id, :Name)';

XDataset1.ParamByName('Id').DataType := ftInteger;

XDataset1.ParamByName('Name').DataType := ftString;

XDataset1.Params.ArraySize := 3;

XDataset1.ParamByName('Id').Values[0] := 1;

XDataset1.ParamByName('Name').Values[0] := 'London';

XDataset1.ParamByName('Id').Values[1] := 2;

XDataset1.ParamByName('Name').Values[1] := 'New York';

XDataset1.ParamByName('Id').Values[2] := 3;

XDataset1.ParamByName('Name').Values[2] := 'Rio de Janeiro';

XDataset1.Execute;

TMS RemoteDB 2.17.3.4 Page 22 of 35

In addition to that, if the database-access component you are using server-side supports Array

DML (like FireDAC or UniDAC), then it will also increase performance server-side significantly, by

also using Array DML to actually save data in the database. Otherwise, a batch update will be

simulated, by preparing the SQL statement and executing it for each row of parameters.

Connecting TMS Aurelius to RemoteDB

Server
From the client application, you can use TMS Aurelius to retrieve objects from a RemoteDB

server, instead of a regular database server. All you need is to use the proper Aurelius

IDBConnection interface. Just like TMS Aurelius can connect to SQL databases using FireDac,

dbExpress, etc., it also provides a RemoteDB driver adapter which you can use to perform the

database connection. Once you do that, Aurelius usage is exactly the same as with any

IDBConnection and you can create a TObjectManager object and use Find, Update, Delete

methods, perform queries, and other operations.

Aurelius provides an adapter for a TRemoteDBDatabase component, which in turn is used to

connect to a RemoteDB server. The following code illustrates how to use it, for more information

please refer to the Component Adapters topic in TMS Aurelius documentation.

Note that in client you don't need (and shouldn't) create both TRemoteDBDatabase and

IDBConnection for each manager you use. The code above is just an explanation about how to

create those classes. In a real client application, you would create the IDBConnection interface

and share it among different TObjectManager instances.

uses

 RemoteDB.Client.Database, Aurelius.Drivers.RemoteDB;

function CreateClientConnection: IDBConnection;

var

 XDB: TRemoteDBDatabase;

begin

 XDB := TRemoteDBDatabase.Create(nil);

 Result := TRemoteDBConnectionAdapter.Create(XDB, true);

 XDB.ServerUri := 'http://localhost:2001/tms/business/remotedb/';

end;

{ Aurelius usage is exactly the same }

Connection := CreateClientConnection;

Manager := TObjectManager.Create(Connection);

Customers := Manager.Find<TCustomer>.List;

TMS RemoteDB 2.17.3.4 Page 23 of 35

http://www.tmssoftware.biz/business/aurelius/doc/web
http://www.tmssoftware.biz/business/aurelius/doc/web/index.html?component_adapters.htm

About
This documentation is for TMS RemoteDB.

In this section:

What's New

Copyright Notice

Getting Support

Breaking Changes

TMS RemoteDB 2.17.3.4 Page 24 of 35

What's New

Version 2.17 (Nov-2023)
New: Delphi 12 Support.

Version 2.16 (Jan-2023)
Fixed: Sporadic Access Violation when destroying TRemoteDBDatabase component.

Ticket #19922.

Version 2.15 (Dec-2022)
New: TXDataset.AutoFillDetailFields property.

Fixed: Detail dataset not being updated after master dataset was closed and reopened

(regression).

Version 2.14 (Sep-2022)
Improved: Design-time components were greyed out in component palette if current

platform was different than Win32.

Fixed: Field Not Found error with master detail link when changing SQL. (ref: https://

support.tmssoftware.com/t/field-not-found-error-with-master-detail-link-when-changing-

sql/19183)

Fixed: Access Violation when closing form with TXDataset in dsInsert (ref: https://

support.tmssoftware.com/t/access-violation-when-closing-form-with-txdataset-in-

dsinsert/19234)

Fixed: Access Violation when using Master-Detail field alias with double quotes as

parameter (ref: https://support.tmssoftware.com/t/access-violation-when-using-master-

detail-field-alias-with-double-quotes-as-parameter/19236)

Version 2.13 (Sep-2021)
New: Delphi 11 support.

Version 2.12 (Mar-2021)
New: Linux support (Indy-based server only). You can now use RemoteDB server on

Linux, using Indy-based servers.

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 25 of 35

https://support.tmssoftware.com/t/accessviolation-in-destructor-of-tremotedbdatabase/19922
https://support.tmssoftware.com/t/field-not-found-error-with-master-detail-link-when-changing-sql/19183
https://support.tmssoftware.com/t/field-not-found-error-with-master-detail-link-when-changing-sql/19183
https://support.tmssoftware.com/t/field-not-found-error-with-master-detail-link-when-changing-sql/19183
https://support.tmssoftware.com/t/access-violation-when-closing-form-with-txdataset-in-dsinsert/19234
https://support.tmssoftware.com/t/access-violation-when-closing-form-with-txdataset-in-dsinsert/19234
https://support.tmssoftware.com/t/access-violation-when-closing-form-with-txdataset-in-dsinsert/19234
https://support.tmssoftware.com/t/access-violation-when-using-master-detail-field-alias-with-double-quotes-as-parameter/19236
https://support.tmssoftware.com/t/access-violation-when-using-master-detail-field-alias-with-double-quotes-as-parameter/19236

Version 2.11 (Sep-2020)
Improved: Performance increase when executing SQL statements with a big number of

parameteres.

Version 2.10 (Aug-2020)
Fixed: Events BeforeStatement and AfterStatement were not correctly passing the value of

SQL parameters used in the statement.

Version 2.9 (Jun-2020)
Fixed: InvalidFieldSize exception in float fields when using RemoteDB with native SQL

Server driver (MSSQL).

Fixed: Duplicated field name when using native SQL Server driver (MSSQL) and the SQL

statement returned ambiguous (same name) fields.

Version 2.8 (Jun-2020)
New: Support for native database-access drivers. You can now use TRemoteDB using

the database native drivers available in TMS Aurelius. Up until this version, RemoteDB

servers and TGenericDatabase could only be used with dataset-based components like

FireDAC, UniDAC, dbExpress, etc.. Now you can use the native Aurelius database drivers

available (except for SQLite), which don't require any component at all, and are even

faster!

Improved: Support for batch updates when using TGenericDatabase. Up to this version,

only TRemoteDBDatabase was supporting batch updates.

Improved: Significant performance improvement when defining dataset pararameters

(ArraySize property) when using batch updates.

Fixed: Settings null parameter values when using batch updates was not working.

Version 2.7 (May-2020)
New: Support for Delphi 10.4 Sydney.

Fixed: TXDataset.AutoApply property not working when the key field itself was modified.

Version 2.6 (Apr-2020)
Fixed: "Field not found" when using master-detail mechanism (regression from last

version).

Fixed: Using two parameters with the same name, differentiated just by a number

(param1, param2), the same param value were being used for both params.

•

•

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 26 of 35

Version 2.5 (Apr-2020)
New: Batch updates (Array DML) mechanism for improved performance when

inserting, updating or deleting several records at the same time. It is used both client-

side (to use a single request to send SQL statement and all parameters at once) and

server-side (to execute a single SQL statement in the database passing all parameters for

all rows.

Version 2.4 (Mar-2020)
New: Integration plugin for Report Builder from Digital Metaphors. More info in this

Youtube video.

Version 2.3 (Nov-2019)
New: Support for Android 64-bit platform (Delphi 10.3.3 Rio).

Version 2.2 (Oct-2019)
Fixed: Error "Field <fieldname> is of unknown type" in blob fields when updating records

using AutoApply.

Fixed: AutoApply was not working when field names had spaces. If you were editing a

record and modified a field which name had a space (like "Contact Name") and tried to

Post the record using AutoApply, an error would be raised.

Fixed: Correct handle of fields of type ftOraClob. Now they have the same behavior as

ftMemo.

Version 2.1 (Sep-2019)
Improved: Optimizations have been implemented, performance has been improved,

especially when retrieving big amount of data and/or executing many statements that use

many query parameters each.

Fixed: A SQL syntax error were being raised when using AutoApply and more than one

field were modified by the dataset.

Fixed: Previous version had broken compatibility with NexusDB integration, it's now fixed.

Version 2.0 (Jul-2019)
New: Administration API for retrieving server status (database connections including

last accessed time, client id, etc.) and dropping database connections.

New: Server-side events OnDatabaseCreate, OnDatabaseDestroy, BeforeStatement

and AfterStatement. Data is provided in IDatabaseInfo and IStatementInfo with full

information about the database connections and statements being executed.

•

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 27 of 35

https://youtu.be/TFCgWF78JI0

New: Automatic data modification using TXDataset properties: AutoApply and

KeyFields. Allow for automatic data modification by executing UPDATE, INSERT and

DELETE SQL statements.

New: macOS 64 support in Delphi Rio 10.3.2.

New: TRemoteDBDatabase.ClientId property allows identifying clients in server.

New: TMS RemoteDB VCL Server Wizard makes it easy to create a new RemoteDB

server application using design-time components.

Version 1.15 (Jun-2019)
Fixed: Basic authentication was being enforced even when UserName and Password

properties were empty strings. (1.15.1 fixed a regression on this).

Version 1.14 (May-2019)
New: TRemoteDBServer component provides design-time support to create server-

side RemoteDB server.

Improved: RemoteDB simple demo updated to use the new TRemoteDBServer

component.

Version 1.13 (Jan-2019)
Improved: Increased performance when using TGenericDatabase and executing SQL

statements (non-SELECT).

Fixed: Error when using SQL syntax with double colon, e.g. PostgreSQL type cast -

::varchar(20).

Version 1.12 (Dec-2018)
Fixed: TXDataset was creating invalid parameters in some situations, for example in stored

procedures with code like A := B.

Version 1.11 (May-2018)
Improved: Exception raised by the client is now ERemoteDBRequestException and

includes the status code of the HTTP response.

Version 1.10 (Feb-2018)
New: TRemoteDBDatabase.OnHttpClientCreate event. This allows more customization

of the underlying THttpClient object used to perform HTTP requests to RemoteDB server.

New: TRemoteDBDatabase.BeforeConnect and AfterConnect events.

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 28 of 35

Improved: TXDataset.Execute function now returns the number of rows affected by the

operation.

Version 1.9.1 (Oct-2017)
New: TXDataset.ParamByName method. Just an alias for

TXDataset.Params.ParamByName.

Version 1.9 (Jul-2017)
New: TRemoteDBDatabase.OnRequestSending property. You can now use this event

(equivalent to Sparkle's OnSendingRequest) to customize the HTTP request sent to the

RemoteDB server (to send custom HTTP headers, for example).

Previous Versions

Version 1.8 (May-2017)

Improved: RemoteDB IDBStatement now implements IDBDatasetStatement

Fixed: AV when setting TXDataset.Database property to a TGenericDatabase without

having is Connection property set.

Version 1.7 (Mar-2017)

New: Delphi 10.2 Tokyo Support

Fixed: Detail dataset in master-detail set was being closed/open upon editing master

record.

Version 1.6 (Sep-2016)

Fixed: Memo parameter values not being sent correctly when using TDatasetProvider.

Fixed: Index out of bounds when using TXDataset as a dataset provider and dbGo (ADO)

at RemoteDB server side.

Version 1.5 (Aug-2016)

New: Support for IProviderSupport allows using RemoteDB dataset (TXDataset) as a

dataset provider - for example, in a setup using TClientDataset + TDatasetProvider +

TXDataset.

Version 1.4 (May-2016)

New: Delphi 10.1 Berlin support.

•

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 29 of 35

http://www.tmssoftware.biz/business/sparkle/doc/web/thttpclient_events.html

Version 1.3 (Feb-2016)

New: Design-time wizard to create new RemoteDB Server with a few clicks.

Fixed: Error when executing SQL statements with string literals containing quotes or

double quotes.

Version 1.2.4 (Sep-2015)

New: Delphi 10 Seattle support.

Version 1.2.3 (Aug-2015)

Fixed: Setting TRemoteDBDatabase.Connected to true at design-time was causing error at

runtime.

Version 1.2.2 (Apr-2015)

New: Delphi XE8 support.

Version 1.2.1 (Mar-2015)

Fixed: Client sending wrong data in memo fields with empty strings.

Version 1.2 (Oct-2014)

New: TGenericDatabase component allows using TXDataset to connect to database

servers directly in old client-server style.

New: Support for Advantage Database Server.

Improved: Server database objects lifetime: now objects expire right after timeout period

has passed (in previous versions it took longer).

Improved: Client transactions now can get longer than timeout of server db objects,

RemoteDB keeps server-side objects alive automatically.

Fixed: Error with long-running queries that take longer than timeout of server db objects.

Now RemoteDB ensures queries will execute not matter how long they take.

Fixed: Server issues when queries caused infinite deadlocks.

Fixed: Sporadic "CoInitialize not called" error in RemoteDB demo.

Fixed: Wrong initial values when inserting a record using TXDataset in Delphi XE4 and up.

Version 1.1.1 (Sep-2014)

New: Delphi XE7 support.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 30 of 35

Version 1.1 (Aug-2014)

New: TRemoteDBDatabase.Timeout property allows specifying lifetime of inactive

database connections on server side.

New: TXDataset.Unidirectional property improves memory usage and performance when

using dataset in forward-only (unidirectional) mode.

Improved: Server now returns a better error message if a transaction commit/rollback

request fails.

Fixed: Error when executing data modification SQL statements (Insert, Delete, Update)

using Open method instead of Execute, when using SQL-Direct and some other specific

components.

Fixed: Server instability in rare situations when connection/disconnection to database at

server side raised errors.

Version 1.0 (Apr-2014)

First public release.

•

•

•

•

•

•

TMS RemoteDB 2.17.3.4 Page 31 of 35

Copyright Notice
The trial version of this product is intended for testing and evaluation purposes only. The trial

version shall not be used in any software that is not run for testing or evaluation, such as

software running in production environments or commercial software.

For use in commercial applications or applications in production environment, you must

purchase a single license, a small team license or a site license. A site license allows an unlimited

number of developers within the company holding the license to use the components for

commercial application development and to obtain free updates and priority email support for

the support period (usually 2 years from the license purchase). A single developer license allows

ONE named developer within a company to use the components for commercial application

development, to obtain free updates and priority email support. A small team license allows

TWO developers within a company to use the components for commercial application

development, to obtain free updates and priority email support. Single developer and small team

licenses are NOT transferable to another developer within the company or to a developer from

another company. All licenses allow royalty free use of the components when used in binary

compiled applications.

The component cannot be distributed in any other way except through TMS Software web site.

Any other way of distribution must have written authorization of the author.

Online registration/purchase for this product is available at http://www.tmssoftware.com. Source

code & license is sent immediately upon receipt of payment notification, by email.

Copyright © TMS Software. ALL RIGHTS RESERVED.

No part of this help may be reproduced, stored in any retrieval system, copied or modified,

transmitted in any form or by any means electronic or mechanical, including photocopying and

recording for purposes others than the purchaser's personal use.

TMS RemoteDB 2.17.3.4 Page 32 of 35

http://www.tmssoftware.com

Getting Support

General notes
Before contacting support:

Make sure to read this whole manual and any readme.txt or install.txt files in component

distributions, if available.

Search TMS support forum and TMS newsgroups to see if you question hasn't been

already answer.

Make sure you have the latest version of the component(s).

When contacting support:

Specify with which component is causing the problem.

Specify which Delphi or C++Builder version you're using and preferably also on which OS.

For registered users, use the special priority support email address (mentioned in

registration email) & provide your registration email & code. This will guarantee the

fastest route to a solution.

Send email from an email account that

allows to receive replies sent from our server

allows to receive ZIP file attachments

has a properly specified & working reply address

Getting support
For general information: info@tmssoftware.com

Fax: +32-56-359696

For all questions, comments, problems and feature request for our products:

help@tmssoftware.com

IMPORTANT

All topics covered by this manual are officially supported and it's unlikely that future versions

will break backward compatibility. If this ever happens, all breaking changes will be covered in

this manual and guidelines to update to a new version will be described. However, it's

important to note that parts of the source code of this product that are undocumented are not

officially supported and are subject to change, which includes breaking backward

compatibility. In case you are using an unsupported/undocumented feature we will not

provide support for upgrading and will not officially support it.

•

•

•

•

•

•

1.

2.

3.

TMS RemoteDB 2.17.3.4 Page 33 of 35

mailto:info@tmssoftware.com
mailto:help@tmssoftware.com

TMS RemoteDB 2.17.3.4 Page 34 of 35

Breaking Changes
List of changes in each version that breaks backward compatibility from a previous version.

No breaking changes so far.

TMS RemoteDB 2.17.3.4 Page 35 of 35

	Overview
	Creating RemoteDB Server
	Ways to Create the RemoteDB Server
	RemoteDB Server Wizard
	Using Design-Time Components
	Legacy Wizard for RemoteDB Server
	Creating the Server Manually

	IDBConnectionFactory Interface
	IDBConnection Interface
	Component Adapters
	Creating the adapter
	Overloaded constructors
	Memory Management
	dbGo (ADO) Adapter

	SQL Dialects
	TRemoteDBModule settings
	Basic authentication properties
	Instance Timeout

	TRemoteDBServer Component
	Properties
	Events

	Server-Side Events
	RemoteDB events
	OnDatabaseCreate and OnDatabaseDestroy
	BeforeStatement and AfterStatement

	IDatabaseInfo interface
	IStatementInfo interface
	TStatementOperation

	Administration API
	Retrieve database connections
	Drop existing connection

	RemoteDB Client Applications
	TRemoteDBDatabase Component
	Key Properties
	Key Methods
	Key Events

	TGenericDatabase Component
	Key Properties
	Key Methods

	TXDataset Component
	Updating Records
	Automatic update
	Updating manually using events

	Master-Detail Setup
	Other Methods and Properties
	Batch Updates

	Connecting TMS Aurelius to RemoteDB Server

	About
	What's New
	Version 2.17 (Nov-2023)
	Version 2.16 (Jan-2023)
	Version 2.15 (Dec-2022)
	Version 2.14 (Sep-2022)
	Version 2.13 (Sep-2021)
	Version 2.12 (Mar-2021)
	Version 2.11 (Sep-2020)
	Version 2.10 (Aug-2020)
	Version 2.9 (Jun-2020)
	Version 2.8 (Jun-2020)
	Version 2.7 (May-2020)
	Version 2.6 (Apr-2020)
	Version 2.5 (Apr-2020)
	Version 2.4 (Mar-2020)
	Version 2.3 (Nov-2019)
	Version 2.2 (Oct-2019)
	Version 2.1 (Sep-2019)
	Version 2.0 (Jul-2019)
	Version 1.15 (Jun-2019)
	Version 1.14 (May-2019)
	Version 1.13 (Jan-2019)
	Version 1.12 (Dec-2018)
	Version 1.11 (May-2018)
	Version 1.10 (Feb-2018)
	Version 1.9.1 (Oct-2017)
	Version 1.9 (Jul-2017)
	Previous Versions
	Version 1.8 (May-2017)
	Version 1.7 (Mar-2017)
	Version 1.6 (Sep-2016)
	Version 1.5 (Aug-2016)
	Version 1.4 (May-2016)
	Version 1.3 (Feb-2016)
	Version 1.2.4 (Sep-2015)
	Version 1.2.3 (Aug-2015)
	Version 1.2.2 (Apr-2015)
	Version 1.2.1 (Mar-2015)
	Version 1.2 (Oct-2014)
	Version 1.1.1 (Sep-2014)
	Version 1.1 (Aug-2014)
	Version 1.0 (Apr-2014)

	Copyright Notice
	Getting Support
	General notes
	Getting support
	Important

	Breaking Changes

