
TMS iCL

Developer guide

tmssoftware.com

Copyright © 2022 tmssoftware.com

Table of contents

111. Getting started

111.1 Overview

111.1.1 Availablility

111.1.2 Frameworks

131.1.3 View hierarchy

141.1.4 Deployment

171.1.5 iOS Simulator vs Device

171.1.6 Resources

222. Reference

222.1 TTMSFMXNativeUIButton

222.1.1 Usage

222.1.2 Published Properties

222.1.3 Public Properties

222.1.4 Events

232.2 TTMSFMXNativeUISearchBar

232.2.1 Usage

232.2.2 Published Properties

232.2.3 Public Properties

242.2.4 Events

252.3 TTMSFMXNativeUISlider

252.3.1 Usage

252.3.2 Published Properties

252.3.3 Events

262.4 TTMSFMXNativeUISwitch

262.4.1 Usage

262.4.2 Properties

262.4.3 Methods

262.4.4 Events

272.5 TTMSFMXNativeUITableView

272.5.1 Overview

482.5.2 Properties

Table of contents

- 2/221 - Copyright © 2022 tmssoftware.com

592.6 TTMSFMXNativeUIToolBar

592.6.1 Overview

602.6.2 Properties

622.7 TMSFMXNativeUIPickerView

622.7.1 Overview

632.7.2 Properties

662.8 TMSFMXNativeUIDatePicker

662.8.1 Usage

662.8.2 Published Properties

662.8.3 Public Properties

662.8.4 Methods

662.8.5 Events

672.8.6 Countdown timer

682.9 TMSFMXNativeUITextView

682.9.1 Overview

692.9.2 Properties

712.10 TMSFMXNativeUILabel

712.10.1 Usage

712.10.2 Published Properties

712.10.3 Public Properties

722.11 TMSFMXNativeUIScrollView

722.11.1 Usage

722.11.2 Published Properties

722.11.3 Public Properties

722.11.4 Events

732.12 TMSFMXNativeUIProgressView

732.12.1 Usage

732.12.2 Published Properties

732.12.3 Public Properties

732.12.4 Events

742.13 TMSFMXNativeUISegmentedControl

742.13.1 Overview

752.13.2 Properties

772.14 TMSFMXNativeUIStepper

772.14.1 Usage

Table of contents

- 3/221 - Copyright © 2022 tmssoftware.com

772.14.2 Published Properties

772.14.3 Public Properties

772.14.4 Events

782.15 TMSFMXNativeUITextField

782.15.1 Overview

792.15.2 Properties

812.16 TMSFMXNativeMKMapView

812.16.1 Overview

952.16.2 Properties

982.17 TMSFMXNativeCLGeoCoder

982.17.1 Usage

982.17.2 Methods

982.17.3 Events

992.18 TMSFMXNativeFMXWrapper

992.18.1 Usage

992.18.2 Published Properties

1002.19 TMSFMXNativeUIImageView

1002.19.1 Usage

1002.19.2 Properties

1002.19.3 Methods

1012.19.4 Public Properties

1012.19.5 Face Detection

1022.20 TMSFMXNativeUIPopoverController

1022.20.1 Usage

1022.20.2 Published Properties

1022.20.3 Public Properties

1022.20.4 Methods

1032.21 TMSFMXNativeUIView

1032.21.1 Usage

1032.21.2 Published Properties

1032.21.3 Public Properties

1032.21.4 Published Events

1042.22 TMSFMXNativeUIImagePickerController

1042.22.1 Usage

1042.22.2 Published Properties

Table of contents

- 4/221 - Copyright © 2022 tmssoftware.com

1042.22.3 Public Properties

1052.22.4 Methods

1052.22.5 Public Events

1052.22.6 Events

1082.23 TMSFMXNativeUITabBarController

1082.23.1 Usage

1082.23.2 Published Properties

1082.23.3 Public Properties

1082.23.4 Events

1092.23.5 Adding tabs

1102.23.6 Designtime handling

1112.24 TMSFMXNativeUINavigationController

1112.24.1 Usage

1112.24.2 Published Properties

1112.24.3 Methods

1112.24.4 Public Properties

1112.24.5 Published Events

1112.24.6 Pushing and popping pages (ViewControllers)

1132.25 TMSFMXNativeUIViewController

1132.25.1 Usage

1132.25.2 Published Properties

1132.25.3 Public Properties

1132.25.4 Published Events

1142.26 TMSFMXNativeUIViewPopOverController

1142.26.1 Usage

1142.26.2 Published Properties

1142.26.3 Public Methods

1152.27 TMSFMXNativeUIViewSheetController

1152.27.1 Usage

1152.27.2 Published Properties

1152.27.3 Public Methods

1162.28 TMSFMXNativeUIPageViewController

1162.28.1 Usage

1162.28.2 Published Properties

1162.28.3 Public Properties

Table of contents

- 5/221 - Copyright © 2022 tmssoftware.com

1162.28.4 Public Events

1172.28.5 Published Events

1182.29 TMSFMXNativeUIPDFPageViewController

1182.29.1 Usage

1182.29.2 Published Properties

1182.29.3 Public Properties

1182.29.4 Published Events

1192.30 TMSFMXNativeUIPDFViewController

1192.30.1 Usage

1192.30.2 Published Properties

1192.30.3 Public Properties

1202.31 TMSFMXNativeUIActionSheet

1202.31.1 Usage

1202.31.2 Published Properties

1202.31.3 Methods

1212.31.4 Public functions

1212.31.5 Public Properties

1212.31.6 Published Events

1222.32 TMSFMXNativeMFMailComposeViewController

1222.32.1 Usage

1222.32.2 Published Properties

1222.32.3 Methods

1222.32.4 Public Properties

1222.32.5 Published Events

1232.33 TMSFMXNativeMFMessageComposeViewController

1232.33.1 Usage

1232.33.2 Published Properties

1232.33.3 Public Properties

1232.33.4 Published Events

1242.34 TMSFMXNativeUIRichTextView

1242.34.1 Usage

1242.34.2 Published Properties

1242.34.3 Public Properties

1242.34.4 Public Methods

1282.34.5 Import and export of (rich) text

Table of contents

- 6/221 - Copyright © 2022 tmssoftware.com

1292.35 TMSFMXNativeUIRichTextViewToolbar

1292.35.1 Usage

1302.36 TMSFMXNativeUIFontPicker

1302.36.1 Usage

1312.37 TMSFMXNativeUIColorPicker

1312.37.1 Usage

1322.38 TMSFMXNativeMPMoviePlayerViewController

1322.38.1 Usage

1322.38.2 Published Properties

1322.38.3 Public Properties

1332.38.4 Public Methods

1332.38.5 Published Events

1342.39 TMSFMXNativeUIActivityViewController

1342.39.1 Usage

1342.39.2 Published Properties

1342.39.3 Public Methods

1352.40 TMSFMXNativeSLComposeViewController

1352.40.1 Usage

1352.40.2 Public Properties

1352.40.3 Public Methods

1362.40.4 Published Events

1372.41 TMSFMXNativeUICollectionView

1372.41.1 Overview

1552.41.2 Properties

1622.42 TMSFMXNativeUIActivityIndicatorView

1622.42.1 Usage

1622.42.2 Published Properties

1622.42.3 Public Methods

1632.43 TMSFMXNativeUIWebView

1632.43.1 Usage

1632.43.2 Published Properties

1632.43.3 Public Properties

1632.43.4 Public Methods

1642.43.5 Published Events

1642.43.6 Executing Javascript

Table of contents

- 7/221 - Copyright © 2022 tmssoftware.com

1642.43.7 Loading HTML

1652.44 TMSFMXNativeiCloud

1652.44.1 Usage

1652.44.2 Methods

1652.44.3 Properties

1662.44.4 Events

1662.44.5 Supported types

1662.44.6 Entitlements

1682.45 TMSFMXNativeiCloudDocument

1682.45.1 Usage

1682.45.2 Properties

1692.45.3 Methods

1702.45.4 Events

1702.45.5 Initialization

1712.45.6 Notes sample

1712.45.7 Entitlements

1732.46 TMSFMXNativePDFLib

1732.46.1 Usage

1742.46.2 Methods

1752.46.3 Public Properties

1762.46.4 Properties

1782.46.5 Creating a new document

1782.46.6 Opening an existing document

1782.46.7 Drawing pages from an existing PDF document

1792.46.8 Graphics Library

1792.46.9 Graphics Library Rich Text

1802.46.10 Text Flow

1802.46.11 Text Calculation And Overflow

1802.46.12 Images

1812.47 TMSFMXNativeMultipeerConnectivity

1812.47.1 Usage

1812.47.2 Methods

1822.47.3 Public Properties

1822.47.4 Properties

1832.47.5 Events

Table of contents

- 8/221 - Copyright © 2022 tmssoftware.com

1852.47.6 Managing peers

1862.47.7 Sending Data

1862.47.8 Receiving Data

1862.47.9 Sending and Receiving Files

1872.48 TMSFMXNativeCLLocationManager

1872.48.1 Usage

1882.48.2 Methods

1892.48.3 Properties

1892.48.4 Events

1892.48.5 Sample authorization and managing the location updates

1912.49 TMSFMXNativeCMMotionManager

1912.49.1 Usage

1922.49.2 Methods

1932.49.3 Properties

1932.49.4 Events

1932.49.5 Sample with Device Motion

1952.50 TMSFMXNativeCMAltimeter

1952.50.1 Usage

1952.50.2 Methods

1952.50.3 Events

1952.50.4 Sample obtaining relative altitude updates

1972.51 TMSFMXNativeLocalAuthentication

1972.51.1 Usage

1972.51.2 Methods

1972.51.3 Events

1982.52 TMSFMXNativeUIDocumentInteractionController

1982.52.1 Usage

1982.52.2 Methods

1982.52.3 Properties

1992.53 TMSFMXNativeAVPlayerViewController

1992.53.1 Usage

1992.53.2 Methods

2002.53.3 Properties

2002.53.4 Events

2012.53.5 Picture in Picture (iOS 9)

Table of contents

- 9/221 - Copyright © 2022 tmssoftware.com

2042.54 TMSFMXNativeCameraViewController

2072.55 TMSFMXNativeBarCodeScanner

2082.56 TMSFMXNativeAppShortcuts

2082.56.1 Overview

2092.56.2 Properties

2152.57 TMSFMXNativeSpeechRecognition

2152.57.1 Usage

2152.57.2 Published Properties

2152.57.3 Public Properties

2162.57.4 Public Methods

2162.57.5 Published Events

2172.58 TMSFMXNativeSpeechCommandRecognition

2172.58.1 Overview

2182.58.2 Properties

2202.59 TMSFMXNativeWKWebView

2202.59.1 Usage

2202.59.2 Public Properties

2202.59.3 Public Methods

2212.59.4 Published Events

Table of contents

- 10/221 - Copyright © 2022 tmssoftware.com

1. Getting started

1.1 Overview

1.1.1 Availablility

TMS iCL is a set of components for true native iOS application development and is available for Embarcadero Delphi XE11,

C++Builder XE11 or newer releases.

1.1.2 Frameworks

Starting from version 1.2, when deploying to the device, you will encounter linker errors like the one below.

Here is a list with frameworks that need to be added to the SDK manager in order to have the components build and link

correctly. The sample demonstrates how to add the ImageIO framework.

When adding the SDK through the SDK manager you will notice that it already adds a subset of the available Frameworks in

the iOS SDK such as the UIKit and the Foundation framework.

To fix the linker error, you will need to add a reference to the ImageIO framework in the SDK Manager. To add a new

framework, right-click on your project and choose the iOS Device target. Right-click on the target and choose “Edit SDK” from

the popup menu.

Framework

AVKit (iOS 8 or later)

CoreMotion

ImageIO

LocalAuthentication (iOS 8 or later)

MapKit

MessageUI

MobileCoreServices

MultipeerConnectivity

Social

WebKit

1. Getting started

- 11/221 - Copyright © 2022 tmssoftware.com

After clicking the correct option in the popup menu, the SDK Manager will popup, showing you which SDK’s you have imported

and which frameworks are available for each SDK.

Scroll down to the “Frameworks” section for the current SDK you are compiling / linking with. Click inside the “Frameworks”

section, for example on the UIKit framework entry, and click on the new button at the top right next to the list to add a new

framework entry (path item).

1.1.2 Frameworks

- 12/221 - Copyright © 2022 tmssoftware.com

Enter the following information in the popup dialog

Path on remote machine

XE5: ”/System/Library/Frameworks”

XE6 and later: “$(SDKROOT)/System/Library/Frameworks”

Framework name: ImageIO

click on ok. The last step necessary for a correct linking is to update the local SDK directory with the new information. Click on

“Update local file cache” at the bottom of the SDK manager:

Targetting for iOS Device should now compile and link without any issues.

1.1.3 View hierarchy

The TMS iCL components can be dropped directly as a child of the main application form, but can also be used as a child of

another TMS FMX Native UI control. Included in the set is a TMSFMXNativeUIView control that can be compared with a

TPanel in VCL. The view is typically used as a container control that can hold other controls. This is demonstrated below with

a small sample.

1.1.3 View hierarchy

- 13/221 - Copyright © 2022 tmssoftware.com

Drop a TMSFMXNativeUIView on the form and add a TMSFMXNativeUIButton control as child of the view.

When setting the visible property of the TMSFMXNativeUIView to false, the button will also disappear. If we have a large area

of controls and need to apply scrolling, the TMSFMXNativeUIScrollView can be used as a container for other controls. The

view can be used as a container control and be linked to a TMSFMXNativeUITableView item’s DetailView property and be

displayed when clicking on the item.

1.1.4 Deployment

At some point your application might have the need to access external files such as images and text files, or perhaps a

database that needs to be accessed. When creating a new mobile application, clicking on the project tab and selecting

deployment shows a windows where these files can be added.

At designtime. At runtime.

1.1.4 Deployment

- 14/221 - Copyright © 2022 tmssoftware.com

The deployment window already contains files that are deployed along with your application such as the various application

icons and launch images.

To add a new file, click on the add button which will popup a file open dialog.

1.1.4 Deployment

- 15/221 - Copyright © 2022 tmssoftware.com

Add the file by clicking open in the dialog. The file will be listed in the deployment window of your project and can be accessed

from your application.

To access this file from your application, you need to get the root directory and apply the name of your file as listed in the

deployment page. Note that the root directory is read-only, so you will be unable to write data to the file, such as text files. To

gain write access to your file you need to copy the file to the documents directory. Listed below are some helper functions that

allow you to access your file and access the root or documents directory.

Root Directory :

Documents Directory (requires iOSApi.Foundation and iOSApi.UIKit unit) :

function GetRootDirectory: String;

begin

 Result := ExtractFilePath(ParamStr(0));

end;

function GetDocumentsDirectory: String;

var

 paths: NSArray;

begin

 Result := '';

 paths := TNSArray.Wrap(NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask,

1.1.4 Deployment

- 16/221 - Copyright © 2022 tmssoftware.com

Copy a File (requires iOSApi.Foundation and iOSApi.UIKit units):

1.1.5 iOS Simulator vs Device

The TMS iCL package supports deployment to simulator and to a real device. The simulator can be helpful in debugging and

creating your application without the need to go through the device each time your application is modified. The process of

going through the deployment phase is slower when targeting a real device.

We, however, strongly suggest testing your application on a real device at regular intervals during application development, to

make sure that the application behaves like it has been developed. There are known limitations and issues in the simulator in

terms of look and feel, and it is important to make sure that these limitations do not occur on a real device since the device will

be used in the final stage of development and deployment.

1.1.6 Resources

TMSFMXNativeUITableViewMail source

True));

 if paths.count > 0 then

 Result := String(TNSString.Wrap(paths.objectAtIndex(0)).UTF8String);

end;

procedure CopyFile(ASource, ADestination: String);

var

 fileManager: NSFileManager;

 error: NSError;

begin

 fileManager := TNSFileManager.Create;

 fileManager.copyItemAtPath(NSStr(ASource), NSStr(ADestination), Error);

end;

{**}

{ }

{ written by TMS Software }

{ copyright © 2014 }

{ Email : info@tmssoftware.com }

{ Web : http://www.tmssoftware.com }

{ }

{ The source code is given as is. The author is not responsible }

{ for any possible damage done due to the use of this code. }

{ The complete source code remains property of the author and may }

{ not be distributed, published, given or sold in any form as such. }

{ No parts of the source code can be included in any other component }

{ or application without written authorization of the author. }

{**}

unit FMX.TMSNativeUITableViewMail;

interface

uses

 Classes, FMX.TMSNativeUITableView, SysUtils

 {$IFDEF IOS}

 ,iOSApi.UIKit, iOSApi.Foundation

 {$ENDIF}

 ;

1.1.5 iOS Simulator vs Device

- 17/221 - Copyright © 2022 tmssoftware.com

type

 TTMSFMXNativeUITableViewMailItem = class(TTMSFMXNativeUITableViewItem)

 private

 FDate: TDateTime;

 FTitle: String;

 FDescription: string;

 FSender: String;

 FUnread: Boolean;

 procedure SetUnread(const Value: Boolean);

 published

 property Sender: String read FSender write FSender;

 property Date: TDateTime read FDate write FDate;

 property Title: String read FTitle write FTitle;

 property Description: string read FDescription write FDescription;

 property Unread: Boolean read FUnread write SetUnread;

 end;

 TTMSFMXNativeUITableViewMailItems = class(TTMSFMXNativeUITableViewItems)

 public

 function CreateItemClass: TCollectionItemClass; override;

 end;

 TTMSFMXNativeUITableViewMailSection = class(TTMSFMXNativeUITableViewSection)

 public

 function CreateItems: TTMSFMXNativeUITableViewItems; override;

 end;

 TTMSFMXNativeUITableViewMailSections = class(TTMSFMXNativeUITableViewSections)

 public

 function CreateItemClass: TCollectionItemClass; override;

 end;

 [ComponentPlatformsAttribute(pidiOSSimulator or pidiOSDevice)]

 TTMSFMXNativeUITableViewMail = class(TTMSFMXNativeUITableView)

 public

 constructor Create(AOwner: TComponent); override;

 function CreateSections: TTMSFMXNativeUITableViewSections; override;

 function GetItemHeight(ASection, ARow: Integer): Single; override;

 function GetItemStyle(ASection, ARow: Integer): TTMSFMXNativeUITableViewItemStyle; override;

 {$IFDEF IOS}

 procedure DoItemCreateCell(Sender: TObject; var ACell: UITableViewCell; AItemStyle:

TTMSFMXNativeUITableViewItemStyle; ASection, ARow: Integer); override;

 procedure DoItemCustomizeCell(Sender: TObject; ACell: UITableViewCell; AItemStyle:

TTMSFMXNativeUITableViewItemStyle; ASection, ARow: Integer); override;

 {$ENDIF}

 end;

implementation

{ TTMSFMXNativeUITableViewMailItems }

function TTMSFMXNativeUITableViewMailItems.CreateItemClass: TCollectionItemClass;

begin

 Result := TTMSFMXNativeUITableViewMailItem;

end;

{ TTMSFMXNativeUITableViewMailSection }

function TTMSFMXNativeUITableViewMailSection.CreateItems: TTMSFMXNativeUITableViewItems;

begin

1.1.6 Resources

- 18/221 - Copyright © 2022 tmssoftware.com

 Result := TTMSFMXNativeUITableViewMailItems.Create(OwnerTableView, Self);

end;

{ TTMSFMXNativeUITableViewMailSections }

function TTMSFMXNativeUITableViewMailSections.CreateItemClass: TCollectionItemClass;

begin

 Result := TTMSFMXNativeUITableViewMailSection;

end;

{ TTMSFMXNativeUITableViewMail }

constructor TTMSFMXNativeUITableViewMail.Create(AOwner: TComponent);

begin

 inherited;

 if (csDesigning in ComponentState) and not

 ((csReading in Owner.ComponentState) or (csLoading in Owner.ComponentState)) then

 begin

 Options.Header := 'Mail';

 Options.ToolBar := True;

 end;

end;

function TTMSFMXNativeUITableViewMail.CreateSections: TTMSFMXNativeUITableViewSections;

begin

 Result := TTMSFMXNativeUITableViewMailSections.Create(Self);

end;

{$IFDEF IOS}

procedure TTMSFMXNativeUITableViewMail.DoItemCreateCell(Sender: TObject;

 var ACell: UITableViewCell; AItemStyle: TTMSFMXNativeUITableViewItemStyle;

 ASection, ARow: Integer);

var

 title: UILabel;

 senderName: UILabel;

 description: UILabel;

 date: UILabel;

 r: NSRect;

begin

 r.origin.x := 5;

 r.origin.y := 5;

 r.size.width := ACell.frame.size.width - 100;

 r.size.height := 15;

 senderName := TUILabel.Wrap(TUILabel.Wrap(TUILabel.OCClass.alloc).initWithFrame(r));

 senderName.setFont(TUIFont.Wrap(TUIFont.OCClass.systemFontOfSize(12)));

 senderName.setTextColor(TUIColor.Wrap(TUIColor.OCClass.orangeColor));

 senderName.setHighlightedTextColor(TUIColor.Wrap(TUIColor.OCClass.whiteColor));

 ACell.contentView.addSubview(senderName);

 r.origin.x := Acell.frame.size.width - 100;

 r.origin.y := 5;

 r.size.width := 100;

 r.size.height := 15;

 date := TUILabel.Wrap(TUILabel.Wrap(TUILabel.OCClass.alloc).initWithFrame(r));

 date.setFont(TUIFont.Wrap(TUIFont.OCClass.boldSystemFontOfSize(12)));

 date.setTextAlignment(UITextAlignmentRight);

 date.setTextColor(TUIColor.Wrap(TUIColor.OCClass.blueColor));

 date.setHighlightedTextColor(TUIColor.Wrap(TUIColor.OCClass.whiteColor));

 ACell.contentView.addSubview(date);

 r.origin.x := 5;

 r.origin.y := senderName.frame.size.height + senderName.frame.origin.y;

1.1.6 Resources

- 19/221 - Copyright © 2022 tmssoftware.com

 r.size.width := ACell.frame.size.width - 100;

 r.size.height := 25;

 title := TUILabel.Wrap(TUILabel.Wrap(TUILabel.OCClass.alloc).initWithFrame(r));

 title.setFont(TUIFont.Wrap(TUIFont.OCClass.boldSystemFontOfSize(16)));

 title.setHighlightedTextColor(TUIColor.Wrap(TUIColor.OCClass.whiteColor));

 ACell.contentView.addSubview(title);

 r.origin.x := 5;

 r.origin.y := title.frame.origin.y + title.frame.size.height;

 r.size.width := ACell.frame.size.width - 100;

 description := TUILabel.Wrap(TUILabel.Wrap(TUILabel.OCClass.alloc).initWithFrame(r));

 description.setHighlightedTextColor(TUIColor.Wrap(TUIColor.OCClass.whiteColor));

 ACell.contentView.addSubview(description);

end;

procedure TTMSFMXNativeUITableViewMail.DoItemCustomizeCell(Sender: TObject;

 ACell: UITableViewCell; AItemStyle: TTMSFMXNativeUITableViewItemStyle;

 ASection, ARow: Integer);

var

 title: UILabel;

 senderName: UILabel;

 description: UILabel;

 date: UILabel;

 it: TTMSFMXNativeUITableViewItem;

 mailit: TTMSFMXNativeUITableViewMailItem;

 str: NSString;

 r: NSRect;

begin

 senderName := TUILabel.Wrap(ACell.contentView.subviews.objectAtIndex(0));

 date := TUILabel.Wrap(ACell.contentView.subviews.objectAtIndex(1));

 title := TUILabel.Wrap(ACell.contentView.subviews.objectAtIndex(2));

 description := TUILabel.Wrap(ACell.contentView.subviews.objectAtIndex(3));

 it := GetItem(ASection, ARow);

 if Assigned(it) and (it is TTMSFMXNativeUITableViewMailItem) then

 begin

 mailit := it as TTMSFMXNativeUITableViewMailItem;

 if mailit.Unread then

 begin

 str := NSStr(ExtractFilePath(ParamStr(0)) + 'unread_mail.png');

 ACell.setImage(TUIImage.Wrap(TUIImage.OCClass.imageWithContentsOfFile(str)));

 end

 else

 ACell.setImage(nil);

 if Assigned(senderName) then

 begin

 senderName.setText(NSStr(mailit.Sender));

 r := senderName.frame;

 if Assigned(Acell.image) then

 r.origin.x := 15 + Acell.image.size.width

 else

 r.origin.x := 5;

 senderName.setFrame(r);

 end;

 if Assigned(title) then

 begin

 title.setText(NSStr(mailit.Title));

 r := title.frame;

 if Assigned(Acell.image) then

 r.origin.x := 15 + Acell.image.size.width

 else

1.1.6 Resources

- 20/221 - Copyright © 2022 tmssoftware.com

 r.origin.x := 5;

 title.setFrame(r);

 end;

 if Assigned(description) then

 begin

 description.setText(NSStr(mailit.Description));

 r := description.frame;

 if Assigned(Acell.image) then

 r.origin.x := 15 + Acell.image.size.width

 else

 r.origin.x := 5;

 description.setFrame(r);

 end;

 if Assigned(date) then

 begin

 date.setText(NSStr(DateToStr(mailit.Date)));

 end;

 end;

end;

{$ENDIF}

function TTMSFMXNativeUITableViewMail.GetItemHeight(ASection,

 ARow: Integer): Single;

begin

 Result := 75;

end;

function TTMSFMXNativeUITableViewMail.GetItemStyle(ASection,

 ARow: Integer): TTMSFMXNativeUITableViewItemStyle;

begin

 Result := isTableViewCellStyleCustom;

end;

{ TTMSFMXNativeUITableViewMailItem }

procedure TTMSFMXNativeUITableViewMailItem.SetUnread(const Value: Boolean);

begin

 FUnread := Value;

 UpdateSectionAtRow(Section.Index, Index);

end;

end.

1.1.6 Resources

- 21/221 - Copyright © 2022 tmssoftware.com

2. Reference

2.1 TTMSFMXNativeUIButton

2.1.1 Usage

An instance of TMSFMXNativeUIButton shows a native iOS Button on the screen.

2.1.2 Published Properties

2.1.3 Public Properties

2.1.4 Events

Property name Description

Action Property to assign an action combined with an action list.

Alignment The technique to use for aligning the text.

Bitmap Property used to show a bitmap on the Button.

Color The background color of the`Button.

Enabled Enables or disables interaction with the Button.

LineBreakMode The technique to use for wrapping and truncating the Button’s text.

Style The style of the Button. The Button style can be set to one of the following values: bsButtonTypeCustom ,

bsButtonTypeRoundedRect (Default), bsButtonTypeDetailDisclosure , bsButtonTypeInfoLight ,

bsButtonTypeInfoDark , bsButtonTypeContactAdd

TextColor The color of the text of the Button.

TintColor The color of the text of the Button.

Visible Shows or hides the Button.

Property name Description

Button Returns a reference to the native iOS UIButton.

Event name Description

OnClick Event called when clicking on the Button.

2. Reference

- 22/221 - Copyright © 2022 tmssoftware.com

2.2 TTMSFMXNativeUISearchBar

2.2.1 Usage

The TMSFMXNativeUISearchbar implements a text field control for text-based searches. The control provides a text field for

entering text, a search button, a bookmark button, and a cancel button. The SearchBar does not actually perform any

searches. Events can be used to implement the actions when text is entered and buttons are clicked.

2.2.2 Published Properties

2.2.3 Public Properties

Property name Description

PlaceHolder The string that is displayed when there is no other text in the text field.

Prompt A single line of text displayed at the top of the search bar.

SearchResultsButtonSelected A Boolean value indicating whether the search results button is selected or not.

ShowsBookMarkButton A Boolean value indicating whether the bookmark button is displayed or not.

ShowsCancelButton A Boolean value indicating whether the cancel button is displayed or not.

ShowsSearchResultsButton A Boolean value indicating whether the search results button is displayed or not.

Style The style that specifies the toolbar appearance.

TintColor The color used to tint the toolbar.

Text The current or starting search text.

Translucent Specifies whether the toolbar is translucent or not.

Visible Shows or hides the SearchBar.

Property name Description

SearchBar Returns a reference to the native iOS UISearchBar.

2.2 TTMSFMXNativeUISearchBar

- 23/221 - Copyright © 2022 tmssoftware.com

2.2.4 Events

Event name Description

OnBookmarkButtonClicked Event called when the bookmark button is clicked.

OnCancelButtonClicked Event called when the cancel button is clicked.

OnResultsListButtonClicked Event called when the results list button is clicked.

OnSearchButtonClicked Event called when the search button is clicked.

OnSelectedScopeButtonIndexDidChange Event called when the selected scope changed.

OnShouldBeginEditing Event called when the editing should begin.

OnShouldChangeTextInRange Event called when the text in range should be changed.

OnShouldEndEditing Event called when the editing should end.

OnTextDidBeginEditing Event called when the editing of the text did begin.

OnTextDidChange Event called when the text did change.

OnTextDidEndEditing Event called when the editing of the text did end.

2.2.4 Events

- 24/221 - Copyright © 2022 tmssoftware.com

2.3 TTMSFMXNativeUISlider

2.3.1 Usage

A TMSFMXNativeUISlider object is a visual control used to select a single value from a continuous range of values. Sliders

are always displayed as horizontal bars. An indicator, or thumb, notes the current value of the Slider and can be moved by the

user to change the setting.

2.3.2 Published Properties

2.3.3 Events

Property name Description

MaximumValue Contains the maximum value of the Slider.

MinimumValue Contains the minimum value of the Slider.

Value Contains the Slider’s current value.

Visible Shows / hides the Slider.

Property name Description

Slider Returns a reference to the native iOS UISlider.

Event name Description

OnTouchDown Event called when the Slider’s touch down is performed.

OnTouchUpInside Event called when the Slider’s touch up inside performed

OnTouchUpOutside Event called when the Slider’s touch up outside is performed.

OnValueChanged Event called when the Slider’s value has changed.

2.3 TTMSFMXNativeUISlider

- 25/221 - Copyright © 2022 tmssoftware.com

2.4 TTMSFMXNativeUISwitch

2.4.1 Usage

The TMSFMXNativeUISwitch class is typically used to create and manage On/Off Buttons.

2.4.2 Properties

2.4.3 Methods

2.4.4 Events

Property name Description

Value A Boolean value that determines the off/on state of the Switch.

Visible Shows / hides the Switch.

Method name Description

Switch Returns a reference to the native iOS UISwitch.

Event name Description

OnValueChanged Event called when the off/on state of the Switch changes.

2.4 TTMSFMXNativeUISwitch

- 26/221 - Copyright © 2022 tmssoftware.com

2.5 TTMSFMXNativeUITableView

2.5.1 Overview

Usage

An instance of TMSFMXNativeUITableView is a means for displaying and editing hierarchical lists of information.

A table view is made up of at least one section, each with its own items. Sections are identified by their index number within the

table view, and items are identified by their index number within a section. Any section can optionally be preceded by a section

header.

Methods

Method name Description

BeginUpdate / EndUpdate Wrapping code to block direct updates to the TableView. This is

done for performance when loading a large amount of items and

content.

BeginRefreshing / EndRefreshing Shows a refreshing indicator on the TableView to show that the

TableView is currently refreshing / updating its contents. Always

combine the two methods to make sure that the indicator is hidden

when the refresh operation is finished.

Edit Method used to set the TableView in edit mode, if the editing is

enabled in the options through Options.Editing.Enabled .

EditDone Method used to finish editing mode and put the TableView back to

normal mode.

GetItem(ASection, ARow:

Integer;ASearchFilterList: Boolean = True):

TTMSFMXNativeUITableViewItem;

Function that returns an item for the current section and row in the

collection and optionally searches in the filtered list when needed.

HideDetailView Method to return the TableView back to the master view when a

master-detail hierarchy is setup.

IsEditing: Boolean Function that returns a Boolean whether the TableView is in edit

mode or not.

IsFiltering: Boolean Function that returns a Boolean whether the TableView is in

filtering mode or not.

UpdateSelectionAtRow(ASection, ARow:

Integer)

Updates a row at a section

UpdateTableView Update the complete TableView.

2.5 TTMSFMXNativeUITableView

- 27/221 - Copyright © 2022 tmssoftware.com

Events

2.5.1 Overview

- 28/221 - Copyright © 2022 tmssoftware.com

Event name Description

OnAddItemToFilterList Event called when an item is added to the filter list when filtering is enabled in

the TableView and a text is entered in the SearchBar.

OnBeginRefreshing Event called when refreshing begins, triggered when swiping down, or calling

BeginRefreshing .

OnCanMoveItem Event called to return a Boolean whether an item can be moved from and to a

location or not.

OnEditEnd Event called when editing ended.

OnEditStart Event called when editing started.

OnEndRefreshing Event called when refreshing ends, triggered when the refreshing operation is

complete, or when calling EndRefreshing .

OnFilterItemsForText Event called when filtering the TableView when a text is entered in the

SearchBar.

OnGetItemAccessoryType Event called to return an Accessory Type for an item in normal mode.

OnGetItemAccessoryView Event called to return an Accessory View for an item in normal mode. The

AccessoryView can be linked to another TMS FMX Native UI Control.

OnGetItemAppearance Event called to customize text, description, background and selection colors

and fonts.

OnGetItemBitmap Event called to return a Bitmap for an item.

OnGetItemDescription Event called to return a Description for an item.

OnGetItemDetailView Event called to return a DetailView for an item. The DetailView can be

linked to another TMS FMX Native UI Control.

OnGetItemEditingAccessoryType Event called to return an Accessory Type for an item in edit mode.

OnGetItemEditingAccessoryView Event called to return an Accessory View for an item in editing mode. The

AccessoryView can be linked to another TMS FMX Native UI Control.

OnGetItemEditingStyle Event called to return an editing style for an item.

OnGetItemFilterText Event called that returns the filter text that is used to compare with the text

entered in the SearchBar.

OnGetItemHeight Event called that returns a height for an item.

OnGetItemStyle Event called to return a style for an item.

OnGetItemSubDetailView Event called to return a SubDetailView for anitem. The SubDetailView can

be linked to another TMS FMX Native UI Control.

OnGetItemText Event called to return the text of an item.

2.5.1 Overview

- 29/221 - Copyright © 2022 tmssoftware.com

Event name Description

OnGetNumberOfRowsInSection Event called that specifies the number of rows in a section.

OnGetNumberOfSections Event called that specifies the number of sections in a TableView.

OnGetSectionForSectionIndexTitle Event called that returns the section for a specific index title. The section

index title is an equivalent for the lookup characters in the lookup bar.

OnGetSectionIndexTitles Event called that returns an array of section index titles. The section index title

is an equivalent for the lookup characters in the lookup bar.

OnGetTitleForHeaderInSection Event called that returns a header title for a section.

OnIsItemInFilterCondition Event called to know if an item matches a specific filter condition.

OnItemAccessoryButtonClick Event called when clicking on the Accessory Button when the AccessoryType

has been set to atTableViewCellAccessoryDetailDisclosureButton .

OnItemBeforeShowDetailView Event called before navigating from the master to the detail when a master-

detail hierarchy is setup.

OnItemCompare Event called when comparing 2 items for sorting capabilities. Through this

event, custom sorting can be applied.

OnItemDelete Event called when an item will be deleted.

OnItemDeleted Event called when an item is deleted

OnItemDeSelect Event called when an item is deselected

OnItemInsert Event called when an item will be inserted

OnItemInserted Event called when an item is inserted.

OnItemMove Event called when an item will be moved.

OnItemMoved Event called when an item is moved.

OnItemSelect Event called when an item is selected.

OnSearchEnd Event called when searching has ended.

OnSearchStart Event called when searching has started.

OnShouldShowEditMenuForItem Event called that returns a Boolean whether a Copy edit menu should be

shown for an item or not.

2.5.1 Overview

- 30/221 - Copyright © 2022 tmssoftware.com

Public Events

Adding Sections and Items

The TableView consists of (optionally multiple) sections and items. To add a section at designtime, click on the TableView,

select the sections collection and click on the add button:

Each section has a Header property that is empty by default. To visualize sections in the TableView, enter a value in this

property such as “Cars”, “Nature”or “Sport”, … .

Sections can also be added programmatically:

Event name Description

OnItemCustomizeCell Event used to customize a cell after all properties are applied.

OnItemCreateCell Event called when creating a cell. This event can be used to

add additional native UI controls

and can be combined with the

OnItemCustomizeCell to apply content.

OnItemPerformCopyAction Event called when the Copy action is clicked

after the copy menu has been shown by tap-

holding on the item.

OnTableViewLoadMore Event called when the tableview reaches the end. This event

can be used to load more items when scrolling.

var

 s: TTMSFMXNativeUITableViewSection;

begin

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s := TMSFMXNativeUITableView1.Sections.Add;

2.5.1 Overview

- 31/221 - Copyright © 2022 tmssoftware.com

Each section has a collection of items. To add an item to a section at designtime, click on the previously created section and

double-click on the items collection. In the editor, click on the add button to add an item.

An item can also be added programmatically. If we take the previous snippet that creates sections, we can add items to those

sections:

 s.Header := 'Nature';

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

var

 s: TTMSFMXNativeUITableViewSection;

begin

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s.Items.Add.Text := 'Mercedes';

 s.Items.Add.Text := 'Audi';

 s.Items.Add.Text := 'BMW';

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Nature';

 s.Items.Add.Text := 'Birds';

 s.Items.Add.Text := 'Plants';

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

 s.Items.Add.Text := 'Soccer';

 s.Items.Add.Text := 'Baseball';

2.5.1 Overview

- 32/221 - Copyright © 2022 tmssoftware.com

Sorting

The TableView also supports built-in sorting. Sorting can be applied to sections and items. Call the procedure Sort on the

section or items collection. Optional parameters can be passed for an ascending or descending order.

If we take the sample and apply sorting, the items will be sorted per section:

var

 s: TTMSFMXNativeUITableViewSection;

begin

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s.Items.Add.Text := 'Mercedes';

 s.Items.Add.Text := 'Audi';

 s.Items.Add.Text := 'BMW';

 s.Items.Sort;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Nature';

 s.Items.Add.Text := 'Birds';

 s.Items.Add.Text := 'Plants';

 s.Items.Sort;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

 s.Items.Add.Text := 'Soccer';

2.5.1 Overview

- 33/221 - Copyright © 2022 tmssoftware.com

Toolbar

The TableView has built-in support for displaying a toolbar, that is used for Master-Detail navigation and/or editing. To display

the toolbar, set Options.ToolBar to true .

 s.Items.Add.Text := 'Baseball';

 s.Items.Sort;

TMSFMXNativeUITableView1.Options.ToolBar := True;

2.5.1 Overview

- 34/221 - Copyright © 2022 tmssoftware.com

Editing

When the toolbar is enabled, an optional edit button can be displayed, that toggles the TableView between normal and edit

mode. By default, the Options.Editing.EditButton property is true , but to enable editing, the Options.Editing.Enabled

needs to be set to true . This gives the result below.

Clicking on the edit button sets the TableView in edit mode and modifies the button so the TableView can be reverted back to

normal mode.

TMSFMXNativeUITableView1.Options.Editing.Enabled := True;

2.5.1 Overview

- 35/221 - Copyright © 2022 tmssoftware.com

When clicking on the delete indicator next to the item, the item will be deleted from the collection. In normal modethere is also

an ability to delete the item on a swipe gesture over the item. A Delete button appears that executes the same functionality as

in editing mode.

Each item has a EditStyle property that is esTableViewCellEditingStyleDelete by default. The EditStyle can be set to

esTableViewCellEditingStyleInsert to show a plus button, or set to esTableViewCellEditingStyleNone to disallow

editing capabilities of an item.

Below is a sample code that adds an extra insertable item in the TableView. When the insert button is clicked, the

OnItemInserted event is called which adds an additional item to the tableview. In this event, properties of the newly created

item can be modified.

var

 s: TTMSFMXNativeUITableViewSection;

begin

 TMSFMXNativeUITableView1.Options.ToolBar := True;

 TMSFMXNativeUITableView1.Options.Editing.Enabled := True;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s.Items.Add.Text := 'Mercedes';

 s.Items.Add.Text := 'Audi';

 s.Items.Add.Text := 'BMW';

2.5.1 Overview

- 36/221 - Copyright © 2022 tmssoftware.com

 s.Items.Sort;

 with s.Items.Add do

 begin

 Text := 'New Item ...';

 EditStyle := esTableViewCellEditingStyleInsert;

 end;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Nature';

 s.Items.Add.Text := 'Birds';

 s.Items.Add.Text := 'Plants';

 s.Items.Sort;

 with s.Items.Add do

 begin

 Text := 'New Item ...';

 EditStyle := esTableViewCellEditingStyleInsert;

 end;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

 s.Items.Add.Text := 'Soccer';

 s.Items.Add.Text := 'Baseball';

 s.Items.Sort;

 with s.Items.Add do

 begin

 Text := 'New Item ...';

 EditStyle := esTableViewCellEditingStyleInsert;

 end;

end;

procedure TForm1.TMSFMXNativeUITableView1ItemInserted(Sender: TObject;

 ASection, ARow: Integer);

var

 it: TTMSFMXNativeUITableViewItem;

begin

 it := TMSFMXNativeUITableView1.Sections[ASection].Items[ARow];

 it.Text := 'This is a new item';

end;

2.5.1 Overview

- 37/221 - Copyright © 2022 tmssoftware.com

On the left side, there is a move item indicator that allows moving item within sections or to another section. With the CanMove

property, this can optionally be controlled per item.

Searching / Filtering

The TableView has built-in support for searching / filtering. With the Options.Searching.Mode property a SearchBar can be

enabled to allow searching or filtering. With filtering, the items that are listed in the TableView are based on the text entered in

the SearchBar. Only the TableView items that match the filter condition are listed. Filtering can be modified with events that

control the filter condition and the results list.

When enabling searching mode, the items remain listed but are scrolled to when the search condition is matched and the

search button on the keyboard is pressed.

Below is a sample on how to enable filtering and a sample of a filter result.

var

 s: TTMSFMXNativeUITableViewSection;

begin

 TMSFMXNativeUITableView1.Options.ToolBar := True;

 TMSFMXNativeUITableView1.Options.Editing.Enabled := True;

 TMSFMXNativeUITableView1.Options.Searching.Mode := smFiltering;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Cars';

 s.Items.Add.Text := 'Mercedes';

 s.Items.Add.Text := 'Audi';

2.5.1 Overview

- 38/221 - Copyright © 2022 tmssoftware.com

More information on events is explained in the events table overview.

Lookup

Lookup enables the ability to show a list of characters or indexes that are linked to the section header. When clicking or

swiping over the lookup bar, the TableView scrolls to the correct section. This is particularly helpful if there are multiple sections

and items that extend the height of the TableView.

 s.Items.Add.Text := 'BMW';

 s.Items.Sort;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Nature';

 s.Items.Add.Text := 'Birds';

 s.Items.Add.Text := 'Plants';

 s.Items.Sort;

 s := TMSFMXNativeUITableView1.Sections.Add;

 s.Header := 'Sports';

 s.Items.Add.Text := 'Soccer';

 s.Items.Add.Text := 'Baseball';

 s.Items.Sort;

2.5.1 Overview

- 39/221 - Copyright © 2022 tmssoftware.com

To enable lookup, set Options.Lookup.Mode to lmAlphaBetic to enable an AlphaBetic list of lookup indexes in the

TableView. The Mode can be changed to allow AlphaNumeric, Numeric or custom. When choosing the last options, the

Options.Lookup.Items collection is used to fill up the lookup list with custom indexes that are linked to a section through the

ID. Sections have a LookupID that needs to match one of the custom items in the Lookup.

Below is a sample screenshot that shows the lookup bar on the right of the TableView.

DetailView and SubDetailView

Each item in the TableView has a DetailView and SubDetailView property. With the DetailView property, another TMS

FMX Native UI control can be linked and displayed when clicking on the item. On TableView level there is also a DetailView

property that needs to be set in order to have the DetailView displayed on item level. This hierarchy can be compared to a

PageControl. A page control has various pages (Item DetailView) that are shown when clicking on the Tab (Item). The

container control that is responsible for displaying the DetailView is assigned to the TableView.

In the sample below when have dropped a TableView (TMSFMXNativeUITableView1) on the form along with a container view

(TMSFMXNativeUIView1) and 3 addition controls that will be linked to the items (TMSFMXNativeUIDatePicker1 ,

TMSFMXNativeUISlider1 and TMSFMXNativeUIButton1).

At designtime, this look similar as the image below.

2.5.1 Overview

- 40/221 - Copyright © 2022 tmssoftware.com

The code that links the items to the DetailView is shown below.

The container view is the TMSFMXNativeUIView1 and is linked to the DetailView property of the TMSFMXNativeUITableView1 .

The 3 children of the view each need to be assigned to the item’s DetailView property and need to be set Visible false .

When running, the application will display an empty view and a TableView with 3 items. Clicking the items will display the

correct DetailView in the container view.

TMSFMXNativeUIDatePicker1.Visible := False;

TMSFMXNativeUIButton1.Visible := False;

TMSFMXNativeUISlider1.Visible := False;

TMSFMXNativeUITableView1.DetailView := TMSFMXNativeUIView1;

with TMSFMXNativeUITableView1.Sections.Add do

begin

 with Items.Add do

 begin

 Text := 'Button';

 DetailView := TMSFMXNativeUIButton1;

 end;

 with Items.Add do

 begin

 Text := 'DatePicker';

 DetailView := TMSFMXNativeUIDatePicker1;

 end;

 with Items.Add do

 begin

 Text := 'Slider';

 DetailView := TMSFMXNativeUISlider1;

 end;

end;

2.5.1 Overview

- 41/221 - Copyright © 2022 tmssoftware.com

The SubDetailView property has a similar purpose but this way of linking does not require an additional DetailView linked to

the TableView. The SubDetailView is shown as a pushed detail from the main TableView. This is called Master-Detail. When

changing the above sample so that the 3 children are set as SubDetailView, the container view can be removed. Each control

is put in a TMSFMXNativeUIView instance as the view is stretched when it is pushed in the TableView.

At designtime this looks similar like the image below.

The code for initialization:

TMSFMXNativeUIDatePicker1.Visible := False;

TMSFMXNativeUIView1.Visible := False;

TMSFMXNativeUIView2.Visible := False;

2.5.1 Overview

- 42/221 - Copyright © 2022 tmssoftware.com

When clicking an item the correct DetailView is pushed in the TableView. To return to the main view, the ToolBar is enabled and

automatically shows a back button.

TMSFMXNativeUIView3.Visible := False;

TMSFMXNativeUITableView1.Options.ToolBar := True;

with TMSFMXNativeUITableView1.Sections.Add do

begin

 with Items.Add do

 begin

 Text := 'Button';

 SubDetailView := TMSFMXNativeUIView2;

 end;

 with Items.Add do

 begin

 Text := 'DatePicker';

 SubDetailView := TMSFMXNativeUIView3;

 end;

 with Items.Add do

 begin

 Text := 'Slider';

 SubDetailView := TMSFMXNativeUIView1;

 end;

end;

2.5.1 Overview

- 43/221 - Copyright © 2022 tmssoftware.com

Master-Detail

Each TMS FMX Native UI Control can be used as a DetailView or SubDetailView of an item, so another instance of the

TMSFMXNativeUITableView can be used and linked to the item. The second TableView also supports this type of linked thus

the Master-Detail hierarchy can have multiple TMSFMXNativeUITableView instances linked to eachother and thus have

multiple “levels” of detail.

This setup is similar as the one in the DetailView and SubDetailView chapter but requires an additional property to be set. This

sample shows how to link 3 instances of TMSFMXNativeUITableView to eachother by means of a SubDetailView and shows

the purpose of the MasterTableView property.

At designtime, we simply drop 3 instances of TMSFMXNativeUITableView on the form. The linking can be done at designtime,

but is easier in code.

The code that accompanies this sample is shown below.

var

 s: TTMSFMXNativeUITableViewSection;

 it: TTMSFMXNativeUITableViewItem;

begin

 TMSFMXNativeUITableView1.Options.Header := 'Level 1';

 TMSFMXNativeUITableView2.Options.Header := 'Level 2';

 TMSFMXNativeUITableView3.Options.Header := 'Level 3';

 TMSFMXNativeUITableView1.Options.ToolBar := True;

 TMSFMXNativeUITableView2.MasterTableView := TMSFMXNativeUITableView1;

 TMSFMXNativeUITableView3.MasterTableView := TMSFMXNativeUITableView1;

 TMSFMXNativeUITableView2.Visible := False;

 TMSFMXNativeUITableView3.Visible := False;

 s := TMSFMXNativeUITableView1.Sections.Add;

 it := s.Items.Add;

 it.Text := 'Item on Level 1';

 it.SubDetailView := TMSFMXNativeUITableView2;

 s := TMSFMXNativeUITableView2.Sections.Add;

2.5.1 Overview

- 44/221 - Copyright © 2022 tmssoftware.com

When starting the application, only the first TableView is visible, when clicking on the item, the second TableView is shown and

clicking on the item of the second TableView shows the third TableView. Notice that we have only enabled the ToolBar on the

first TableView as this takes care of displaying the position in the hierarchy. Therefore the MasterTableView property is

necessary as the first TableView needs to know which sub-TableView instances are linked.

When navigating, the back button is automatically updated and the header of the TableView is set. Clicking on the back button

returns one step in the hierarchy.

As the items are fixed, the items on each TableView will remain the same even if there are multiple items on the first level that

all link to the same sub-TableView. When clicking on an item, the OnBeforeShowDetailView is called. This event can be used

to customize the items that are displayed per level, based on the previous level. This event is available per TableView.

Virtual Mode

The previous samples are all based on a collection that needs to be filled with sections and items. The TableView also supports

a virtual mode where items can be displayed without a collection. This can be of use when fetching data from a Database, a

custom collection or list that is maintained in the application and there is no need to map data to the properties of the built-in

 it := s.Items.Add;

 it.Text := 'Item on Level 2';

 it.SubDetailView := TMSFMXNativeUITableView3;

 s := TMSFMXNativeUITableView3.Sections.Add;

 it := s.Items.Add;

 it.Text := 'Item on Level 3';

2.5.1 Overview

- 45/221 - Copyright © 2022 tmssoftware.com

section and items collection. The 4 events for minimal implementation in virtual mode are the OnGetNumberOfSections , the

OnGetNumberOfRowsInSection , the OnGetTitleForHeaderInSection and the OnGetItemText . Below is a sample that

implements these events and shows 2 sections with a couple of items.

procedure TForm1.TMSFMXNativeUITableView1GetItemText(Sender: TObject;

 ASection, ARow: Integer; var AText: string);

begin

 AText := 'S ' + inttostr(ASection) + ' Item ' + inttostr(ARow);

end;

procedure TForm1.TMSFMXNativeUITableView1GetNumberOfRowsInSection(

 Sender: TObject; ASection: Integer; var ANumberOfRows: Integer);

begin

 case ASection of

 0: ANumberOfRows := 3;

 1: ANumberOfRows := 5;

 end;

end;

procedure TForm1.TMSFMXNativeUITableView1GetNumberOfSections(Sender: TObject;

 var ANumberOfSections: Integer);

begin

 ANumberOfSections := 2;

end;

procedure TForm1.TMSFMXNativeUITableView1GetTitleForHeaderInSection(

 Sender: TObject; ASection: Integer; var ATitle: string);

begin

 ATitle := 'Section ' + inttostr(ASection);

end;

2.5.1 Overview

- 46/221 - Copyright © 2022 tmssoftware.com

Custom Collection

If the data structure of your application contains extra properties that needs to be displayed in the item and the properties of

the base collection are not sufficient, the TableView exposes 2 virtual functions that can be overridden to add additional

properties. The CustomCells demo that is included in the distribution makes use of a TMSFMXNativeUITableViewMail

instance that inherits from the TMSFMXNativeUITableView and overrides the virtual functions that create the section and item

collection. When examining the code of this class, you will notice that the TMSFMXNativeUITableViewMailItem collection item

class is used to add additional properties such as Sender , Date , Title , Description and Unread .

The TMSFMXNativeUITableViewMail inherits from TMSFMXNativeUITableView and overrides the CreateSections function

that returns the custom section collection TMSFMXNativeUITableViewMailSections . As each section has an items collection,

the CreateItems function needs to be overridden to return the TMSFMXNativeUITableViewMailItems collection that holds

the customized items.

The creation of a custom collection can be sufficient to persist non-visual data in your application. If you need additional visual

representation in an item, then the Custom Items chapter will explain how you can override the default layout of a TableView

item and display custom data.

The Source of the TMSFMXNativeUITableView can be found below in the Resources chapter

Custom Items

The TableView has a few predefined styles for an item that position the image, title and description on fixed positions. Using

the default or changing the style of an item can be sufficient for your application. If the style of an item is not sufficient for your

application, the TableView exposes 2 additional public procedures and events that can be implemented to customize your

TableView item layout.

As mentioned in the chapter Custom Collection, the TMSFMXNativeUITableViewMail implementation overrides the default

collection and provides properties to persist additional data in your application.

The TMSFMXNativeUITableViewMail implementation also demonstrates how to use the 2 virtual procedures that are called

when an item is being created and displayed. The DoCreateCell is called when a new item (cell) is being created. This

procedure, and the event OnCreateCell , can be used to add additional controls to your item layout that can linked to the

properties in the customcollection. These events can also be used to customize your application with the default collection as

well, but in this sample the combination of a custom collection and a custom item layout is a typical scenario in real application.

When investigating the source of the TMSFMXNativeUITableViewMail (found in the Resources chapter) you will notice that

custom label instances are added and customized linking to the custom collection.

2.5.1 Overview

- 47/221 - Copyright © 2022 tmssoftware.com

2.5.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

DetailView DetailView of the TableView used to display content from another TMS FMX Native UI Control

linked to the DetailView of an item within a section.

MasterTableView MasterTableView of the sub TableView when multiple TableView instances are linked to each

other and represent a hierarchical master-detail structure.

Options A set of configurable options for the TableView

Sections[Index] A collection of Sections used in the TableView.

Visible Shows / Hides the TableView.

Property name Description

EditButton Returns a reference to the native iOS UIBarButton that is used in the ToolBar for

editing purposes.

NavigationController Returns a reference to the native iOS UINavigationController used to navigate in

hierarchical structure when a SubDetailView item relation is setup.

SearchBar Returns a reference to the native iOS UISearchBar .

SearchDisplayController Returns a reference to the native iOS UISearchDisplayController that is used to

display the search results.

TableView Returns a reference to the native iOS UITableView .

TableViewController Returns a reference to the native iOS UITableViewController .

2.5.2 Properties

- 48/221 - Copyright © 2022 tmssoftware.com

Sections

OVERVIEW

Go back to Properties

Property name Description

Header The header of the section

Footer The footer of the section.

Items[Index] Collection of items within a section

LookUpID The LookUpID of the section that is used in combination with custom lookup items.

2.5.2 Properties

- 49/221 - Copyright © 2022 tmssoftware.com

ITEMS

2.5.2 Properties

- 50/221 - Copyright © 2022 tmssoftware.com

Property name Description

AccessoryType The type of standard accessory view the item should use (normal state). Standard

accessory types are:

atTableViewCellAccessoryNone

atTableViewCellAccessoryDisclosureIndicator

atTableViewCellAccessoryDetailDisclosureButton

atTableViewCellAccessoryCheckmark

AccessoryView A view that is used, typically as a control, on the right side of the item (normal state).

Bitmap Sets the image of an item in the TableView.

BitmapFile A direct link to an image file located in the root or documents directory.

BitmapLink A link to another TBitmap instance which can be used multiple times to save resources.

BitmapSize The size of an image used to resize. The BitmapSize is -1 by default which will load the

original size of the image The image is resized with aspect ratio.

CanMove Sets whether an item can be moved to another location in the TableView or not.

Enabled Enables / disables the item.

Description The description of the item.

DetailView A DetailView that is used when the user selects an item. The DetailView is pushed in the

View linked to the TableView’s DetailView property.The DetailView on item level and on

TableView can be linked to other types of TMS FMX Native UI controls.

EditingAccessoryType The type of standard accessory view the item should use (editing state). Standard

accessory types are:

atTableViewCellAccessoryNone

atTableViewCellAccessoryDisclosureIndicator

atTableViewCellAccessoryDetailDisclosureButton

atTableViewCellAccessoryCheckmark

EditingAccessoryView A view that is used, typically as a control, on the right side of the item (editing state).

EditStyle The style of the item when editing the TableView. The style can be set to delete or insert

the item.When editing occurs, an item is respectively delete or inserted.

Height The height of an item in the TableView when a value different from -1 is specified. If the

Value is -1 the RowHeight property on Options level is used.

ShowEditMenu Shows a “Copy” edit menu when a tap and hold operation occurs on an item.

Style The Style of an item. Various styles can be applied

UITableViewCellStyleDefault

A simple style for an item with a text label (black and left-aligned) and an optional image

view.

UITableViewCellStyleValue1

A style for an item with a label on the left side of the item with left-aligned and black text;

2.5.2 Properties

- 51/221 - Copyright © 2022 tmssoftware.com

Go back to Sections

Property name Description

on the right side is a label that has smaller blue text and is right-aligned.

UITableViewCellStyleValue2

A style for an item with a label on the left side of the item with text that is right-aligned and

blue. On the right side of the item is another label with smaller text that is left-aligned and

black.

UITableViewCellStyleSubtitle

A style for an item with a left-aligned label across the top and a left-aligned label below it in

smaller gray text.

SubDetailView A SubDetailView that is used when the user selects an item. The SubDetailView is pushed

in place of the main TableView.The SubDetailView on item level can be linked to other

types of TMS FMX Native UI controls.

Text The text of the item.

2.5.2 Properties

- 52/221 - Copyright © 2022 tmssoftware.com

Options

OVERVIEW

Go back to Properties

Property name Description

AllowsMultipleSelection A Boolean value that determines whether users can select more than one

row outside of editing mode or not.

AllowsMultipleSelectionDuringEditing A Boolean value that controls whether users can select more than one item

simultaneously in editing mode or not.

AllowsSelection A Boolean value that determines whether users can select a row or not.

AllowsSelectionDuringEditing A Boolean value that determines whether users can select items while the

receiver is in editing mode or not.

Editing A set of configurable editing options for the TableView.

Header The header of the TableView displayed in the toolbar.

Layout The Layout of the TableView. The TableView can have 2 layout modes:

plain and grouped layout mode.

LookUp A set of configurable lookup options for the TableView.

Refreshing A set of configurable refreshing options for the TableView.

RowHeight The default rowheight of the TableView items. The rowheight can be

configured per item with the Height property.

Scrolling A set of configurable scrolling options for the TableView.

Searching A set of Configurable searching options for the Tableview.

SeparatorColor The color of separator items in the table view.

SeparatorStyle The style for items used as separators.

ToolBar Shows / hides the toolbar on the TableView.

2.5.2 Properties

- 53/221 - Copyright © 2022 tmssoftware.com

EDITING

Go back to Options

Property

name

Description

EditButton Shows an edit button in the toolbar which toggles the TableView from normal to edit mode or vice

versa. (Options.Toolbar and Options.Editing.Enabled properties need to be true)

Enabled Enables or disables editing capabilities in the TableView.

2.5.2 Properties

- 54/221 - Copyright © 2022 tmssoftware.com

LOOKUP

Go back to Options

Property

name

Description

Items A collection of custom lookup items.

Mode The lookup mode of the TableView. The mode can be set to alphabetic, alphanumeric, numeric or

custom. In case of custom, the lookup bar in the TableView is filled with items from the Items

collection under the Lookup property. The linked can be done by specifying an ID on the item and a

LookUpID on the section.

2.5.2 Properties

- 55/221 - Copyright © 2022 tmssoftware.com

REFRESHING

Go back to Options

Property

name

Description

AutoEnd Automatically ends refresh operation after BeginRefreshing is called or a swipe down operation

is performed.

Enabled Enables Refreshing, disabled by default.

TintColor Sets the tint-color of the Refresh indicator on the TableView

2.5.2 Properties

- 56/221 - Copyright © 2022 tmssoftware.com

SCROLLING

Go back to Options

Property name Description

AlwaysBounceHorizontal A Boolean value that determines whether bouncing always occurs when

horizontal scrolling reaches the end of the content view or not.

AlwaysBounceVertical A Boolean value that determines whether bouncing always occurs when vertical

scrolling reaches the end of the content or not.

Bounces Bounces the view horizontally or vertically depending on the

AlwaysBounceHorizontal and AlwaysBounceVertical properties.

DirectionalLockEnabled A Boolean value that determines whether scrolling is disabled in a particular

direction or not.

Enabled A Boolean value that determines whether scrolling is enabled or not.

ShowsHorizontalScrollIndicator A Boolean value that controls whether the horizontal scroll indicator is visible or

not.

ShowsVerticalScrollIndicator A Boolean value that controls whether the vertical scroll indicator is visible or not.

2.5.2 Properties

- 57/221 - Copyright © 2022 tmssoftware.com

SEARCHING

Go back to Options

Property

name

Description

Mode Filtering or Searching mode. In Filtering mode, the items are listed that match the characters

entered in the SearchBar. In Searching mode, the item that matches the characters entered in the

SearchBar is being visualized after clicking on the search button.

ScrollMode Defines the way of visualizing the item after pressing the search button in search mode. There are

2 ways of visualizing the item: scroll to - or scroll and select the item.

ScrollPosition The position in the TableView (top, middle, bottom) to which a given row is scrolled when using

searching mode.

2.5.2 Properties

- 58/221 - Copyright © 2022 tmssoftware.com

2.6 TTMSFMXNativeUIToolBar

2.6.1 Overview

Usage

A TMSFMXNativeUIToolBar is a control that displays one or more Buttons, called toolbar items.

Methods

Events

Method name Description

BeginUpdate / EndUpdate Wrapping code to block direct updates to the ToolBar. This is

done for performance when loading a large amount of items

(buttons).

FindItemByControl(AItem: UIBarButtonItem):

TTMSFMXNativeUIToolBarItem;

Returns the item by passing a reference to the native

UIBarButtonItem that is linked to an item.

Event name Description

OnItemClick Event called when clicking on an item (button)

2.6 TTMSFMXNativeUIToolBar

- 59/221 - Copyright © 2022 tmssoftware.com

2.6.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Items[Index] The items displayed on the ToolBar.

Style The ToolBar style that specifies its appearance.

TintColor The color used to tint the bar.

Translucent A Boolean value that indicates whether the ToolBar is translucent or not.

Visible Shows / hides the ToolBar.

Property name Description

ToolBar Returns a reference to the native iOS UIToolbar .

2.6.2 Properties

- 60/221 - Copyright © 2022 tmssoftware.com

Items

Go back to Properties

Property

name

Description

Action Property to assign an action combined with an action list.

Bitmap The bitmap used inside an item.

CustomView Custom view of an item used to display content from another TMS FMX Native UI Control linked to

an item within the toolbar, when the Kind property is set to ikCustom .

Enabled Enables / disables an item.

Kind The kind of item that is display in the ToolBar, an item can be a normal, system or custom item.

Style The style of an item, applied when using normal or system Kind. The style can be plain, done or

bordered.

SystemItem When setting the kind to ikSystem , the SystemItem property determines which icon is display

inside the button.

Text The text of a button.

Visible Shows / hides a button.

2.6.2 Properties

- 61/221 - Copyright © 2022 tmssoftware.com

2.7 TMSFMXNativeUIPickerView

2.7.1 Overview

Usage

The TMSFMXNativeUIPickerView class implements columns, that use a spinning-wheel or slot-machine metaphor to show

one or more sets of values. Users select values by rotating the wheels so that the desired row of values aligns with a selection

indicator.

Methods

Events

Method name Description

SelectRowInColumn(ARow, AColumn: Integer; AAnimated:

Boolean);

Selects a specific row (item)in a specific column.

SelectedRowForColumn(AColumn: Integer): Integer; Returns the selected index of a row (item) in a

specific column.

Event name Description

OnGetNumberOfColumns Returns the number of columns.

OnGetNumberOfRowsForColumn Returns the number of rows (items) for a column.

OnGetTitleForRow Returns the title for a specific row at a specific column.

OnValueChanged Event called when a value of a specific column has changed.

2.7 TMSFMXNativeUIPickerView

- 62/221 - Copyright © 2022 tmssoftware.com

2.7.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Columns Collection of columns used in the PickerView.

ShowSelectionIndicator Shows the selection indicator that overlaps the columns. The selection of an item is

always displayed in the center of the control.

Visible Shows / hides the PickerView.

Property name Description

PickerView Returns a reference to the native iOS UIPickerView .

2.7.2 Properties

- 63/221 - Copyright © 2022 tmssoftware.com

Columns

OVERVIEW

Go back to Properties

Property name Description

Items Collection of items per column.

2.7.2 Properties

- 64/221 - Copyright © 2022 tmssoftware.com

ITEMS

Go back to Colums

Property name Description

Text The text of an item per column.

2.7.2 Properties

- 65/221 - Copyright © 2022 tmssoftware.com

2.8 TMSFMXNativeUIDatePicker

2.8.1 Usage

The TMSFMXNativeUIDatePicker class implements an object that uses multiple rotating wheels to allow users to select dates

and times. iPhone examples of a date picker are the Timer and Alarm (Set Alarm) panes of the Clock application. You may also

use a date picker as a countdown timer.

2.8.2 Published Properties

2.8.3 Public Properties

2.8.4 Methods

2.8.5 Events

Property name Description

CountDownDuration This property (in seconds) is only used to display a number when the Mode is set to

dpmDatePickerModeCountDownTimer . It does not actually count down. This requires

manual implementation.

DateTime The datetime displayed by the DatePicker.

MaximumDateTime The maximum datetime that a DatePicker can show.

MinimumDateTime The minimum datetime that a DatePicker can show.

MinuteInterval The interval at which the DatePicker should display minutes.

Mode The value of this property indicates the mode of a DatePicker. It determines whether the

DatePicker allows selection of a date, a time, both date and time, or a countdown time. The

default mode is dpmDatePickerModeDateAndTime .

Visible Shows / hides the DatePicker.

Property name Description

DatePicker Returns a reference to the native iOS UIDatePicker .

Methods name Description

NSDateToDate(ADateTime: NSDate): TDateTime; Returns a TDateTime from a native iOS NSDate instance.

Events name Description

OnValueChanged Event called when a date / value has changed.

2.8 TMSFMXNativeUIDatePicker

- 66/221 - Copyright © 2022 tmssoftware.com

2.8.6 Countdown timer

With the Mode property set to dpmDatePickerModeCountDownTimer the DatePicker can be set to a countdown timer.

Additionally the amount of seconds to countdown from needs to be set with the CountDownDuration property.

In the sample below, the DatePicker is set to a countdown duration of 60 seconds. The user can select an amount of

countdown seconds from which to start from.

The OnValueChanged event is triggered when the user changes the value on the countdown wheel.

To actually use it as a timer, a TTimer component is used to start counting down from the value chosen by the user. The timer

can be used to, as an example, update a label.

TMSFMXNativeUIDatePicker1.Mode := dpmDatePickerModeCountDownTimerl;

TMSFMXNativeUIDatePicker1.CountDownDuration := 60;

FDuration := 60;

procedure TForm1.TMSFMXNativeUIDatePicker1ValueChanged(ASender: TObject;

 ADateTime: TDateTime);

begin

 FDuration := TMSFMXNativeUIDatePicker1.CountDownDuration;

end;

procedure TForm1.Timer1Timer(Sender: TObject);

begin

 FDuration := FDuration - 1;

 TMSFMXNativeUILabel1.Text := 'Seconds left = ' + floattostr(FDuration);

end;

2.8.6 Countdown timer

- 67/221 - Copyright © 2022 tmssoftware.com

2.9 TMSFMXNativeUITextView

2.9.1 Overview

Usage

The TMSFMXNativeUITextView class implements the behavior for a scrollable, multiline text region. The class supports the

display of text using custom style information and also supports text editing. You typically use a text view to display multiple

lines of text, such as when displaying the body of a large text document.

Events

Event name Description

OnChanged Event called when the text of the TextField has changed.

OnDidBeginEditing Event called when editing did begin.

OnDidChangeSelection Event called when selection of the text did change.

OnDidEndEditing Event called when editing did end.

OnShouldBeginEditing Event called when editing should begin.

OnShouldChangeTextInRange Event called when a specified text in range should be changed. The TextView

calls this event whenever the user types a new character or deletes an existing

character. Implementation of this method is optional. You can use this method to

replace text before it is committed to the TextView storage. For example, a spell

checker might use this method to replace a misspelled word with the correct

spelling.

OnShouldEndEditing Event called when editing should end.

2.9 TMSFMXNativeUITextView

- 68/221 - Copyright © 2022 tmssoftware.com

2.9.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Alignment The technique to use for aligning the text.

Editable A Boolean value indicating whether the TextView is editable or not.

Font Specifies the Font name and Size of the TextView.

Text The Text of the TextView.

TextColor The color of the TextView.

TextInputTraits The TextInputTraits property defines features that are associated with keyboard input.

Visible Shows / hides the TextView.

Property name Description

TextView Returns a reference to the native iOS UITextView .

2.9.2 Properties

- 69/221 - Copyright © 2022 tmssoftware.com

TextInputTraits

Go back to Properties

Property name Description

AutoCapitalizationType This property determines at what times the ⇧ Shift key is automatically

pressed, thereby making the typed character a capital letter. The default value

for this property is actTextAutocapitalizationTypeSentences .

AutoCorrectionType This property determines whether auto-correction is enabled or disabled during

typing.

SpellCheckingType This property determines whether spell-checking is enabled or disabled during

typing. With spell-checking enabled, the text object generates red underlines for

all misspelled words.

EnablesReturnKeyAutomatically A Boolean value indicating whether the return key is automatically enabled

when text is entered by the users

KeyBoardAppearance The appearance style of the keyboard that is associated with the TextView.

KeyBoardType The keyboard style associated with the TextView.

ReturnKeyType The contents of the “return” key.

SecureTextEntry Identifies whether the TextView should hide the text being entered.

2.9.2 Properties

- 70/221 - Copyright © 2022 tmssoftware.com

2.10 TMSFMXNativeUILabel

2.10.1 Usage

The TMSFMXNativeUILabel class implements a read-only text view. You can use this class to draw one or multiple lines of

static text, such as those you might use to identify other parts of your user interface.

2.10.2 Published Properties

2.10.3 Public Properties

Property name Description

Alignment The text alignment of the label.

Color The background color of the label.

Font Specifies the font name and size of the Label.

LineBreakMode The technique to use for wrapping and truncating the Label’s text.

NumberOfLines The number of lines that are allowed to be displayed inside the Label. The default value is 1 .

For Linbreak to work, NumberOfLines need to be larger than 1 .

TextColor The color of the text.

Visible Shows / hides the Label.

Property name Description

Lbl Returns a reference to the native iOS UILabel .

2.10 TMSFMXNativeUILabel

- 71/221 - Copyright © 2022 tmssoftware.com

2.11 TMSFMXNativeUIScrollView

2.11.1 Usage

The TMSFMXNativeUIScrollView class provides support for displaying content that is larger than the size of the application’s

window. It enables users to scroll within that content by making swiping gestures.

2.11.2 Published Properties

2.11.3 Public Properties

2.11.4 Events

Property name Description

AlwaysBounceHorizontal A Boolean value that determines whether bouncing always occurs when

horizontal scrolling reaches the end of the content view or not.

AlwaysBounceVertical A Boolean value that determines whether bouncing always occurs when vertical

scrolling reaches the end of the content or not.

Bounces Bounces the view horizontally or vertically depending on the

AlwaysBounceHorizontal and AlwaysBounceVertical properties.

DirectionalLockEnabled A Boolean value that determines whether scrolling is disabled in a particular

direction or not.

Enabled A Boolean value that determines whether scrolling is enabled or not.

ShowsHorizontalScrollIndicator A Boolean value that controls whether the horizontal scroll indicator is visible or

not.

ShowsVerticalScrollIndicator A Boolean value that controls whether the vertical scroll indicator is visible or not.

ViewForZooming View of the ScrollView used for zooming.

Visible Shows / hides the ScrollView.

Property name Description

ScrollView Returns a reference to the native iOS UIScrollView .

Event name Description

OnViewForZoomingInScrollView Returns a reference to a TMS FMX Native iOS Control used for zooming.

2.11 TMSFMXNativeUIScrollView

- 72/221 - Copyright © 2022 tmssoftware.com

2.12 TMSFMXNativeUIProgressView

2.12.1 Usage

You use the TMSFMXNativeUIProgressView class to depict the progress of a task over time.

2.12.2 Published Properties

2.12.3 Public Properties

2.12.4 Events

Property

name

Description

Progress The current progress of the ProgressView. The progress is a single value between 0.0 and

1.0 .

Style The graphical style of the ProgressView.

Visible Shows / hides the ProgressView.

Property name Description

ProgressView Returns a reference to the native iOS UIProgressView .

Event name Description

OnValueChanged Event called when the value of the ProgressView has changed.

2.12 TMSFMXNativeUIProgressView

- 73/221 - Copyright © 2022 tmssoftware.com

2.13 TMSFMXNativeUISegmentedControl

2.13.1 Overview

Usage

A UISegmentedControl object is a horizontal control made of multiple segments, each segment functioning as a discrete

Button. A segmented control affords a compact means to group together a number of controls.

Methods

Events

Method name Description

BeginUpdate /

EndUpdate

Wrapping code to block direct updates to the SegmentedControl. This is done for

performance when loading a large amount of items and content.

Event name Description

OnValueChanged Event called when the selected segment index has changed.

2.13 TMSFMXNativeUISegmentedControl

- 74/221 - Copyright © 2022 tmssoftware.com

2.13.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Items (Segments) Collection of items (segments) in the SegmentedControl.

Style The style of the SegmentedControl.

SelectedSegmentIndex Sets or gets the SelectedSegmentIndex which is the index of an item in the Items

collection.

TintColor The tint color of the SegmentedControl.

Visible Shows / hides the SegmentedControl.

Property name Description

Button Returns a reference to the native iOS UISegmentedControl .

2.13.2 Properties

- 75/221 - Copyright © 2022 tmssoftware.com

Items

Go back to Properties

Property name Description

Bitmap The bitmap of an item (segment).

Enabled Sets an item (segment) enabled or not.

Text The text of an item (segment) in case there is no bitmap assigned.

2.13.2 Properties

- 76/221 - Copyright © 2022 tmssoftware.com

2.14 TMSFMXNativeUIStepper

2.14.1 Usage

A TMSFMXNativeUIStepper control provides a user interface for incrementing or decrementing a value. A stepper displays two

Buttons, one with a minus (–) symbol and one with a plus (+) symbol.

2.14.2 Published Properties

2.14.3 Public Properties

2.14.4 Events

Property

name

Description

AutoRepeat If true , the user pressing and holding on the stepper repeatedly alters value.

Continuous If true , value change events are sent immediately when the value changes during user

interaction. If false, a value change event is sent when user interaction ends.

MaximumValue The highest possible numeric value for the Stepper.

MinimumValue The lowest possible numeric value for the Stepper.

StepValue The step, or increment, value for the Stepper.

Value The value of the Stepper.

Visible Shows / hides the Stepper.

Wraps If true , incrementing beyond maximumValue sets value to minimumValue; likewise,

decrementing below minimumValue sets value to maximumValue. If false , the Stepper does

not increment beyond maximumValue nor does it decrement below minimumValue but rather

holds at those values.

Property name Description

Stepper Returns a reference to the native iOS UIStepper .

Property name Description

OnValueChanged Event called when the value of the stepper has changed.

2.14 TMSFMXNativeUIStepper

- 77/221 - Copyright © 2022 tmssoftware.com

2.15 TMSFMXNativeUITextField

2.15.1 Overview

Usage

A TMSFMXNativeUITextField object is a control that displays editable text and sends an action message to a target object

when the user presses the return Button. You typically use this class to gather small amounts of text from the user and perform

some immediate action, such as a search operation, based on that text.

Events

Event name Description

OnChanged Event called when the text of the TextField has changed.

OnDidBeginEditing Event called when editing did begin.

OnDidChangeSelection Event called when selection of the text did change.

OnDidEndEditing Event called when editing did end.

OnShouldBeginEditing Event called when editing should begin.

OnShouldChangeTextInRange Event called when a specified text in range should be changed. The TextView

calls this event whenever the user types a new character or deletes an existing

character. Implementation of this method is optional. You can use this method to

replace text before it is committed to the TextView storage. For example, a spell

checker might use this method to replace a misspelled word with the correct

spelling.

OnShouldClear Event called if the current text should be cleared.

OnShouldEndEditing Event called when editing should end.

2.15 TMSFMXNativeUITextField

- 78/221 - Copyright © 2022 tmssoftware.com

2.15.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Alignment The alignment of the text.

BorderStyle The border style of the TextField.

ClearButton Shows / hides a clear button on the TextField.

TextColor The text color of the text.

TextInputTraits The TextInputTraits property defines features that are associated with keyboard input.

Visible Shows / hides the TextField.

Property name Description

TextField Returns a reference to the native iOS UITextField .

2.15.2 Properties

- 79/221 - Copyright © 2022 tmssoftware.com

TextInputTraits

Go back to Properties

Property name Description

AutoCapitalizationType This property determines at what times the ⇧ Shift key is automatically

pressed, thereby making the typed character a capital letter. The default value

for this property is actTextAutocapitalizationTypeSentences .

AutoCorrectionType This property determines whether auto-correction is enabled or disabled during

typing.

SpellCheckingType This property determines whether spell-checking is enabled or disabled during

typing. With spell-checking enabled, the text object generates red underlines for

all misspelled words.

EnablesReturnKeyAutomatically A Boolean value indicating whether the return key is automatically enabled when

text is entered by the user.

KeyBoardAppearance The appearance style of the keyboard that is associated with the TextField.

KeyBoardType The keyboard style associated with the TextField.

ReturnKeyType The contents of the “return” key.

SecureTextEntry Identifies whether the TextField should hide the text being entered.

2.15.2 Properties

- 80/221 - Copyright © 2022 tmssoftware.com

2.16 TMSFMXNativeMKMapView

2.16.1 Overview

Usage

A TMSFMXNativeMKMapView object provides an embeddable map interface, similar to the one provided by the Maps

application. You use this class as-is to display map information and to manipulate the map contents from your application. You

can center the map on a given coordinate, specify the size of the area you want to display, and annotate the map with custom

information.

2.16 TMSFMXNativeMKMapView

- 81/221 - Copyright © 2022 tmssoftware.com

Methods

2.16.1 Overview

- 82/221 - Copyright © 2022 tmssoftware.com

Method name Description

AddAnnotation(ALatitude, ALongitude: Double):

TTMSFMXNativeMKAnnotation

Adds and returns a new annotation

based on a Latitude and Longitude .

AddAnnotation(ALatitude, ALongitude: Double; ATitle, ASubTitle:

String): TTMSFMXNativeMKAnnotation

Adds and returns a new annotation

based on a Latitude , Longitude ,

Title and SubTitle .

AddAnnotation(ALocation: TTMSFMXNativeMKMapLocation):

TTMSFMXNativeMKAnnotation

Adds and returns a new annotaton based

on a location.

AddAnnotation(ALocation: TTMSFMXNativeMKMapLocation; ATitle,

ASubTitle: String): TTMSFMXNativeMKAnnotation

Adds and returns a new annotation

based on a location , Title and

SubTitle .

AddCircle(ALatitude, ALongitude: Double; ARadius: Double):

TTMSFMXNativeMKOverlay

Adds and returns a new circle overlay

shape based on a Latitude ,

Longitude and Radius parameter. The

Radius parameter is in meters.

AddCircle(ALocation: TTMSFMXNativeMKMapLocation; ARadius:

Double): TTMSFMXNativeMKOverlay

Adds and returns a new circle overlay

shape based on a Latitude ,

Longitude and Radius parameter. The

Radius parameter is in meters.

AddPolygon(ALocations: array of TTMSFMXNativeMKMapLocation):

TTMSFMXNativeMKOverlay

Adds and returns a new polygon overlay

shape based on an array of Locations .

AddPolyline(ALocations: array of

TTMSFMXNativeMKMapLocation):TTMSFMXNativeMKOverlay

Adds and returns a new polyline overlay

shape based on an array of Locations .

DeSelectAnnotation(AAnnotation: TTMSFMXNativeMKAnnotation) Deselects the annotation with or without

animation.

function AddImage(AURL: String; ATopLeftLocation,

ABottomRightLocation: TTMSFMXNativeMKMapLocation):

TTMSFMXNativeMKOverlay;

Adds and returns a new overlay image at

a specific topleft and bottomright

coordinate. (iOS 7 or later)

function AddTiling(AURL: String): TTMSFMXNativeMKOverlay; Adds and returns a new overlay object

that supports rendering tiles from a

specific tile server. (iOS 7 or later)

GetAnnotation(Annotation: MKAnnotion):

TTMSFMXNativeMKAnnotatio

Returns the annotation collection item

based on the native MKAnnotation .

GetOverlay(Overlay: MKOverlay): TTMSFMXNativeMKOverlay Returns the overlay collection item based

on the native MKOverlay .

GetRegion: TTMSFMXNativeMKMapRegion; Returns the current region.

GetUserLocation: TTMSFMXNativeMKMapLocation Returns the current user location

2.16.1 Overview

- 83/221 - Copyright © 2022 tmssoftware.com

Method name Description

procedure GetDirections(AStartLocation, AEndLocation:

TTMSFMXNativeMKMapLocation; AAlternateRoutes: Boolean = False;

ATransportType:

TTMSFMXNativeMKMapViewDirectionsTransportType =

ttDirectionsTransportTypeAutomobile; ADepartureDate: TDateTime =

-1; AArrivalDate: TDateTime = -1);

Starts a get directions request with a

given start and end location and optional

parameters such as the possibility to

calculate alternate routes and a

departure and arrival date. When calling

this method, the OnGetDirections event

is triggered. When an error occurred

during the request, the

OnGetDirectionsError event is

triggered.

There is a second overload that accepts

latitude and longitude parameters for

both the start and the end location as

doubles. (iOS 7 or later)

RemoveAllAnnotations Removes all annotations from the

collection and the MapView.

RemoveAllOverlays Removes all the overlays from the

collection and the MapView

RemoveAnnotation(AAnnotation: TTMSFMXNativeMKAnnotation) Removes a specific annotation from the

collection and the MapView.

RemoveOverlay(AOverlay:TTMSFMXNativeMKOverlay) Removes a specific overlay from the

collection and the MapView.

SelectAnnotaion(AAnnotation: TTMSFMXNativeMKAnnotation;

AAnimated: Boolean)

Selects a specific annotation and shows

the callout, with or without animation.

SetCenterLocation(ALocation: TTMSFMXNativeMKMapLocation) Centers the map at a specific location.

SetRegion(ARegion: TTMSFMXNativeMKMapRegion; AAnimated:

Boolean)

Sets the visible region of the MapView.

SetRegion(ATopLeftLocation, ABottomRightLocation:

TTMSFMXNativeMKMapLocation; AAnimated: Boolean)

Sets the visible region of the MapView

with TopLeft and BottomRight

coordinates.

XYToCoordinate(X, Y: Single): TTMSFMXNativeMKMapLocation Returns a latitude and longitude of an X

and `Y coordinate on the map based on

the current region of the MapView.

ZoomToFitAnnotations(AIncludeUserLocation: Boolean = false;

ALatitudeSpanOffset: Double = 0; ALongitudeSpanOffset: Double = 0);

Zoom the mapview to show/fit all

annotations with optional parameters to

include user location and additional

region span offset.

2.16.1 Overview

- 84/221 - Copyright © 2022 tmssoftware.com

Events

Adding Annotations

Annotations can be added to the map by directly adding them to the collection, or through one of the AddAnnotation overload

methods. Below is a sample that demonstrates this.

Property name Description

OnAnnotationDragStateChanged Event called when a pin is being dragged to a new location.

OnAnnotationLeftCalloutAccessoryTapped Event called when the left callout accessory is tapped on an

annotation.

OnAnnotationRightCalloutAccessoryTapped Event called when the right callout accessory is tapped on an

annotation.

OnClick Event called when clicking on the map. The latitude and longitude of

the position on the map are passed as parameters.

OnDidDeselectAnnotationView Event called when deselectin an annotation.

OnDidFailLoadingMap Event called when the map loading failed.

OnDidFailToLocateUser Event called when the map did fail to locate the user location when

the user location is active.

OnDidFinishLoadingMap Event called when the map did finish loading.

OnGetDirections Event called when a directions request is finished and successfully

found one or multiple routes.

OnGetDirectionsError Event called when a directions request is finished and an error

occurred during the request.

OnSelectAnnotationView Event called when an annotation is selected.

OnDidStopLocatingUser Event called when the MapView stops locating the user.

OnDidUpdateUserLocation Event called when the user location is updated.

OnLongPress Event called when tap holding on the MapView for at least 1.5

seconds

OnRegionDidChangeAnimated Event called when the region of the MapView is changed.

OnRegionWillChangeAnimated Event called when the region of the MapView will change.

OnWillStartLoadingMap Event called when the MapView will start loading.

OnWillStartLocatingUser Event called when the MapView will start locating the user.

2.16.1 Overview

- 85/221 - Copyright © 2022 tmssoftware.com

In this sample, we drop a TMSFMXNativeMKMapView control on the form and add the following code in a button click:

This code will return the correct coordinate of the center of the map, regardless of where the map is positioned. Clicking the

button drops an annotation on the MapView:

If you pan the Map, and click the button, the pin will be dropped in the center of the MapView again, but on a different

coordinate. The XYToCoordinate functionality is using the current region, and zooming level of the MapView to return the

correct coordinate.

var

 loc: TTMSFMXNativeMKMapLocation;

begin

 loc := TMSFMXNativeMKMapView1.XYToCoordinate(TMSFMXNativeMKMapView1.Width / 2,

 TMSFMXNativeMKMapView1.Height / 2);

 TMSFMXNativeMKMapView1.AddAnnotation(loc, 'Hello World', 'Subtitle');

2.16.1 Overview

- 86/221 - Copyright © 2022 tmssoftware.com

Pin vs View

By default, the annotation that is added on the map displays a pin, but this can also be changed per annotation. On the

annotation collection item, a Bitmap property is available to customize the default view of an annotation. The sample below

shows how to add a custom image for an annotation.

var

 loc: TTMSFMXNativeMKMapLocation;

 ann: TTMSFMXNativeMKAnnotation;

begin

 loc := TMSFMXNativeMKMapView1.XYToCoordinate(TMSFMXNativeMKMapView1.Width / 2,

 TMSFMXNativeMKMapView1.Height / 2);

 ann := TMSFMXNativeMKMapView1.AddAnnotation(loc, 'Hello World', 'Subtitle');

 ann.Bitmap.LoadFromFile(ExtractFilePath(ParamStr(0))+'pin.png');

2.16.1 Overview

- 87/221 - Copyright © 2022 tmssoftware.com

Adding Overlays

Overlays are shapes that can be added to the map, there are different kinds of overlays, and each ovelay can be configured in

stroke and fill color and opacity. The MapView exposes an overlay collection and a couple of functions that can be used to add

an overlay to the map. Currently, a circle, polygon and polyline can be added to the MapView. Below is a sample of a circle and

a polyline that is added to the MapView. Note that the code is wrapped with a BeginUpdate and EndUpdate . This is crucial to

make sure the overlay shape has the correct position, and appearance when added.

User Location

The MapView can also display the user location, to show the user location, you can set the property ShowsUserLocation to

true . When the application shows the user location for the first time, the application asks if it is ok to allow access. After

clicking ok, the user location is being displayed inthe MapView.

When the user location is displayed, the MapView does not automatically scroll to the location. The sample implements the

OnDidUpdateUserLocation to center the user location and log the latitude and longitude in a listbox.

//Center circle with 500 km radius

TMSFMXNativeMKMapView1.BeginUpdate;

c :=

TMSFMXNativeMKMapView1.AddCircle(TMSFMXNativeMKMapView1.XYToCoordinate(TMSFMXNativeMKMapView1.Width /

2,

 TMSFMXNativeMKMapView1.Height / 2), 500000);

c.LineWidth := 3;

c.LineColor := TAlphaColorRec.Greenyellow;

c.Color := TAlphaColorRec.Darkgoldenrod;

c.Opacity := 0.5;

c.LineOpacity := 0.5;

TMSFMXNativeMKMapView1.EndUpdate;

//Bermuda triangle

TMSFMXNativeMKMapView1.BeginUpdate;

arr[0].Latitude := 25.774252;

arr[0].Longitude := -80.190262;

arr[1].Latitude := 18.466465;

arr[1].Longitude := -66.118292;

arr[2].Latitude := 32.321384;

arr[2].Longitude := -64.75737;

arr[3] := arr[0];

c := TMSFMXNativeMKMapView1.AddPolyline(arr);

c.LineColor := TAlphaColorRec.Red;

TMSFMXNativeMKMapView1.EndUpdate;

2.16.1 Overview

- 88/221 - Copyright © 2022 tmssoftware.com

Included in the distribution is a Map demo that demonstrates adding annotations, panning and zooming in the MapView as well

as showing a callout accessory view to display additional information.

2.16.1 Overview

- 89/221 - Copyright © 2022 tmssoftware.com

Directions (iOS 7 or later)

The MapView has built-in functionality to calculate directions between 2 locations. Below is a sample between San Francisco

and Los Angeles with the optional parameter to calculate alternative routes.

After executing this request, the OnGetDirections event is called with a TTMSFMXNativeMKDirectionsResponse record which

contains information about the routes that were found. To visualize this data, you can add a polyline to the map that accepts an

array of locations with the following code:

This gives the following result:

TMSFMXNativeMKMapView1.GetDirections(37.774929499999999, -122.4194155, 34.054434999999998, -118.253393,

true);

procedure TForm1.TMSFMXNativeMKMapView1GetDirections(Sender: TObject;

 AResponse: TTMSFMXNativeMKDirectionsResponse);

var

 r: Integer;

 pl: TTMSFMXNativeMKOverlay;

begin

 TMSFMXNativeMKMapView1.BeginUpdate;

 for r := 0 to Length(AResponse.Routes) - 1 do

 begin

 pl := TMSFMXNativeMKMapView1.AddPolyline(AResponse.Routes[r].Locations);

 pl.LineOpacity := 0.75;

 if r = 0 then

 pl.LineColor := TAlphaColorRec.Red

 else if r = 1 then

 pl.LineColor := TAlphaColorRec.Blue

 else if r = 2 then

 pl.LineColor := TAlphaColorRec.Purple;

 end;

 TMSFMXNativeMKMapView1.EndUpdate;

end;

2.16.1 Overview

- 90/221 - Copyright © 2022 tmssoftware.com

Tiles (iOS 7 or later)

The MapView also supports the MKTileOverlay , which implements an overlay that is optimized for covering an area of the

map using individual bitmap tiles. The bitmap tiles are provided by a server through a specific URL. Below is a sample before

and after applying Google Maps and OpenStreetMap tiles with their specific formatted URL’s.

procedure TForm1.TMSFMXNativeUIButton1Click(Sender: TObject);

begin

 TMSFMXNativeMKMapView1.BeginUpdate;

 TMSFMXNativeMKMapView1.AddTiling('http://mt1.google.com/vt/lyrs=m@110&hl=pl&x={x}&y={y}&z={z}');

 TMSFMXNativeMKMapView1.EndUpdate;

end;

procedure TForm1.TMSFMXNativeUIButton2Click(Sender: TObject);

begin

 TMSFMXNativeMKMapView2.BeginUpdate;

 TMSFMXNativeMKMapView2.AddTiling('http://tile.openstreetmap.org/{z}/{x}/{y}.png');

 TMSFMXNativeMKMapView2.EndUpdate;

end;

2.16.1 Overview

- 91/221 - Copyright © 2022 tmssoftware.com

Image overlay (iOS 7 or later)

When a specific area needs to be marked, you can add an image that is added on top of the map, bounded by a topleft and

bottomright coordinate. Below is a sample that adds an image (added through the deployment window in your project) and

renders it at the specific topleft and bottomright coordinate. It also centers and zooms the map on a specific coordinate to

visualize the image.

TMSFMXNativeMKMapView1.BeginUpdate;

tl := MakeMapLocation(34.4311, -118.6012);

2.16.1 Overview

- 92/221 - Copyright © 2022 tmssoftware.com

The result of the code is shown in the screen below, with and without the image to demonstrate the difference. Comment out the

line TMSFMXNativeMKMapView1.MapType :=

mtMapTypeHybrid; to have a better view of the added image.

tr := MakeMapLocation(34.4311, -118.5912);

bl := MakeMapLocation(34.4194, -118.6012);

br := MakeMapLocation(34.4194, -118.5912);

mr := MakeMapLocation(34.4248, -118.5971);

splat := Abs(br.Latitude - tl.Latitude);

splon := Abs(br.Longitude - tl.Longitude);

rgn.Center.Latitude := mr.Latitude;

rgn.Center.Longitude := mr.Longitude;

rgn.Span.latitudeDelta := splat;

rgn.Span.longitudeDelta := splon;

TMSFMXNativeMKMapView1.SetRegion(rgn, True);

TMSFMXNativeMKMapView1.AddImage(ExtractFilePath(ParamStr(0)) + 'overlay_park.png', tl, br);

TMSFMXNativeMKMapView1.MapType := mtMapTypeHybrid;

TMSFMXNativeMKMapView1.EndUpdate;

2.16.1 Overview

- 93/221 - Copyright © 2022 tmssoftware.com

2.16.1 Overview

- 94/221 - Copyright © 2022 tmssoftware.com

2.16.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Annotations[Index] A collection of annotations, used to annotate the map and display custom information

through annotations pins.

MayType The type of data displayed by the MapView.

Overlays[Index] A collection of overlay shapes (circles, polylines and polygons).

ScrollEnabled Enables / disables scrolling on the MapView.

ShowsUserLocation Shows / hides the current user location.

UserTrackingMode The user tracking mode that centers the map on the user location. Optional heading

direction that automatically rotates the map in the user heading direction.

Visible Shows / hides the MapView.

ZoomEnabled Enables / disables zooming on the MapView.

Property name Description

MapView Returns a reference to the native iOS MKMapView .

2.16.2 Properties

- 95/221 - Copyright © 2022 tmssoftware.com

Annotations

Go back to Properties

Property name Description

AnimatesDrop Animates a drop of a pin when added to the MapView.

Bitmap Shows an image for the view of an annotation. If a bitmap is assigned, the default pin

is replaced with this image.

CanShowCallout Enables or disables showing the default callout for an annotation, which shows a

title, subtitle and / or callout accessory views.

Draggable Enables or disables dragging of an annotation. When dragging an annotation the

OnMapViewAnnotationDragStateChanged event is called with various drag states.

Enabled Enables or disables interaction with an annotation.

LeftCalloutAccessoryView The left callout accessory view of an annotation. This view can be linked to another

instance of a TMS FMX Native UI Control.

PinColor The color of the pin of an annotation.

RightCalloutAccessoryView The right callout accessory view of an annotation. This view can be linked to another

instance of a TMS FMX Native UI Control.

SubTitle The sub title of an annotation shown in the callout.

Title The title of an annotation shown in the callout. If the title is empty, no callout is

shown.

2.16.2 Properties

- 96/221 - Copyright © 2022 tmssoftware.com

Overlays

Go back to Properties

Property name Description

CanReplaceMapContent If true , replaces the current drawn MapView tiles with your custom tiles. If false ,

draws the custom tiles on top of the default MapView tiles. Opacity can be specified for

an overlay object, or can be included in the tile images that are rendered after adding

them through the tile overlay template URL. (iOS 7 or later)

Color The color of the overlay shape.

GeometryFlipped Indicates the orientation of tile indexes along the y axis. (iOS 7 or later)

Kind The kind of shape (circle, polyline, polygon)

Level The level that is used when adding the tiles.

- tlAboveRoads : Place the overlay above roadways but below map labels, shields, or

point-of-interest icons.

- tlAboveLabels : Place the overlay above map labels, shields, or point-of-interest

icons but below annotations and 3D projections of buildings.(iOS 7 or later)

LineColor The color of the border / line of the overlay shape.

LineOpacity The opacity of the border / line of the overlay shape. Value from 0 to 1 .

LineWidth The width of the border / line of the overlay shape.

Locations A collection of locations with a latitude and longitude. Used in combination with polyline,

polygon overlay shapes.

MaximumZoomLevel The maximum zoom level supported by the tiles rendered by the overlay object. (iOS 7

or later)

MinimumZoomLevel The minimum zoom level supported by the tiles rendered by the overlay object. (iOS 7

or later)

Opacity The opacity of the overlay shape. Value from 0 to 1 .

Radius The radius in meters of a circle overlay shape.

TileSize The tile size used when rendering the custom tiles. The default size is 256 x 256. (iOS 7

or later)

URL The url template or file used for adding a tile overlay or image on the MapView. (iOS 7

or later)

2.16.2 Properties

- 97/221 - Copyright © 2022 tmssoftware.com

2.17 TMSFMXNativeCLGeoCoder

2.17.1 Usage

The TMSFMXNativeCLGeoCoder component provides services for converting between a coordinate (specified as a latitude and

longitude) and the user-friendly representation of that coordinate. A user-friendly representation of the coordinate typically

consists of the street, city, state, and country information corresponding to the given location, but it may also contain a relevant

point of interest, landmarks, or other identifying information.

2.17.2 Methods

2.17.3 Events

Method name Description

GetGeocodeLocation Overload that accepts a location record or latitude and longitude double and starts

a request to translate the location to an array of placemarks which contain

information about the requested location.

GetReverseGeocodeLocation Accepts an address string and starts a request to translate to address to an array

of placemarks which contain information about the requested address.

Event name Description

OnGetGeocodeLocation Event called when an address is passed to the GetGeocodeLocation method

and placemarks for that address are found. A placemark holds the location for

that address. Multiple placemarks can be found for one address

OnGetGeocodeError Event called when an Address is passed to the GetGeocodeLocation and an

error occurred during the request.

OnGetReverseGeocodeLocation Event called when a location is passed to the GetReverseGeocodeLocation

and placemarks for that location are found. A placemark holds the address for

that location. Multiple placemarks can be found for one location.

OnGetReverseGeocodeError Event called when a location is passed to the GetReverseGeocodeLocation

method and an error occurred during the request.

2.17 TMSFMXNativeCLGeoCoder

- 98/221 - Copyright © 2022 tmssoftware.com

2.18 TMSFMXNativeFMXWrapper

2.18.1 Usage

The TMSFMXNativeFMXWrapper is a wrapper component that is able to display a separate form as a subview of another

control. The wrapper component can, for example, be used in the TMSFMXNativeUITableView as a detailview or

subdetailview.

2.18.2 Published Properties

Property

name

Description

Visible Shows / hides the wrapper FMX form.

Form Property to assign a Form to the wrapper. The wrapper then displays the content of the form as a

subview of the wrapper view.

2.18 TMSFMXNativeFMXWrapper

- 99/221 - Copyright © 2022 tmssoftware.com

2.19 TMSFMXNativeUIImageView

2.19.1 Usage

A TMSFMXNativeUIImageView object provides a view-based container for displaying a single image.The

TMSFMXNativeUIImageView supports following image formats:

Tagged Image File Format (TIFF): .tiff , .tif

Joint Photographic Experts Group (JPEG): .jpg , .jpeg

Graphic Interchange Format (GIF): .gif

Portable Network Graphic (PNG): .png

Windows Bitmap Format (DIB): .bmp , .BMPf

Windows Icon Format: .ico

Windows Cursor: .cur

XWindow bitmap: .xbm

2.19.2 Properties

2.19.3 Methods

•

•

•

•

•

•

•

•

Property

name

Description

Bitmap Sets the image of an ImageView.

BitmapFile A direct link to an image file located in the root or documents directory.

BitmapLink A link to another TBitmap instance which can be used multiple times to save resources.

ContentMode The way the image is displayed inside the boundaries of the control, with various options such as

aspect ratio, stretching and centering.

Visible Shows / hides the ImageView.

URL Loads an Image from an URL.

Method name Description

DetectFaces Method which detect faces in an image. Each face is stored in the Faces collection.

ShowFaces Method which detects and marks faces on the image. Each face is stored in the Faces collection

2.19 TMSFMXNativeUIImageView

- 100/221 - Copyright © 2022 tmssoftware.com

2.19.4 Public Properties

2.19.5 Face Detection

The ImageView supports face detection when an appropriate image is loaded. Call DetectFaces to fill the Faces collection or

call ShowFaces to fill the collection and display a rectangle for each face in combination with the left eye, right eye and mouth

part ellipses. Additionally parameters can be passed to the DetectFaces or ShowFaces call to allow a lower accuracy, a

minimum face size to detect and / or an image orientation from which to start searching. Starting from iOS 7, parameters can

be added to detect an eye blink and / or a smile. Below is a sample that demonstrates calling the default ShowFaces call on an

image:

Property name Description

DefaultSizeFactor The factor that is applied to the size of the face in order to create a left eye, right eye and

mouth rectangle part. These values can be retrieved through the Faces collection.

Faces A collection of faces when calling DetectFaces or ShowFaces . Each face contains

information about the position of the left eye, right eye and mouth part. Starting from iOS7, the

information can also contain if the eye is closed, the face is smiling and the face angle

ImageView Returns a reference to the native iOS UIImageView.

LeftEyeColor The color to indicate the left eye after detection of the face.

MouthColor The color to indicate the mouth after detection of the face.

RightEyeColor The color to indicate the right eye after detection of the face.

2.19.4 Public Properties

- 101/221 - Copyright © 2022 tmssoftware.com

2.20 TMSFMXNativeUIPopoverController

2.20.1 Usage

The TMSFMXNativeUIPopoverController class is used to manage the presentation of content in a popover. You use popovers

to present information temporarily but in a way that does not take over the entire screen like a modal view does. The popover

content is layered on top of your existing content in a special type of window. The popover remains visible until the user taps

outside of the popover window or you explicitly dismiss it. Popover controllers are for use exclusively on iPad devices.

Attempting to create an instance of the TMSFMXNativeUIPopoverController on devices other than an iPad results in an

exception.

2.20.2 Published Properties

2.20.3 Public Properties

2.20.4 Methods

Property

name

Description

View View of the PopOver used to display content from another TMS FMX Native UI Control in a

popup.

Property name Description

PopOver Returns a reference to the native iOS UIPopoverController .

Property name Description

ShowFromButton(AButton: UIBarButtonItem) Shows the popup from a ToolBar button. (iPad only)

ShowFromControl(AControl:

TTMSFMXNativeUIBaseControl)

Shows the popup from a TMS FMX Native UI Control placed

on the form. (iPad only)

ShowFromRect(ARect: TRectF) Shows the popup from a specific rectangle in the main view.

(iPad only)

ShowFromRectInView(ARect: TRectF; AView:

UIView)

Shows the popup from a specific rectangle in a specific

view. (iPad only)

2.20 TMSFMXNativeUIPopoverController

- 102/221 - Copyright © 2022 tmssoftware.com

2.21 TMSFMXNativeUIView

2.21.1 Usage

The UIView class defines a rectangular area on the screen and can contain multiple other controls.

2.21.2 Published Properties

2.21.3 Public Properties

2.21.4 Published Events

Property name Description

Visible Shows / hides the View.

Property name Description

View Returns a reference to the native iOS UIView .

Property name Description

OnDrawRect Event to perform custom drawing inside the View.

2.21 TMSFMXNativeUIView

- 103/221 - Copyright © 2022 tmssoftware.com

2.22 TMSFMXNativeUIImagePickerController

2.22.1 Usage

The TMSFMXNativeUIImagePickerController manages customizable, system-supplied user interfaces for taking pictures and

movies on supported devices, and for choosing saved images and movies for use in your application.

2.22.2 Published Properties

2.22.3 Public Properties

Property name Description

AllowsEditing Allows editing of images after selecting an image.

CameraCaptureMode Sets the camera to photo or video capture mode.

CameraDevice Determines whether the front or rear camera should be used.

CameraFlashMode The flash mode of the camera set to off, on or auto.

EditedImage Boolean to determine if the ImagePicker needs to save the original or edited image.

Editing an image can be done when AllowsEditing is true.

SaveToAlbum When an image is taken, automatically save it to the users album.

ShowCameraControls Shows / hides the camera controls when the source type is set to

stImagePickerControllerSourceTypeCamera .

SourceType Specific whether the image picker controller should display the photo library, the camera

or the saved photos album.

VideoMaximumDuration Sets the maximum duration of a video.

VideoQuality Sets the quality of a video.

Property name Description

ImagePicker Returns a reference to the native iOS UIImagePickerController .

Popover Returns a reference to the native iOS UIPopoverController .

2.22 TMSFMXNativeUIImagePickerController

- 104/221 - Copyright © 2022 tmssoftware.com

2.22.4 Methods

2.22.5 Public Events

2.22.6 Events

Starting from iOS 10 a new NSPhotoLibraryUsageDescription key is necessary on order to correctly initialize the photo

library and prevent the application from crashing. This key needs to be added to each individual project. Start by going to the

project options and go to version info. Scroll to the bottom, right-click and select “Add Key” .

Method name Description

Hide Hides the ImagePicker.

Show Shows the ImagePicker fullscreen. (iPhone & iPad), on iPad only when

SourceType property is set to

stImagePickerControllerSourceTypeCamera . When SourceType is set

to a different value,use the other Show methods such as ShowFromButton

or ShowFromControl.

ShowFromButton(AButton:

UIBarButtonItem)

Shows the ImagePicker from a ToolBar button. (iPad only)

ShowFromControl(AControl:

TTMSFMXNativeUIBaseControl)

Shows the ImagePicker from a TMS FMX Native UI Control on the form.

(iPad only)

ShowFromRect(ARect: TRectF) Shows the ImagePicker from a specific rectangle in the main view. (iPad

only)

ShowFromRectInView(ARect:

TRectF; AView: UIView)

Shows the ImagePicker from a specific rectangle in a specific view. (iPad

only)

StartVideoCapture Starts the video capture.

StopVideoCapture Stops the video capture.

Events name Description

OnDidFinishPickingMediaWithInfo Access directly to the media dictionary after taking an image or capturing a

video with a native reference to an NSDictionary reference.

OnDidFinishPickingImage Event called when taking an image with native access to a UIImage

reference.

Events name Description

OnDidCancel Event called when cancel is pressed.

OnDidFinishPickingBitmap Event called when an image is taken or picked and the image is converted to a

TBitmap .

2.22.4 Methods

- 105/221 - Copyright © 2022 tmssoftware.com

A dialog will popup, prompting for the new version info key. Fill in “NSPhotoLibraryUsageDescription” .

After clicking “OK” , the new entry still needs a value, which can be anything descriptive for your application. In the demo, we

have added “Uses the photo library”

2.22.6 Events

- 106/221 - Copyright © 2022 tmssoftware.com

2.22.6 Events

- 107/221 - Copyright © 2022 tmssoftware.com

2.23 TMSFMXNativeUITabBarController

2.23.1 Usage

The TMSFMXNativeUITabBarController displays tabs at the bottom of the window for selecting between the different modes

and for displaying the views for that mode.

2.23.2 Published Properties

2.23.3 Public Properties

2.23.4 Events

Property name Description

Badge (TabBarItem level) A Badge displayed per tab item in the TabBar.

Bitmap (TabBarItem level) An image display per tab item in the TabBar.

Color (TabBarItem level) The background color of the tab item in the TabBar.

Enabled (TabBarItem level) Enables / disables the view of a tab item in the TabBar.

ItemIndex (TabBarItem level) The current item index of the tab inside the TabBar.

SelectedItem (TabBarController level) The current selected item in the TabBar.

SelectedItemIndex (TabBarController level) The current selected item index in the TabBar.

TabEnabled (TabBarItem level) Enables / disables a tab item in the TabBar.

Text (TabBarItem level) The text display on a tab in the TabBar.

Property name Description

TabBarController Returns a reference to the native iOS UITabBarController .

ViewController (TabBarItem

level)

Returns a reference to the native iOS UIViewController that is used for each tab

inside the TabBarController.

Property name Description

OnItemChanged Event called when a new tab item is selected and the OnItemWillChange event has returned

an AllowChange true.

OnItemWillChange Event called when a different tab will be selected, through this event an AllowChange

parameter can be used to optionally disable switching to a different tab item. The

AllowChange parameter is true by default.

2.23 TMSFMXNativeUITabBarController

- 108/221 - Copyright © 2022 tmssoftware.com

2.23.5 Adding tabs

When dropping a TMSFMXNativeUITabBarController instance on the form (TabBar), it will look similar to any other native iOS

control in the TMS iCL package. When right-clicking on the TabBar, you will notice a popup menu with some options to add,

remove items and jump to the previous or next page.

Clicking on New Item , adds a new TMSFMXNativeUITabBarItem instance to the form (TabBarItem), which can only be used

inside the TabBar. In the sample below, 2 TabBarItems have been added, and the first TabBarItem is selected.

Clicking on the Tabs below will not change the page, they are currently only an indicator since FireMonkey does not handle

designtime messages.

2.23.5 Adding tabs

- 109/221 - Copyright © 2022 tmssoftware.com

2.23.6 Designtime handling

As mentioned in “Adding tabs” , designtime selection and modifications needs to be done through right-clicking the

TabBarItem or the TabBar and choosing one of the options. You can also switch TabBarItems by selecting a different item in the

SelectedItem property list:

Alternatively you can also set the SelectedItemIndex property that will automatically set the SelectedItem or vice versa.

Each TabBarItem inherits from TMSFMXNativeUIView and adds some properties that are used inside a TabBarItem. As it

inherits from this class it adds full support to add other TMS FMX Native iOS controls.

2.23.6 Designtime handling

- 110/221 - Copyright © 2022 tmssoftware.com

2.24 TMSFMXNativeUINavigationController

2.24.1 Usage

The UINavigationController class implements a specialized view controller that manages the navigation of hierarchical

content. This navigation interface makes it possible to present your data efficiently and also makes it easier for the user to

navigate that content.

2.24.2 Published Properties

2.24.3 Methods

2.24.4 Public Properties

2.24.5 Published Events

2.24.6 Pushing and popping pages (ViewControllers)

The NavigationController can be filled with Pages and has a toolbar at the top. The pages can be pushed and popped from the

main NavigationController through code. You can add as many pages as you wish by adding a

TTMSFMXNativeUIViewController for each page. Below is a sample with 3 pages.

Property name Description

Color The background color of the NavigationController.

Title The title of the current page in the NavigationController.

Visible Shows / hides the NavigationController.

Method name Description

PushViewController(AViewController:TTMSFMXNativeUIViewController;

AAnimated: Boolean);

Pushes a ViewController on the

stack with optional animation

PopViewController Pops the last added

ViewController on the stack with

optional animation.

Property name Description

NavigationController Returns a reference to the native iOS UINavigationController .

Property name Description

OnDrawRect Event to perform custom drawing inside the NavigationController.

2.24 TMSFMXNativeUINavigationController

- 111/221 - Copyright © 2022 tmssoftware.com

Drop an instance of TTMSFMXNativeUINavigationController and 2 instances of TTMSFMXNativeUIViewController on the

form. Set the title for each controller like the sample below:

Add a TMSFMXNativeUIButton instance as a child of the first page, the TMSFMXNativeUINavigationController . In the

OnClick event, add the following code:

This will push the second page in place and update the toolbar with a back button. The back button will allow you to navigate to

the previous page. This can also be done with the second page by dropping a button on the first page and adding the code:

If you press on the first button, and on the second button, the NavigationController will push 2 ViewControllers in place and

update back button to return to the second page. The hierarchy is now updated with 3 pages. To return one step in the hierarchy,

call

TMSFMXNativeUINavigationController1.Title := ‘First Page’;

TMSFMXNativeUIViewController1.Title := ‘Second Page’;

TMSFMXNativeUIViewController2.Title := ‘Third Page’;

TMSFMXNativeUINavigationController1.PushViewController(TMSFMXNativeUIViewController1, True);

TMSFMXNativeUINavigationController1.PushViewController(TMSFMXNativeUIViewController2, True);

TMSFMXNativeUINavigationController1.PopViewController(True);

2.24.6 Pushing and popping pages (ViewControllers)

- 112/221 - Copyright © 2022 tmssoftware.com

2.25 TMSFMXNativeUIViewController

2.25.1 Usage

The UIViewController class defines a rectangular area on the screen and can contain multiple other controls.

2.25.2 Published Properties

2.25.3 Public Properties

2.25.4 Published Events

Property name Description

Visible Shows / hides the ViewController.

Property name Description

ViewController Returns a reference to the native iOS UIViewController .

Property name Description

OnDrawRect Event to perform custom drawing inside the ViewController.

2.25 TMSFMXNativeUIViewController

- 113/221 - Copyright © 2022 tmssoftware.com

2.26 TMSFMXNativeUIViewPopOverController

2.26.1 Usage

The TMSFMXNativeUIViewPopOverController class lets you present your view controller as a popover view.

2.26.2 Published Properties

2.26.3 Public Methods

Property name Description

Color The color of the view controller.

Tilte The title of the view controller.

Method name Description

GetParentView: UIView Retrieves the parent view of the sheet controller.

ShowFromControl(AControl:

TTMSFMXNativeUIBaseControl)

Shows the popver view from a control.

ShowFromButton(AButton: UIBarButtonItem) Shows the popover view from a UIBarButtonItem.

ShowFromRect(ARect: TRectF) Shows the popver view from a rectangle on the parent

view.

ShowFromRect(ARect: TRectF; AView: UIView) Shows the popver view from a rectangle on the

selected view.

Hide(AAnimated: Boolean) Hide the sheet view.

2.26 TMSFMXNativeUIViewPopOverController

- 114/221 - Copyright © 2022 tmssoftware.com

2.27 TMSFMXNativeUIViewSheetController

2.27.1 Usage

The TMSFMXNativeUIViewSheetController class lets you present your view controller as a sheet.

2.27.2 Published Properties

2.27.3 Public Methods

Property name Description

Detents The possible sizes of the sheet.

SelectedDetent The selected size the sheet should show.

ShowGrabber Make the grabber on top of the sheet visible.

Color The color of the view controller.

Tilte The title of the view controller.

Method name Description

GetParentView: UIView Retrieves the parent view of the sheet controller.

ShowFromView(AView: UIView) Shows the sheet from a view.

Show Shows the sheet from the parent view.

Hide(AAnimated: Boolean) Hide the sheet view.

2.27 TMSFMXNativeUIViewSheetController

- 115/221 - Copyright © 2022 tmssoftware.com

2.28 TMSFMXNativeUIPageViewController

2.28.1 Usage

A page view controller lets the user navigate between pages of content, where each page is managed by its own view

controller. Navigation can be controlled by the user using gestures. When navigating from page to page, the page view

controller uses the transition that you specify to animate the change.

2.28.2 Published Properties

2.28.3 Public Properties

2.28.4 Public Events

Property name Description

NavigationDirection The direction of navigation when using scrolling transition style.

NavigationOrientation The orientation of navigation when using scrolling transition style.

PageControl Displays a page control to indicate the number of pages and the current page index when

using scrolling transition style.

Pages A collection of pages connected to a View of type TTMSFMXNativeUIViewController .

PageSpacing The spacing between pages.

SpineLocation The location of the spine when using page curl transition style.

TransitionStyle The style of the transition. The values are scrolling or page curl transition style.

Visible Shows / hides the View.

Property name Description

PageViewController Returns a reference to the native iOS UIPageViewController .

Property name Description

OnCustomizeViewForPage Event called to customize the ViewController instance that is returned for a specific

page.

2.28 TMSFMXNativeUIPageViewController

- 116/221 - Copyright © 2022 tmssoftware.com

2.28.5 Published Events

Property name Description

OnGetNumberOfPages Event to return the number of pages in a PageViewController.

OnGetViewForPage Event to return the view for a specific page.

2.28.5 Published Events

- 117/221 - Copyright © 2022 tmssoftware.com

2.29 TMSFMXNativeUIPDFPageViewController

2.29.1 Usage

Inherits from TMSFMXNativeUIViewController and draws a single PDF page based on a Location and PageIndex

property.

2.29.2 Published Properties

2.29.3 Public Properties

2.29.4 Published Events

Property name Description

Location The location of the PDF file.

PageIndex The index of the page that needs to be drawn. The PageIndex property starts from 1

Visible Shows / hides the ViewController.

Property name Description

ViewController Returns a reference to the native iOS UIViewController .

Property name Description

OnDrawRect Event to perform custom drawing inside the ViewController.

2.29 TMSFMXNativeUIPDFPageViewController

- 118/221 - Copyright © 2022 tmssoftware.com

2.30 TMSFMXNativeUIPDFViewController

2.30.1 Usage

Inherits from TMSFMXNativeUIPageViewController and uses the TMSFMXNativeUIPDFPageViewController class to draw all

pages of a single PDF File.

2.30.2 Published Properties

2.30.3 Public Properties

Property name Description

Location The location of the PDF file.

Visible Shows / hides the PDFViewController.

Property name Description

PageViewController Returns a reference to the native iOS UIPageViewController .

2.30 TMSFMXNativeUIPDFViewController

- 119/221 - Copyright © 2022 tmssoftware.com

2.31 TMSFMXNativeUIActionSheet

2.31.1 Usage

Use the UIActionSheet class to present the user with a set of alternatives for how to proceed with a given task.

2.31.2 Published Properties

2.31.3 Methods

Property name Description

Buttons A string list of additional buttons.

CancelButtonTitle The title of the cancel button.

DestructiveButtonTitle The title of the destructive button.

Style The style of the ActionSheet.

Method name Description

ShowFromTabBar Shows the ActionSheet from a tabbar.

ShowFromControl Shows the ActionSheet from a control.

ShowFromButton Shows the ActionSheet from a toolbar button.

ShowFromRect Shows the ActionSheet in a specific rectangle relative to the root view.

ShowFromRectInView Shows the ActionSheet in a specific rectangle relative to the view passed as a parameter.

ShowFromToolBar Shows the ActionSheet from a toolbar.

Note: All ShowFrom* methods have the same result on an iphone application. The

ActionSheet is presented from the bottom of the screen.

2.31 TMSFMXNativeUIActionSheet

- 120/221 - Copyright © 2022 tmssoftware.com

2.31.4 Public functions

2.31.5 Public Properties

2.31.6 Published Events

Property name Description

CancelButtonIndex: Integer; Returns the index linked to the CancelButtonTitle.

DestructiveButtonIndex: Integer; Returns the index linked to the DestructiveButtonTitle.

FirstOtherButtonIndex: Integer; Returns the first index of the additional Button titles added to the Buttons string

list property.

NumberOfButtons: Integer; Returns the number of buttons displayed in an ActionSheet.

ButtonTitleAtIndex(AIndex:

Integer);

Returns the title of a specific button.

Property name Description

ActionSheet Returns a reference to the native iOS UIView .

Property name Description

OnCancel Event triggered when cancelling the ActionSheet.

OnClickedAtButtonIndex Event triggered when a specific button index is clicked.

OnDidDismissWithButtonIndex Event triggered when the ActionSheet is dismissed with a specific button index.

OnDidPresent Event called when the ActionSheet is presented.

OnWillDismissWithButtonIndex Event called when the ActionSheet will be dismissed with a specific button index.

OnWillPresent Event called when the ActionSheet will be presented.

2.31.4 Public functions

- 121/221 - Copyright © 2022 tmssoftware.com

2.32 TMSFMXNativeMFMailComposeViewController

2.32.1 Usage

The MFMailComposeViewController class provides a standard interface that manages the editing and sending an email

message. You can use this view controller to display a standard email view inside your application and populate the fields of

that view with initial values, such as the subject, email recipients, body text, and attachments. The user can edit the initial

contents you specify and choose to send the email or cancel the operation.

2.32.2 Published Properties

2.32.3 Methods

2.32.4 Public Properties

2.32.5 Published Events

Property

name

Description

Attachments A string list of file locaitons that need to be attached to the mail.

BccRecipients A string list of Bcc recipients.

Body The body of the mail. Can either be passed as plain or HTML text. Can be used in combination

with the IsHTML property.

CcRecipients A string list of Cc recipients.

IsHTML Enables or disables whether the body needs to be sent as plain or HTML text.

Subject The subject of the mail.

ToRecipients A string list of To recipients.

Methods name Description

CanSendMail Returns whether mail can be sent or not.

Property name Description

MFMailComposeViewController Returns a reference to the native iOS MFMailComposeViewController .

Events name Description

OnDidFinishWithResult Event that is called when the mail is either sent, cancelled, saved or when an error

occured.

2.32 TMSFMXNativeMFMailComposeViewController

- 122/221 - Copyright © 2022 tmssoftware.com

2.33 TMSFMXNativeMFMessageComposeViewController

2.33.1 Usage

The MFMessageComposeViewController class provides a standard system user interface for composing SMS (Short Message

Service) text messages. Use this class to configure the initial recipients and body of the message, if desired, and to configure a

delegate object to respond to the final result of the user’s action—whether they chose to cancel or send the message.

2.33.2 Published Properties

2.33.3 Public Properties

2.33.4 Published Events

Property name Description

Body The body of the message.

Recipients A string list of the recipients of the message.

Property name Description

CanSendText Returns whether a message can be sent or not.

MFMessageComposeViewController Returns a reference to the native iOS MFMessageComposeViewController .

Events name Description

OnDidFinishWithResult Event called when the message is either sent, cancelled or when an error occurred.

2.33 TMSFMXNativeMFMessageComposeViewController

- 123/221 - Copyright © 2022 tmssoftware.com

2.34 TMSFMXNativeUIRichTextView

2.34.1 Usage

This component is based on the native iOS UITextView component and adds rich text editing capabilities. For more

information about properties, methods and events that are not listed hereplease refer to the TMSFMXNativeUITextView

component.

2.34.2 Published Properties

2.34.3 Public Properties

2.34.4 Public Methods

Each getter and setter of a specific attribute has optional parameters to apply the attribute value to text at a specific position

and length inside the TextView. If the parameters are not specified, the value is applied to the selected text. Below is an

example of setting a bold text:

Property name Description

ContextMenuOptions When interacting with the TextView, a context menu pops up when selecting text. The

context menus consists of various options such as cut, copy, and paste, select and select

all editing capabilities. These menu items can be optionally disabled through this property;

DataDetectorTypes This property can be used to specify the types of data (phone numbers, http links …) that

should be automatically converted to clickable URLs in the text view. When clicked, the text

view opens the application responsible for handling the URL type and passes it the URL.

Property name Description

Selection:

TTMSFMXNativeRichTextLibRange

Gets and Sets the selection on the TextView.Selection is a record of text

character position and length of selection in number of characters.

DataText: string (supported from iOS 6) Gets and Sets a compatible Archived XML String that can be used to

persist the rich text contents of the TextView.

//apply bold to the selected text

TMSFMXNativeUIRichTextView1.SetBold(True);

//apply bold to the text at position 5 with a length of 3

TMSFMXNativeUIRichTextView1.SetBold(True, 5, 3);

2.34 TMSFMXNativeUIRichTextView

- 124/221 - Copyright © 2022 tmssoftware.com

Not all functionality that is listed below is supported on iOS versions earlier than iOS 7. Functionality that is only supported on iOS 7 and later is marked.

Important notice

2.34.4 Public Methods

- 125/221 - Copyright © 2022 tmssoftware.com

Property name Description

AddBitmap(AValue: TBitmap;

ALineHeight: Integer = -1;

ALocation: Integer = -1);

Inserts a bitmap in the TextView. By default, the lineheight is adapted to the

bitmap height but can be overridden by setting ALineHeight parameter >

-1 . Also, by default, the bitmap is inserted at selection, unless the

ALocation parameter is different than -1 and sets the insert character

position.

AddBitmapFromFile(AValue: String;

ALineHeight: integer –1; ALocation:

Integer = -1);

Inserts a bitmap from file in the TextView. By default, the lineheight is

adapted to the bitmap height but can be overridden by setting

ALineHeight parameter > -1 . Also, by default, the bitmap is inserted at

selection, unless the ALocation parameter is different than -1 and sets

the insert character position.

CanRedo Returns a Boolean whether the TextView can perform a Redo action.

CanUndo Returns a Boolean whether the TextView can perform an Undo action.

Clear Clears the text inside the TextView.

Copy Copies the selected text on the clipboard.

Cut Cuts the selected text on the clipboard.

CutAsPlainText Cuts the selected text as plain text.

GetBackgroundColor /

SetBackgroundColor

Gets or Sets the text background color.

GetBaselineOffset /

SetBaselineOffset

(iOS 7 and later only)

Gets or Sets the text baseline offset. The baseline offset is identical to

subscript and superscript.

GetBold / SetBold Gets or Sets the text bold.

GetFont / SetFont Gets or Sets the text font name and size.

GetFontSize / SetFontSize Gets or Sets the text font size.

GetForegroundColor /

SetForegroundColor

Gets or Sets the text color.

GetItalic / SetItalic Gets or Sets the text italic.

GetParagraphStyle /

SetParagraphStyle

Gets or Sets the text paragraph style.

GetPlainText / GetPlainTextRange Gets the plain text from the TextView, optionally specified by a text range.

GetRichText / GetRichTextRange

Depending on the data type (see

Import and Export chapter)

Gets the rich text from the TextView, optionally specified by a range.

2.34.4 Public Methods

- 126/221 - Copyright © 2022 tmssoftware.com

Property name Description

GetStrikethrough / SetStrikethrough Gets or Sets the text strikethrough style. The style can be a combination of

a line style, pattern and / or grouped by word. The style is the same type

used in the GetUnderline / SetUnderline functionality.

GetStrikethroughColor /

SetStrikethroughColor

(iOS 7 and later only)

Gets or Sets the text strikethrough color.

GetStrikethrough / SetStrikethrough Gets or Sets the text strikethrough style. The style can be a combination of

a line style, pattern and / or grouped by word. The style is the same type

used in the GetUnderline / SetUnderline functionality.

GetStrikethroughColor /

SetStrikethroughColor

(iOS 7 and later only)

Gets or Sets the text strikethrough color.

GetStrokeColor / SetStrokeColor Gets or Sets the text stroke color.

GetStrokeWidth / SetStrokeWidth Gets or Sets the text stroke width.

GetSubscript / SetSubscript

(iOS 7 and later only)

Gets or Sets the text subscript value offset. Can be combined with

SetFontSize for a smaller font.

GetSuperscript / SetSuperscript

(iOS 7 and later only)

Gets or Sets the text superscript value offset. Can be combined with

SetFontSize for a smaller font.

GetTextLength Returns the length of the text of a TextView.

GetUnderline / SetUnderline Gets or Sets the text underline style. The style can be a combination of a

line style, pattern and / or grouped by word.

GetUnderlineColor /

SetUnderlineColor

(iOS 7 and later only)

Gets or Sets the text underline color.

GetURL / SetURL

(iOS 7 and later only)

Gets or Sets the text URL. The URL is only clickable when the TextView

Editable property is set to false.

GetValues Gets all values applied on the text.

Import / ExportData

Depending on the data type (see

Import and Export chapter)

Functionality to import / export the rich text from / to a file.

ImportFromStream /

ExportToStream

Depending on the data type (see

Import and Export chapter)

Functionality to import / export the rich text from / to a memory stream.

2.34.4 Public Methods

- 127/221 - Copyright © 2022 tmssoftware.com

2.34.5 Import and export of (rich) text

The TextView supports importing and exporting the rich text to a stream, to a file and to a string. Some of the import / export

functionality has the capability of adding an additional parameter to export to a plain, RTF, RTFD or HTML formatted data. The

values of this parameter are listed below and specify which data type is supported on which iOS version and if import / export

are supported:

Property name Description

InitializeValues Used to initialize the record with default values before passing it to the

SetValues method.

Paste Pastes the text from the clipboard.

PasteAsPlainText Pastes the text from the clipboard as plain text.

Redo Redoes the previous action (only available for plain text).

Select Selects a specific range of text.

SelectAll Selects all the text in the TextView.

SetRichText

Depending on the data type (see

Import and Export chapter)

Sets the rich text from a TextView, optionally specified by a range.

ToggleBold Toggles bold on the selected text.

ToggleItalic Toggles italic on the selected text.

ToggleUnderline Toggles underline on the selected text.

Undo Undoes the last action (only available for plain text).

DataType Supported iOS version Import / Export

dtArchivedXMLDocumentType iOS 6 and later

dtPlainTextDocumentType iOS 7 and later only

dtRTFTextDocumentType iOS 7 and later only
 (no image support)

dtRTFDTextDocumentType iOS 7 and later only

dtHTMLTextDocumentType iOS 7 and later only Export only

2.34.5 Import and export of (rich) text

- 128/221 - Copyright © 2022 tmssoftware.com

2.35 TMSFMXNativeUIRichTextViewToolbar

2.35.1 Usage

This component can be used separately or in combination with a TMSFMXNativeUIRichTextView component. The toolbar

comes with a number of predefined actions for clipboard or changing attributes of rich text. This is represented as buttons on

the toolbar. By default, all possible actions are visible on the toolbar but the Options property allows to customize this and

hide specific actions. Set under Options the correct value to false to hide a specific action.When the

TMSFMXNativeUIRichTextViewToolBar is connected to a TMSFMXNativeUIRichTextView (via assigning a

TMSFMXNativeUIRichTextView to the TMSFMXNativeUIRichTextViewToolBar .RichTextView property), clicking on a toolbar

action button will perform the clipboard action or apply the attribute value automatically to the selected text in the

TMSFMXNativeUIRichTextView .

When no TMSFMXNativeUIRichTextView is connected to the TMSFMXNativeUIRichTextViewToolBar , the triggered event for

the action can be used to programmatically apply the appropriate attribute.

2.35 TMSFMXNativeUIRichTextViewToolbar

- 129/221 - Copyright © 2022 tmssoftware.com

2.36 TMSFMXNativeUIFontPicker

2.36.1 Usage

Based on the TMSFMXNativeUIPopoverController component and adds the supported fonts in a PickerView. The

SelectedFont property can be used to preset the font and the OnSelectFont event is triggered when the value of the picker

has changed.

2.36 TMSFMXNativeUIFontPicker

- 130/221 - Copyright © 2022 tmssoftware.com

2.37 TMSFMXNativeUIColorPicker

2.37.1 Usage

Based on the TMSFMXNativeUIPopoverController component and adds a set of colors in a PickerView. The SelectedColor

property can be used to preset the color and the OnSelectColor event is triggered when the value of the picker has changed.

2.37 TMSFMXNativeUIColorPicker

- 131/221 - Copyright © 2022 tmssoftware.com

2.38 TMSFMXNativeMPMoviePlayerViewController

The TMSFMXNativeMPMoviePlayerViewController is deprecated, please use the TMSFMXNativeAVPlayerViewController

2.38.1 Usage

The TTMSFMXNativeMPMoviePlayerViewController class implements a simple view controller for displaying movies.

2.38.2 Published Properties

2.38.3 Public Properties

Important

Property name Description

AllowsAirPlay Property to determine if the current movie can be shown on airplay enabled devices or not.

ControlStyle The style of the controls (previous, next, pause, play, stop, …) depending on the view

(embedded, fullscreen, …).

EndPlaybackTime The end time (measured in seconds) for playback of the movie.

FullScreen Toggles between normal / embedded and fullscreen mode. -1 by default which means the

movie end time is used.

InitialPlaybackTime The initial time (measure in seconds) for plackback of the movie. -1 by default which means

the movie initial time is used.

Location The location of the movie if the movie is a local file.

RepeatMode Sets the repeat mode to none or one repeat.

ScalingMode Sets the scaling mode of the movie to none, fill, aspect fill or aspect fit.

ShouldAutoplay Property that determines whether the movie should automatically start playing.

ShowInView Property that shows the movie inside the view rectangle, if false, use the public show method

which displays the movie fullscreen as a separate view.

SourceType The source type of the video, if known, the source type can be set to be a local movie file or a

stream.

URL The URL of the movie if the movie is an online movie.

Property name Description

MoviePlayerViewController Returns a reference to the native iOS MPMoviePlayerViewController .

2.38 TMSFMXNativeMPMoviePlayerViewController

- 132/221 - Copyright © 2022 tmssoftware.com

2.38.4 Public Methods

2.38.5 Published Events

Methods name Description

AirPlayVideoActive:

Boolean;

Returns whether the airplay video is active or not.

Duration: Double; The duration of the movie.

Hide Hide the movie if ShowInView is false.

NaturalSize: TSizeF; The natural size of the current movie being played.

Pause Pause the movie.

Play Play the movie.

PlayableDuration: Double; The playable duration of the movie. The amount of time in seconds of the already

loaded content of the movie.

Playbackstate The state of the movie, necessary to know if the video is able to be played.

ReadyForDisplay:

Boolean;

Returns a Boolean if the movie is ready to be displayed.

Show Show the movie fullscreen if ShowInView is false

Stop Stop the movie.

Event name Description

OnDidEnterFullScreen Event called when the movie is in fullscreen mode.

OnDidExitFullScreen Event called when the movie is in normal / embedded mode.

OnPlaybackDidFinish Event called when the movie stopped playing.

OnWillEnterFullScreen Event called when the movie will enter fullscreen mode.

OnWillExitFullScreen Event called when the movie will enter normal / embedded mode.

2.38.4 Public Methods

- 133/221 - Copyright © 2022 tmssoftware.com

2.39 TMSFMXNativeUIActivityViewController

2.39.1 Usage

The TMSFMXNativeUIActivityViewController class is a standard view controller that you can use to offer various services

from your application. The system provides several standard services, such as copying items to the pasteboard, posting

content to social media sites, sending items via email or SMS, and more.

2.39.2 Published Properties

Public Properties

2.39.3 Public Methods

Property name Description

ExcludedTypes The types that are excluded from the ActivityView.

Property name Description

ActivityView Returns a reference to the native iOS UIActivityViewController .

BitmapFiles List of strings of bitmaps that will be used in the ActivityView.

Bitmaps List of TBitmap instances that will be used in the ActivityView.

Values List of string values that will be used in the ActivityView.

Method name Description

Hide Hides the ActivityView.

Show Shows the ActivityView.

ShowFromButton(AButton: UIBarButtonItem) Shows the ActivityView from a ToolBar button.(iPad only)

ShowFromControl(AControl:

TTMSFMXNativeUIBaseControl)

Shows the ActivityView from a TMS FMX Native UI Control

placed on the form. (iPad only)

ShowFromRect(ARect: TRectF) Shows the ActivityView from a specific rectangle in the main

view. (iPad only)

ShowFromRectInView(ARect: TRectF; AView:

UIView)

Shows the ActivityView from a specific rectangle in a specific

view. (iPad only)

2.39 TMSFMXNativeUIActivityViewController

- 134/221 - Copyright © 2022 tmssoftware.com

2.40 TMSFMXNativeSLComposeViewController

2.40.1 Usage

The TMSFMXNativeSLComposeViewController class presents a view to the user to compose a post for supported social

networking services.

2.40.2 Public Properties

2.40.3 Public Methods

Property name Description

SLComposeViewController Returns a reference to the native iOS SLComposeViewController .

Methods name Description

AddBitmap(ABitmap: TBitmap): Boolean; Adds a bitmap to the service.

AddBitmapFile(ABitmapFile: String): Boolean; Adds a bitmap from a file to the service.

AddMessage(AMessage: String): Boolean; Adds a message to the service.

AddURL(AURl: String): Boolean; Adds an URL to the service.

InitializeForServiceType(AServiceType:

TTMSFMXNativeSLComposeViewControllerServiceType);

Initializes the SLComposeViewControler

for the specific service.

isServiceTypeAvailable(AServiceType:

TTMSFMXNativeSLComposeViewControllerServiceType): Boolean;

Shows a dialog to post to a specific

service with a message, optional bitmap

and url.

Post(AServiceType:

TTMSFMXNativeSLComposeViewControllerServiceType; AMessage:

string; ABitmap: TBitmap; AURL: String): Boolean;

Shows a dialog to post to a specific

service with a message, optional bitmap

and url.

Post(AServiceType:

TTMSFMXNativeSLComposeViewControllerServiceType; AMessage:

string; ABitmapFile: String; AURL: String): Boolean;

Shows a dialog to post to a specific

service with a message, optional bitmap

file and url.

SLComposeViewController Returns a reference to the native iOS

SLComposeViewController .

2.40 TMSFMXNativeSLComposeViewController

- 135/221 - Copyright © 2022 tmssoftware.com

2.40.4 Published Events

Events name Description

OnCancelled Event called when the post action is cancelled.

OnDone Event called when the post action is successful.

2.40.4 Published Events

- 136/221 - Copyright © 2022 tmssoftware.com

2.41 TMSFMXNativeUICollectionView

2.41.1 Overview

Usage

The TMSFMXNativeUICollectionView class manages an ordered collection of data items and presents them using

customizable layouts. Collection views provide the same general function as table views except that a collection view is able to

support more than just single-column layouts.

With this implementation, the visual representation is based on a template, which is available for the header, footer and the

item. The TMSFMXNativeUICollectionView component comes with a designer that allows creating and modifying these

templates. Each template allows adding various controls such as a label, image, button, stepper, etc... The template control is

stored and accessible separately as a non-visual component.

2.41 TMSFMXNativeUICollectionView

- 137/221 - Copyright © 2022 tmssoftware.com

Methods

2.41.1 Overview

- 138/221 - Copyright © 2022 tmssoftware.com

Methods name Description

AddFooterTemplateButton A set of overloads that adds a button template control to the Footer

template.

AddFooterTemplateCheckBox A set of overloads that adds a checkbox template control to the Footer

template.

AddFooterTemplateControl A set of overloads that allows adding a template control the the footer

template. Additional properties need to be set to the template control result

or parameter depending on the type of overload that is chosen.

AddFooterTemplateImageView A set of overloads that adds an imageview template control to the Footer

template.

AddFooterTemplateLabel A set of overloads that adds a label template control to the Footer template.

AddFooterTemplateProgressView A set of overloads that adds a progressview template control to the Footer

template.

AddFooterTemplateStepper A set of overloads that adds a stepper template control to the Footer

template.

AddFooterTemplateSwitch A set of overloads that adds a switch template control to the Footer

template.

AddFooterTemplateTextField A set of overloads that adds a textfield template control to the Footer

template.

AddFooterTemplateTextView A set of overloads that adds a textview template control to the Footer

template.

AddHeaderTemplateButton A set of overloads that adds a button template control to the Header

template.

AddHeaderTemplateCheckBox A set of overloads that adds a checkbox template control to the Header

template.

AddHeaderTemplateControl A set of overloads that allows adding a template control to the header

template. Additional properties need to be set to the template control result

or parameter depending on the type of overload that is chosen.

AddHeaderTemplateImageView A set of overloads that adds an imageview template control to the Header

template.

AddHeaderTemplateLabel A set of overloads that adds a label template control to the Header

template.

AddHeaderTemplateStepper A set of overloads that adds a stepper template control to the Header

template.

AddHeaderTemplateSwitch A set of overloads that adds a switch template control to the Header

template.

2.41.1 Overview

- 139/221 - Copyright © 2022 tmssoftware.com

Methods name Description

AddHeaderTemplateTextField A set of overloads that adds a textfield template control to the Header

template.

AddHeaderTemplateTextView A set of overloads that adds a textview template control to the Header

template.

AddItemTemplateButton A set of overloads that adds a button template control to the item template.

AddItemTemplateCheckBox A set of overloads that adds a checkbox template control to the item

template.

AddItemTemplateControl A set of overloads that allows adding a template control to the item

template. Additional properties need to be set to the template control result

or parameter depending on the type of overload that is chosen.

AddItemTemplateImageView A set of overloads that adds an imageview template control to the item

template.

AddItemTemplateLabel A set of overloads that adds a label template control to the item template.

AddItemTemplateProgressView A set of overloads that adds a progressview template control to the item

template.

AddItemTemplateStepper A set of overloads that adds a stepper template control to the item

template.

AddItemTemplateSwitch A set of overloads that adds a switch template control to the item template.

AddItemTemplateTextField A set of overloads that adds a textfield template control to the item

template.

AddItemTemplateTextView A set of overloads that adds a textview template control to the item

template.

DeselectItem / DeselectItems /

DeselectAllItems

Deselects a specific or multiple item(s) identified with a section and row

parameter.

GetFooterTemplateControl Returns a footer template control with a specific section, row and id

parameter.

GetHeaderTemplateControl Returns a header template control with a specific section, row and id

parameter.

GetItemTemplateControl Returns an item template control with a specific section, row and id

parameter.

ReloadData Reloads the complete CollectionView, discarding and re-initializing items,

headers and footers.

ReloadItem / ReloadItems Visually update a single or an array of TCollectionViewItem with a

section and row parameter.

2.41.1 Overview

- 140/221 - Copyright © 2022 tmssoftware.com

Methods name Description

ReloadSection / ReloadSections Visually update a single or an array of Integer with a section parameter.

Each reload of a section will also reload all items that the section holds.

ScrollToItem Scrolls to a specific item with a section and row parameter. Optionally

allows passing the scrollposition and whether scrolling needs to be

performed with or without animation.

SelectedItems Returns an array of selected items.

SelectItem / SelectItems /

SelectAllItems

Selects and scrolls to a specific or multiple item(s) identified with a section

and row parameter. Optionally allows passing the scrollposition and

whether scrolling needs to be performed with or without animation.

VisibleItems Returns an array of visible items.

2.41.1 Overview

- 141/221 - Copyright © 2022 tmssoftware.com

Public Events

Events that might require additional iOSApi units and have native iOS parameters, use only when the published events do not suffice

Important note

2.41.1 Overview

- 142/221 - Copyright © 2022 tmssoftware.com

Events name Description

OnAddItemBackground Event called when the default background view is added, allowing for more

customization.

OnAddItemSelectedBackground Event called when the default selected background view is added, allow for

more customization.

OnApplyFooterValues Event called to allow more customization on the footer view after the

template controls values are applied.

OnApplyHeaderValues Event called to allow more customization on the Header view after the

template controls values are applied.

OnApplyItemBackground Event called to allow more customization on the background view. This

event differs with the OnAddItemBackground in a way that it is called when

an item is being re-used instead of initialized. When the background

remains static and does not change when scrolling, interacting with the

items. The OnAddItemBackground event needs to be used, else the

OnApplyItemBackground .

OnApplyItemSelectedBackground Event called to allow more customization on the selected background view.

This event differs with the OnAddItemSelectedBackground in a way that it

is called when an item is being re-used instead of initialized. When the

selected background remains static and does not change when scrolling,

interacting with the items. The OnAddItemSelectedBackground event

needs to be used, else the OnApplyItemSelectedBackground .

OnApplyItemValues Event called to allow more customization on the item view after the template

controls values are applied.

OnInitializeFooterTemplate Event called to allow more customization on the footer view after the

template controls are created and added to the footer. This event is only

called when the footer is created. Use this event if the changes you have

made afterwards remain static else use the OnApplyFooterValues event.

OnInitializeHeaderTemplate Event called to allow more customization on the header view after the

template controls are created and added to the header. This event is only

called when the header is created. Use this event if the changes you have

made afterwards remain static else use the OnApplyHeaderValues event.

OnInitializeItemBackground Event called with a native iOS UIView parameter that represents the item

view and optionally allows creating an item background view that is used to

apply the Options.ItemBackgroundColor property. Setting the ACreate

parameter to false allows you to create your own native background view.

OnInitializeItemSelectedBackground Event called with a native iOS UIView parameter that represents the item

view and optionally allows creating an item selected background view that is

used to apply the Options.ItemSelectedBackgroundColor property.

Setting the ACreate parameter to false allows you to create your own

native selected background view.

2.41.1 Overview

- 143/221 - Copyright © 2022 tmssoftware.com

Published Events

The most important events are listed below, events such as an OnItemButtonClick , OnItemStepperValueChanged and

equivalents for Header and Footer are not listed. These events depend on the kind of template that is constructed and used

Events name Description

OnInitializeItemTemplate Event called to allow more customization on the item view after the template

controls are created and added to the item. This event is only called when

the item is created. Use this event if the changes you have made afterwards

remain static, else use the OnApplyItemValues event.

2.41.1 Overview

- 144/221 - Copyright © 2022 tmssoftware.com

at runtime.The CollectionView is implemented with a virtual mode and requires some of the events that are listed below

(marked in red).

2.41.1 Overview

- 145/221 - Copyright © 2022 tmssoftware.com

Events name Description

OnGetItemBackgroundColor Event called to retrieve the background color of an item.

OnGetItemSelectedBackgroundColor Event called to retrieve the background color of an item used

in selected state.

OnGetInsetForSectionAtIndex Event called to retrieve the inset for a section at a specific

index.

OnGetMinimumInteritemSpacingForSectionAtIndex Event called to retrieve the minimum spacing between items

on the same line in a section.

OnGetMinimumLineSpacingForSectionAtIndex Event called to retrieve the minimum spacing between lines

in a section.

OnGetReferenceSizeForFooterInSection Event called to retrieve the reference size of the footer in a

specific section.

OnGetReferenceSizeForHeaderInSection Event called to retrieve the reference size of the header in a

specific section.

OnGetSizeForItemAtIndexPath Event called to retrieve the size for an item at a specific

section and row.

OnDidSelectItem Event called when an item is selected.

OnDidDeselectItem Event called when an item is deselected.

OnShouldSelectItem Event called before an item will be selected. You can use this

event to prevent selection of specific items.

OnShouldDeselectItem Event called before an item will be deselected. You can use

this event to prevent deselection of specific items.

OnGetNumberOfSections Event called to retrieve the number of sections in the

ColectionView. When this method is not implemented, the

CollectionView returns 1 section by default.

OnGetNumberOfItemsInSection Event called to retrieve the number of items in the

CollectionView. When this method is not implemented, the

CollectionView returns 5 items per section by default.

OnAddHeaderControl Event called when a header template control is initialized.

Implement this event to set properties on a specific template

control that remains static during the usage of the

CollectionView.

OnAddFooterControl Event called when a footer template control is initialized.

Implement this event to set properties on a specific template

control that remains static during the usage of the

CollectionView.

2.41.1 Overview

- 146/221 - Copyright © 2022 tmssoftware.com

Templates

The CollectionView core is based on templates. Each section in the CollectionView consists of a header, footer and a number

of items (elements). During creation, these elements are initialized and reused where possible, the CollectionView reads the

controls inside the template, creates them and triggers a set of events (explained in the table of public and published events)

that can be used to assign a value to a specific control inside an element based on the section and row parameter.

For header and footers, the row parameter will always be 0 .

On CollectionView level, the template used to visualize an element is stored inside a generic list of

TTMSFMXNativeUICollectionViewTemplateControl . This class has a number of descendants that define a native iOS control

that can be used inside an element.

First Initialization

Before the CollectionView will start displaying sections, with optional header and footer, the CollectionView needs 2 events

implemented. The first one is the OnGetNumberOfSections which returns 1 by default, if the event is not implemented. The

second one is the OnGetNumberOfItemsInSection which returns 5 by default and needs to be mapped to the number of

items / sections in your data structure. Afterwards, you can start adding template controls to visualize your data per item and /

or section. In the code sample below, we add 2 sections, and respectively 5 and 3 items.

Events name Description

OnAddItemControl Event called when an item template control is initialized.

Implement this event to set properties on a specific template

control that remains static during the usage of the

CollectionView.

OnApplyHeaderValue Event called when a header template control will apply its

values. Implement this event to set properties on a specific

template control that is dynamic and changes it values

depending on section parameter.

OnApplyFooterValue Event called when a footer template control will apply its

values. Implement this event to set properties on a specific

template control that is dynamic and changes it values

depending on the section parameter.

OnApplyItemValue Event called when an item template control will apply its

values. Implement this event to set properties on a specific

template control that is dynamic and changes it values

depending on the section and row parameter.

procedure TForm1.TMSFMXNativeUICollectionView1GetNumberOfItemsInSection(

 Sender: TObject; ASection: Integer; var ANumberOfItems: Integer);

Begin

 if ASection = 0 then

 ANumberOfItems := 5

 else

 ANumberOfItems := 3;

end;

2.41.1 Overview

- 147/221 - Copyright © 2022 tmssoftware.com

Adding template controls

Programmatically adding a control to the template of an element can be done with on of the various functions that are listed in

the table above. Each element has its own template and thus its own set of functions. For an item the function starts with

“AddItemTemplate” , for a header and footer respectively “AddHeaderTemplate” and “AddFooterTemplate” . The second

part is based on the type of template control you wish to add to the element. Below is a sample of adding a label to the item

template.

The code adds a label template control descendant to the item template collection that is located under the Template property

on CollectionView level. As explained in the previous chapter, the CollectionView then loads and initializes the header, footer and

item elements and loops through the template collection of each element. In this sample, a native iOS UILabel will be added to

the item.

Initializing / modifying values

After defining the template for either the header, footer and / or the item, the CollectionView initializes the elements and creates

a native iOS control for each template control. The CollectionView manages each element separately in memory and reuses its

elements where possible.

The CollectionView does not manage a separate data structure, so the data that needs to be visualized will need to be passed

by implementing some events. The “First Initialization” chapter already mentioned events to determine how many

sections and items are going to be displayed. Next, after adding template controls to the header, footer and / or item with

optionally default values, the data can be mapped on the control by implementing 2 events. These events are also called per

element which means that we have an equivalent for the header, footer and item. In this sample code, we continue with our

label template control that we have programmatically added.

The code shows how to define a default font, font size and text color that will be applied to all items.

Running the application will show a CollectionView with 5 items per section, with red bold text and the default value “Hello

World” that is set in the FormCreate .

procedure TForm1.TMSFMXNativeUICollectionView1GetNumberOfSections(

 Sender: TObject; var ANumberOfSections: Integer);

begin

 ANumberOfSections := 2;

end;

procedure TForm1.FormCreate(Sender: TObject);

var

 lbl: TTMSFMXNativeUICollectionViewTemplateLabel;

begin

 lbl := TMSFMXNativeUICollectionView1.AddItemTemplateLabel(10, 10, 100, 25, 'Hello World !');

end;

procedure TForm1.FormCreate(Sender: TObject);

var

 lbl: TTMSFMXNativeUICollectionViewTemplateLabel;

begin

 lbl := TMSFMXNativeUICollectionView1.AddItemTemplateLabel(10, 10, 100, 25, 'Hello World !');

 lbl.Font.Name := 'Helvetica Bold';

 lbl.Font.Size := 18;

 lbl.TextColor := TAlphaColorRec.Red;

end;

2.41.1 Overview

- 148/221 - Copyright © 2022 tmssoftware.com

As explained, each label has the same color, font and text based on the template control of the item element. To modify these

default values dynamically, we will need to implement an event that manages this. The OnApplyItemValue event is called with

a section and row parameter and allows you to modify the value of the item. There are also equivalents for the header and

footer that will be demonstrated after adding a template control to the header as well.

The code below shows how to access the label with a special helper function that is available in the

FMX.TMSNativeUICollectionView unit to detect if the template control is a Label control. Each control inherits from the base

control and is passed as a parameter of this event.

procedure TForm1.TMSFMXNativeUICollectionView1ApplyItemValue(Sender: TObject;

 AControl: TTMSFMXNativeUICollectionViewTemplateControl; ASection,

 ARow: Integer);

begin

 if IsLabel(AControl) then

 AsLabel(AControl).Text := 'Item ' + inttostr(ASection) + ':' + inttostr(ARow);

end;

2.41.1 Overview

- 149/221 - Copyright © 2022 tmssoftware.com

Now, the header is visible as well, but does not show a template control, so we can use the same approach as like we did with

the item, and add a control to the header template and modify its value afterwards through the appropriate event. The same

could be done for the footer, but then you would need to set the FooterVisible property to true which is located under the

Options property. The complete code for this sample can be found below:

procedure TForm1.FormCreate(Sender: TObject);

var

 lbl: TTMSFMXNativeUICollectionViewTemplateLabel;

begin

 lbl := TMSFMXNativeUICollectionView1.AddItemTemplateLabel(10, 10, 100, 25, 'Hello World !');

 lbl.Font.Name := 'Helvetica Bold';

 lbl.Font.Size := 18;

 lbl.TextColor := TAlphaColorRec.Red;

 lbl := TMSFMXNativeUICollectionView1.AddHeaderTemplateLabel(10, 10, 100, 25, '');

 lbl.Font.Name := 'Helvetica Bold';

 lbl.Font.Size := 22;

 lbl.TextColor := TAlphaColorRec.Blue;

end;

procedure TForm1.TMSFMXNativeUICollectionView1ApplyHeaderValue(

 Sender: TObject; AControl: TTMSFMXNativeUICollectionViewTemplateControl;

 ASection, ARow: Integer);

begin

 if IsLabel(AControl) then

 AsLabel(AControl).Text := 'Section ' + inttostr(ASection);

2.41.1 Overview

- 150/221 - Copyright © 2022 tmssoftware.com

end;

procedure TForm1.TMSFMXNativeUICollectionView1ApplyItemValue(Sender: TObject;

 AControl: TTMSFMXNativeUICollectionViewTemplateControl; ASection,

 ARow: Integer);

begin

 if IsLabel(AControl) then

 AsLabel(AControl).Text := 'Item ' + inttostr(ASection) + ':' + inttostr(ARow);

end;

procedure TForm1.TMSFMXNativeUICollectionView1GetNumberOfItemsInSection(

 Sender: TObject; ASection: Integer; var ANumberOfItems: Integer);

begin

 if ASection = 0 then

 ANumberOfItems := 5

 else

 ANumberOfItems := 3;

end;

procedure TForm1.TMSFMXNativeUICollectionView1GetNumberOfSections(

 Sender: TObject; var ANumberOfSections: Integer);

begin

 ANumberOfSections := 2;

end;

2.41.1 Overview

- 151/221 - Copyright © 2022 tmssoftware.com

Identifiers

In the sample above, we have added one label to the header and one to the item template. By default each template control is

uniquely identified by its index. If you wish to add an additional template label to the item, the identifier is incremented and

accessible in the order that they are added to the template. The identifier starts from 1 for the first item. The code of the

OnApplyItemValue modified with a “description label” could then be implemented like the sample below:

If you have a special template control that needs to be accessible in an easy way, you can specify an ID to your template

control. The ID property needs to be 1 or higher and is returned by the GetViewID function to identify the correct control. If

you have multiple template controls of the same type and want to manage them with an easier accessibility, this is the way to

identify them.

Interaction

The CollectionView supports a variety of template controls such as a label, imageview, progressview but also interactable

controls such as a button. Adding a button is done in the same way as adding a label, can optionally and uniquely be identified

and is also accessible to modify its values dynamically.

The CollectionView exposes events that are triggered when clicking a button, editing text in a textview or toggling the

switch,with a section and row parameter.

Designtime editor

Programmatically adding, modifying and positioning controls can be useful to quickly have a rough idea on how your

application would possibly look like. You can then concentrate on the data structure, implement interaction, selection, database

handling, etc…. and handle the visualization afterwards. It might also be sufficient if you only have a label and an image and

they are positioned without indenting, under eachother with the image taking up the remaining space after substracting the

label height from the item height, but this will be easier said than done in some cases.

To cover the “easier said than done” part, we have created a designtime template editor that acts as a helper to create a

template for the header, footer and / or item element. Under the Template property on CollectionView level you will notice

three templates. Click on the three dots next to the template of choice to start the editor.

The editor will display a dotted rectangle that represents the boundaries of the element depending on the chosen template. On

the left you can add template controls, position them relatively inside the element rectangle. A newly created template control is

accessible as a non-visual component both at designtime and at runtime. It can also be removed as easily as it has been

added. Below is the template of the item element shown inside the editor, and the result after the application is started and the

data is loaded.

procedure TForm1.TMSFMXNativeUICollectionView1ApplyItemValue(Sender: TObject;

 AControl: TTMSFMXNativeUICollectionViewTemplateControl; ASection,

 ARow: Integer);

begin

 if IsLabel(AControl) and (AControl.GetViewID = 1) then

 AsLabel(AControl).Text := 'Title ' + inttostr(ASection) + ':' + inttostr(ARow);

 if IsLabel(AControl) and (AControl.GetViewID = 2) then

 AsLabel(AControl).Text := 'Description ' + inttostr(ASection) + ':' + inttostr(ARow);

end;

2.41.1 Overview

- 152/221 - Copyright © 2022 tmssoftware.com

Performance

The CollectionView manages a state where it checks if a property is modified, sets a flag and updates the appropriate

properties on the template control in one of the OnApply*Value events, but each control that is added to the template is

passed as a parameter to this event so you can manipulate the data and visual aspects. When having multiple controls that

2.41.1 Overview

- 153/221 - Copyright © 2022 tmssoftware.com

remain identical for each element during the lifetime of the CollectionView, such as image shadows, text, buttons it is

unnecessary to call the OnApply*Value event for these template controls. This will affect performance in a positive way and

will allow you to manage the controls that really matter for your application.

When adding a new template control, you will notice a State property that is being set to csDynamic by default. In the demo

you will notice by selecting the shadow item template control that the State property is being set to csStatic as the shadow

is identical for each item.

2.41.1 Overview

- 154/221 - Copyright © 2022 tmssoftware.com

2.41.2 Properties

Overview

PUBLISHED PROPERTIES

PUBLIC PROPERTIES

Property name Description

Options Options to configure the CollectionView.

Template A set of templates used to visualize various elements inside the header, footer or item.

Property name Description

CollectionView Returns a reference to the native iOS UICollectionView .

CollectionViewController Returns a reference to the native iOS UICollectionViewController .

CollectionViewFlowLayout Returns a reference to the native iOS UICollectionViewFlowLayout .

2.41.2 Properties

- 155/221 - Copyright © 2022 tmssoftware.com

Options

2.41.2 Properties

- 156/221 - Copyright © 2022 tmssoftware.com

OVERVIEW

2.41.2 Properties

- 157/221 - Copyright © 2022 tmssoftware.com

Property name Description

AllowsMultipleSelection Enables or disables multi selection in the CollectionView.

AllowsSelection Enables or disables selection in the CollectionView.

BackgroundColor The backgroundColor of the CollectionView. When the value is set to

TAlphaColorRec.Null , the background is transparent allowing additional views

to be visible when placed behind the CollectionView, such as an ImageView used

as a texture background

FooterReferenceHeight The height of the footer, when the footer is visible in vertical scrolling mode. The

width of the footer is stretched depending on the width of the control and the

section insets. The height can be customized per section through an additional

event.

FooterReferenceWidth The width of the footer, when the footer is visible in horizontal scrolling mode. The

height of the footer is stretched depending on the height of the control and the

section insets. The width can be customized per section through an additional

event.

FooterVisible Toggles the footer visibility

HeaderReferenceHeight The height of the header, when the header is visible in vertical scrolling mode.

The width of the header is stretched depending on the width of the control and the

section insets. The height can be customized per section through an additional

event.

HeaderReferenceWidth The width of the header, when the header is visible in horizontal scrolling mode.

The height of the header is stretched depending on the height of the control and

the section insets. The width can be customized per section through an additional

event.

HeaderVisible Toggles the header visibility.

ItemBackgroundColor The background color of the item, which is transparent by default

(TAlphaColorRec.Null).

ItemHeight The default height of the item. The height can be customized per item through an

additional event.

ItemSelectedBackgroundColor The background color of the item in selected state.

ItemWidth The default width of the item. The width can be customized per item through an

additional event.

MinimumInteritemSpacing Minimum spacing between items on the same line in a section. Can be

customized per section through an additional event.

MinimumLineSpacing Minimum spacing between lines in a section. Can be customized per section

through an additional event.

Scrolling

2.41.2 Properties

- 158/221 - Copyright © 2022 tmssoftware.com

Go back to Properties

Property name Description

Additional scrolling related properties, for more information on properties that are

not listed here, please refer to the TMSFMXNativeUIScrollView component.

2.41.2 Properties

- 159/221 - Copyright © 2022 tmssoftware.com

SCROLLING

Go back to Options

Property

name

Description

Direction The direction in which the CollectionView needs to scroll. Based on this direction, the header, footer

and items are positioned and animated differently.

2.41.2 Properties

- 160/221 - Copyright © 2022 tmssoftware.com

Template

Go back to Options

Property name Description

FooterTemplate A collection of footer template controls, accessible and editable at designtime through the object

inspector and the separate designer form.

HeaderTemplate A collection of header template controls, accessible and editable at designtime through the

object inspector and the separate designer form.

ItemTemplate A collection of item template controls, accessible and editable at designtime through the object

inspector and the separate designer form.

2.41.2 Properties

- 161/221 - Copyright © 2022 tmssoftware.com

2.42 TMSFMXNativeUIActivityIndicatorView

2.42.1 Usage

Use an activity indicator to show that a task is in progress. An activity indicator appears as a “gear” that is either spinning or

stopped.

2.42.2 Published Properties

2.42.3 Public Methods

Properties name Description

Color The color of the indicator.

HidesWhenStopped Hides the indicator when animation is stopped.

Style The style of the indicator.

Methods name Description

Indicator Returns a reference to the native iOS UIActivityIndicatorView .

StartAnimating Starts animating the indicator.

StopAnimating Stops animating the indicator.

IsAnimating Returns a Boolean whether the indicator is animating.

2.42 TMSFMXNativeUIActivityIndicatorView

- 162/221 - Copyright © 2022 tmssoftware.com

2.43 TMSFMXNativeUIWebView

2.43.1 Usage

You use the TMSFMXNativeUIWebView class to embed web content in your application.

2.43.2 Published Properties

2.43.3 Public Properties

2.43.4 Public Methods

Properties name Description

ScalesPageToFit Scales the page to fit the size of the WebView.

Properties name Description

WebView Returns a reference to the native iOS UIWebView .

Methods name Description

CanGoBack: Boolean; Returns a Boolean if the WebView can go back.

CanGoForward: Boolean; Returns a Boolean if the WebView can go forward.

ExecuteJavaScript(AScript: String): String; Executes Javascript on the current page.

GoBack; Goes back one page in the WebView.

GoForward; Goes forward one page in the WebView.

isLoading: Boolean; Returns a Boolean whether the WebView is loading or not.

LoadFile(AFile: String); Loads a specific file inside the WebView.

LoadHTMLString(AHTML: String); Loads a specific HTML string or HTML content inside the WebView.

Navigate(AURL: String); Navigates to a specific URL.

Reload; Reloads the current page.

StopLoading; Stops loading the current page.

2.43 TMSFMXNativeUIWebView

- 163/221 - Copyright © 2022 tmssoftware.com

2.43.5 Published Events

2.43.6 Executing Javascript

The WebView has a function ExecuteJavaScript that executes javascript code on the current page. The following code will

show an alert dialog with a “Hello World” message:

2.43.7 Loading HTML

Other than loading a page through an URL, the WebView can also display HTML from a string. The LoadHTMLString

functionality loads the HTML tags / content and displays the HTML inside the WebView.

Events name Description

OnDidFailLoadWithError Event called when the loading failed.

OnDidFinishLoad Event called when the loading is finished.

OnDidStartLoad Event called when the loading started.

OnShouldStartLoadWithRequest Event called when the WebView should start loading with a specific request.

TMSFMXNativeUIWebView1.ExecuteJavaScript('alert("Hello World");');

2.43.5 Published Events

- 164/221 - Copyright © 2022 tmssoftware.com

2.44 TMSFMXNativeiCloud

2.44.1 Usage

The TMSFMXNativeiCloud component is used to access the iCloud key-value store. You typically use this component to make

preference, configuration, and app-state data available to every instance of your app on every device connected to a user’s

iCloud account. More information about the iCloud key-value store can be found on the following page:

https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-

ValueDataIniCloud.html

2.44.2 Methods

2.44.3 Properties

Methods name Description

AddKey Adds a new key with a specific name and value to the iCloud key-value store.

KeyByName Retrieves the key from the key collection after the keys have been loaded from the

iCloud key-value store.

KeyValues[AKeyName] Accesses the key value after the keys are loaded from the iCloud key-value store.

RegisterForKeyUpdates Enabled by default through the AutoSynchronize property. Can be used to register

the application to the notification center to receive iCloud key-value store updates.

RemoveAllKeys Removes all the keys from the iCloud key-value store.

RemoveKey Removes a specific key from the iCloud key-value store.

RemoveKeyByName Removes a specific key from the iCloud key-value store based on the name.

SynchronizeKeys Starts an asynchronous synchronize operation to retrieve the changed, keys from the

iCloud key-value store.

UnRegisterForKeyUpdates Used to unregister the application and no longer receive iCloud key-value store

updates. The updates can be fetched manually by calling UpdateKeys .

UpdateKeys Forces a synchronize operation and retrieves all keys from the iCloud key value store.

Properties name Description

AutoSynchronize Turn the automatic synchronization of keys on or off.

Keys Public access to the key collection synchronized with the iCloud key-value store.

2.44 TMSFMXNativeiCloud

- 165/221 - Copyright © 2022 tmssoftware.com

https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-ValueDataIniCloud.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForKey-ValueDataIniCloud.html

2.44.4 Events

2.44.5 Supported types

The TMSFMXNativeiCloud component keeps the iCloud keys synchronized (optionally with the AutoSynchronize property)

with the key-value store. Each key has a Value property of type TValue . The supported types are Integer , Double ,

Boolean , String and TMemoryStream . There are multiple ways of persisting and retrieving the data. The methods and

functions that can be used to perform this task are listed in the above table.

2.44.6 Entitlements

Before iCloud can be used in your application you need to enable it and sign your application. Additional information about

enabling iCloud and incorporating it into your application can be found on the following page:

https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/

iCloudFundametals.html

After reading the guide, you will need to perform 2 steps: signing your device, and adding an entitlements file that adds the

necessary keys to gain access to the iCloud storage. As a helper sample we have included an iCloud demo project that

demonstrates how the Entitlements file is added.

When opening the Entitlements file (iCloud.entitlements) you will notice placeholders that need to be filled in with a

combination of the Team-ID and the Bundle Identifier

Events name Description

OnAccountChanged Event called when the iCloud account changed on the user device.

OnKeyAdded Event called when a key has been added from another location.

OnKeyRemoved Event called when a key has been removed from another location.

OnKeysChanged Event called when the key collection has changed.

OnKeyUpdate Event called when a key store in the collection has changed.

OnQuotaViolation Event called when the total available key-value store size has been exceeded. The key(s)

that exceed this limited size will not be added to the iCloud key-value store.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>get-task-allow</key>

 <true/>

 <key>com.apple.developer.ubiquity-container-identifiers</key>

 <array>

 <string>$(TeamIdentifierPrefix)com.mycompany.myapplication</string>

 </array>

 <key>com.apple.developer.ubiquity-kvstore-identifier</key>

 <string>$(TeamIdentifierPrefix)com.mycompany.myapplication</string>

</dict>

</plist>

2.44.4 Events

- 166/221 - Copyright © 2022 tmssoftware.com

https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/iCloudFundametals.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/iCloudFundametals.html

The first key is to allow the debugger to access the application. This is inherited from the default entitlements file that is

distributed when deploying your application. The com.apple.developer.ubiquity-container-identifiers and the

com.apple.developer.ubiquity-kvstore-identifier keys are used to access iCloud. Here you need to specify the correct

Team Identifier Prefix and the Bundle Identifier that matches your Application ID, used in the generation of the provisioning

profile. Below is a sample of the Application ID at developer.apple.com, used to generate a provisioning profile to sign your

application.

If the prefix is ABC123 and the ID is com.tmssoftware.FireMonkeySample . The correct Entitlements.plist file would have

ABC123.com.tmssoftware.FireMonkeySample as substitute for $(TeamIdentifierPrefix)com.mycompany.myapplication .

2.44.6 Entitlements

- 167/221 - Copyright © 2022 tmssoftware.com

http://developer.apple.com

2.45 TMSFMXNativeiCloudDocument

2.45.1 Usage

The TMSFMXNativeiCloudDocument component is used to access the iCloud document storage. You typically use this

component to add and update existing or create new documents and make them available to every instance of your app on

every device connected to a user’s iCloud account. More information about the iCloud document storage can be found on the

following page:

https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/

DesigningForDocumentsIniCloud.html

2.45.2 Properties

Properties name Description

ContainerIdentifier Optional property to specify a different container identifier to access your documents, such as

the difference between a trial and a paid application.

2.45 TMSFMXNativeiCloudDocument

- 168/221 - Copyright © 2022 tmssoftware.com

https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForDocumentsIniCloud.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/iCloudDesignGuide/Chapters/DesigningForDocumentsIniCloud.html

2.45.3 Methods

Methods name Description

AddDocument Adds a new document to the Documents collection and moves the file to iCloud. When the

file is added, the OnDocumentAdded event is called.

DeleteDocument Deletes an existing document from iCloud and removes the entry from the collection.

DocumentByIndex Returns the document by the index in the Documents collection.

DocumentByName Returns the document by the file system name or the display name. These are properties that

are extracted from the file as metadata when the documents are loaded.

DocumentCount Returns the number of documents in the collection.

LoadDocuments Loads the documents from iCloud. The LoadDocuments is the first step you need to manually

implement after iCloud has been initialized. The OnInitialized event is triggered when

iCloud has been loaded, or has failed to load. In this event, you need to call this method to

asynchronously load the documents.

RefreshDocuments Manually refresh the documents asynchronously. When the documents are refreshed, the

OnDocumentsRefreshed event is called. This event is also called when there are changes in

the iCloud document storage.

Each refresh automatically calls OnDocumentAdded , OnDocumentDeleted and

OnDocumentUpdated based on the difference of the current and the previous documents

state. The Documents collection is automatically updated.

RemoveDocument Removes the document from the collection and moves an existing document from iCloud to a

local directory.

SwitchContainer Switches between containers, after the ContainerIdentifier has been set. The currently

loaded documents are cleared and renewed with the documents in the other container. If the

ContainerIdentifier is an empty string, the default container is loaded, specified in your

entitlements file.

UpdateDocument Updates an existing document, this call has a number of overloads to update a document

from a file or directly from a memory stream.

2.45.3 Methods

- 169/221 - Copyright © 2022 tmssoftware.com

2.45.4 Events

2.45.5 Initialization

When dropping a component on the form, it will try to connect to the iCloud document storage container specified by the

ContainerIdentifier property. If you have no intention to create multiple containers (such as the difference between a paid

and a trial application), leave the ContainerIdentifier empty, so the default container is accessed. As this process is

asynchronous, an event is triggered when the component is done initializing.

After initialization succeeds, the documents can be loaded. If the initialization fails, you can try to reconnect by calling

TMSFMXNativeiCloudDocument1.SwitchContainer;

When the documents are loaded, the OnDocumentsLoaded event is called, and the listbox can be filled with the names of the

documents.

Events name Description

OnDocumentAdded Event called when a new document is added to iCloud.

OnDocumentDeleted Event called when an existing document is deleted from iCloud.

OnDocumentRemoved Event called when an existing document is moved from iCloud to a local directory.

OnDocumentSaved Event called when an existing document is updated and saved.

OnDocumentUpdated Event called when an existing document is updated from iCloud.

OnDocumentsLoaded Event called when the documents are loaded, after calling LoadDocuments .

OnDocumentsRefreshed Event called when the documents are refreshed.

OnInitialized Event called when iCloud is initialized.

OnDocumentDataChanged Event called when an iCloud document data has changed.

procedure TForm1.TMSFMXNativeiCloudDocument1Initialized(Sender: TObject;

 ASuccess: Boolean);

begin

 if ASuccess then

 TMSFMXNativeiCloudDocument1.LoadDocuments;

end;

procedure TForm1.TMSFMXNativeiCloudDocument1DocumentsLoaded(Sender: TObject);

var

 doc: TTMSFMXNativeiCloudDocumentItem;

 I: Integer;

begin

 ListBox1.BeginUpdate;

 ListBox1.Clear;

 for I := 0 to TMSFMXNativeiCloudDocument1.DocumentCount - 1 do

 begin

 doc := TMSFMXNativeiCloudDocument1.DocumentByIndex[I];

// ListBox1.Items.Add(doc.DisplayName);

 ListBox1.Items.Add(doc.FileSystemName);

 end;

2.45.4 Events

- 170/221 - Copyright © 2022 tmssoftware.com

In the code sample we specify the FileSystemName which includes the extension, but you can also use the DisplayName

which is a more meaningful name given to a document without the need for an extension.

2.45.6 Notes sample

To have a better understanding how the initialization process works, how to add new, delete or update existing documents,

have a look at the iCloud Documents demo, which demonstrates the management of automatically synchronized notes

throughout various devices which are all connected to the the same iCloud document storage container.

The demo also specifies an entitlements file that is used to sign the application to allow iCloud access. Below is more

information on how to create provisioning profiles and correctly sign your application.

2.45.7 Entitlements

Before iCloud can be used in your application you need to enable it and sign your application. Additional information about

enabling iCloud and incorporating it into your application can be found on the following page:

https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/

iCloudFundametals.html

After reading the guide, you will need to perform 2 steps: signing your device, and adding an entitlements file that adds the

necessary keys to gain access to the iCloud storage. As a helper sample we have included an iCloud Document demo project

that demonstrates how the Entitlements file is added.

When opening the Entitlements file (iCloud.entitlements) you will notice placeholders that need to be filled in with a

combination of the Team-ID and the Bundle Identifier

The first key is to allow the debugger to access the application. This is inherited from the default entitlements file that is

distributed when deploying your application. The com.apple.developer.ubiquity-container-identifiers and the

com.apple.developer.ubiquity-kvstore-identifier keys are used to access iCloud. Here you need to specify the correct

Team Identifier Prefix and the Bundle Identifier that matches your Application ID, used in the generation of the provisioning

profile. Below is a sample of the Application ID at developer.apple.com, used to generate a provisioning profile to sign your

application.

 ListBox1.EndUpdate;

end;

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>get-task-allow</key>

 <true/>

 <key>com.apple.developer.ubiquity-container-identifiers</key>

 <array>

 <string>$(TeamIdentifierPrefix)com.mycompany.myapplication</string>

 </array>

 <key>com.apple.developer.ubiquity-kvstore-identifier</key>

 <string>$(TeamIdentifierPrefix)com.mycompany.myapplication</string>

</dict>

</plist>

2.45.6 Notes sample

- 171/221 - Copyright © 2022 tmssoftware.com

https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/iCloudFundametals.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/iCloudDesignGuide/Chapters/iCloudFundametals.html
http://developer.apple.com

If the prefix is ABC123 and the ID is com.tmssoftware.FireMonkeySample . The correct Entitlements.plist file would have

ABC123.com.tmssoftware.FireMonkeySample as substitute for $(TeamIdentifierPrefix)com.mycompany.myapplication .

2.45.7 Entitlements

- 172/221 - Copyright © 2022 tmssoftware.com

2.46 TMSFMXNativePDFLib

2.46.1 Usage

The TMSFMXNativePDFLib component is used to create rich pdf documents with support for text flow in multiple columns, rich

text, images and various shapes with fill stroke and gradient colors.

2.46 TMSFMXNativePDFLib

- 173/221 - Copyright © 2022 tmssoftware.com

2.46.2 Methods

Methods name Description

BeginDocument(FileName: String = ''); Creates a new PDF document. If the FileName parameter is not

specified, the PDF document is created in memory and returns a

TMemoryStream instance when calling EndDocument .

CloseDocument Close an active PDF document.

DrawPage(PageIndex: Integer) Draws an existing PDF page to a new PDF document.

EndDocument Ends the document and writes all remaining data from memory to a

file or a memorystream, depending on the chosen action in

BeginDocument .

GetDocumentInfo When an existing PDF document is opened, this method retrieves

the document information such as the Author, Creator, Title, Subject

… When calling this method, the existing data is overwritten and

applied when creating a new document.

GetPageCount When an existing PDF document is opened this method returns the

number of pages.

GetPageInfo(PageIndex: Integer) When an existing PDF document is opened, the GetPageInfo

method returns the various boxes (MediaBox , CropBox , TrimBox ,

ArtBox and BleedBox) that are used in that page. These boxes

can be used to determine the page size and orientation. When

calling this method the previous data is overwritten and applied when

creating a new page.

IsDocumentOpened Boolean to determine if a PDF document was already opened with

OpenDocument .

NewPage Creates a new PDF page.

OpenDocument(FileName: String) Opens an existing PDF document from a file.

OpenDocument(FileStream:

TMemoryStream)

Opens an existing PDF document from a TMemoryStream .

SaveDocumentFromStream(FileStream:

TMemoryStream; FileName: String);

Saves an existing PDF document from a TMemoryStream to a file.

UnlockWithPassword(Password: String):

Boolean;

When an existing PDF document is opened, the contents might be

encrypted when calling GetDocumentInfo . This method unlocks the

document with a password and returns a Boolean if the document

is unlocked successfully.

2.46.2 Methods

- 174/221 - Copyright © 2022 tmssoftware.com

2.46.3 Public Properties

Properties name Description

MediaBox, TrimBox, BleedBox, ArtBox,

CropBox

Various boxes that can be used to retrieve / set information from /

to a page or document that is created / opened.

The MediaBox is used to specify the width and height of the

page. The MediaBox is the largest page box in a PDF. The other

page boxes can equal the size of the MediaBox but they cannot

be larger.

The CropBox defines the region to which the page contents are

to be clipped.

The BleedBox determines the region to which the page contents

needs to be clipped when output in a production environment.

The TrimBox defines the intended dimensions of the finished

page. Contrary to the CropBox , the TrimBox is very important

because it defines the actual page size.

The ArtBox is a bit of a special case. It can define a region

within a page that is of special interest.

ModificationDate The date the PDF document was modified.

CreationDate The date the PDF document was created.

Producer The producer of the PDF document.

2.46.3 Public Properties

- 175/221 - Copyright © 2022 tmssoftware.com

2.46.4 Properties

2.46.4 Properties

- 176/221 - Copyright © 2022 tmssoftware.com

Properties

name

Description

AllowsCopying Enable or disable copying on a new PDF password protected document.

AllowsPrinting Enable or disable printing on a new PDF password protected document.

Author The author of the PDF document.

Creator The creator of the PDF document.

FillColor The fill color used for drawing shapes and drawing text. This property is also the start color for

a gradient.

FillColorTo The end color for a gradient.

Font The font used when drawing text in a document.

Footer The footer drawn at the bottom of each new page.

FooterAlignment The alignment of the footer text.

FooterMargins The margins applied to the footer rectangle.

FooterSize The height of the footer rectangle.

Header The header drawn at the bottom of each new page.

HeaderAlignment The alignment of the header text.

HeaderMargins The margins applied to the header rectangle.

HeaderSize The height of the header rectangle.

Keywords The keywords of the PDF document.

LineBreakMode The linebreakmode when drawing text in a PDF document.

LineWidth The width of the stroke when drawing shapes or the width of the line when drawing lines.

Orientation The orientation of a page / document. This property cannot be used to retrieve the orientation

of a page, only to modify the box rectangles that are used when creating a new page. Read out

the box rectangle properties after opening a document and calling GetPageInfo , to get more

information about the page size and orientation.

OwnerPassword The owner password of the PDF document. You can set an owner password to keep other

people from printing, copying or modifying text, adding or deleting pages in your PDF files.

PageSize The page size of a page / document. This property cannot be used to retrieve the page size of

a page, only to modify the box rectangles that are used when creating a new page. Read out

the box rectangle properties after opening a document and calling GetPageInfo , to get more

information about the page size and orientation.

StrokeColor The color of the stroke when drawing a shape or line.

Subject The subject of the PDF document.

2.46.4 Properties

- 177/221 - Copyright © 2022 tmssoftware.com

2.46.5 Creating a new document

The code snippets below demonstrates how to create a new document based on a file or a memory stream. If the file exist the

PDF document contents are cleared.

To create a new document in memory use the following code:

2.46.6 Opening an existing document

The code snippet below demonstrates how to open an existing document based on a file or a memory stream.

Opening a document from a memory stream is based on the same code but with a different OpenDocument overload.

2.46.7 Drawing pages from an existing PDF document

Editing a PDF page or document is only possible if the page is drawn on a different context in a new PDF Document. The

reason for editing might be to add watermarks, to merge multiple documents, add or remove pages. The sample below copies

the PDF pages from an existing document to a new document.

Properties

name

Description

Title The title of the PDF document.

UserPassword The user password of the PDF document. This kind of password is used to help prevent

opening or viewing your PDF. You can unlock your pdf passing this password in the as a

parameter of the UnlockWithPassword method.

TMSFMXNativePDFLib1.BeginDocument(‘FileName’);

TMSFMXNativePDFLib1.NewPage;

TMSFMXNativePDFLib1.EndDocument;

var

 ms: TMemoryStream;

begin

 TMSFMXNativePDFLib1.BeginDocument;

 TMSFMXNativePDFLib1.NewPage;

 ms := TMSFMXNativePDFLib1.EndDocument;

end;

TMSFMXNativePDFLib1.OpenDocument(‘FileName’);

if TMSFMXNativePDFLib1.UnlockWithPassword(‘Password’) then //optional password unlocking

begin

 TMSFMXNativePDFLib1.GetDocumentInfo; // get document information //such as the Author, Title, …

 TMSFMXNativePDFLib1.GetPageInfo(1); // get page informaton such as //the MediaBox, CropBox, …

end;

TMSFMXNativePDFLib1.CloseDocument;

var

 I: Integer;

begin

 TMSFMXNativeMacPDFLib1.OpenDocument('Existing.pdf');

2.46.5 Creating a new document

- 178/221 - Copyright © 2022 tmssoftware.com

2.46.8 Graphics Library

The above table does not list all methods that are available in the PDF rendering library. The PDF rendering library inherits

from the Graphics Library and is able to draw images, shapes / lines with solid / gradient colors and plain text. All methods start

with Draw and can be used within a new PDF page. The Graphics Library also supports more complex shapes drawn within a

path. The code below demonstrates how this can be achieved.

2.46.9 Graphics Library Rich Text

The Graphics Library also supports rendering rich text. For more information, please read the TTMSFMXNativeUIRichTextView

chapter that explains the capabilities of rendering rich text. The method name that is being used to render rich text is

“DrawRichText” . All properties related to rich text can be accessed at the RichText function directly available from the PDF

Library component. Below is a sample that demonstrates this.

 TMSFMXNativeMacPDFLib1.BeginDocument('New.pdf');

 for I := 1 to TMSFMXNativeMacPDFLib1.GetPageCount do

 begin

 //copy page information

 TMSFMXNativeMacPDFLib1.GetPageInfo(I);

 //add page to new document

 TMSFMXNativeMacPDFLib1.NewPage;

 //draw page from existing document

 TMSFMXNativeMacPDFLib1.DrawPage(I);

 //additional manipulation / drawing

 //...

 end;

 TMSFMXNativeMacPDFLib1.EndDocument;

 TMSFMXNativeMacPDFLib1.CloseDocument;

end;

TMSFMXNativePDFLib1.BeginDocument(‘FileName’);

TMSFMXNativePDFLib1.NewPage;

TMSFMXNativePDFLib1.FillColor := TAlphaColorRec.Red;

TMSFMXNativePDFLib1.StrokeColor := TAlphaColorRec.Darkred;

TMSFMXNativePDFLib1.LineWidth := 3;

TMSFMXNativePDFLib1.DrawPathBegin;

TMSFMXNativePDFLib1.DrawPathMoveToPoint(PointF(200, 200));

TMSFMXNativePDFLib1.DrawPathAddCurveToPoint(PointF(250, 150), PointF(325, 250), PointF(200, 300));

TMSFMXNativePDFLib1.DrawPathAddCurveToPoint(PointF(75, 250), PointF(150, 150), PointF(200, 200));

TMSFMXNativePDFLib1.DrawPathClose;

TMSFMXNativePDFLib1.DrawPathEnd;

TMSFMXNativePDFLib1.EndDocument;

TMSFMXNativePDFLib1.BeginDocument(‘FileName’);

TMSFMXNativePDFLib1.NewPage;

TMSFMXNativePDFLib1.RichText.Text := ‘Hello World’;

TMSFMXNativePDFLib1.RichText.SetBold;

TMSFMXNativePDFLib1.RichText.SetForegroundColor(TAlphaColorRec.Red, 0, 5);

TMSFMXNativePDFLib1.DrawRichText(RectF(50, 50, 150, 100));

TMSFMXNativePDFLib1.EndDocument;

2.46.8 Graphics Library

- 179/221 - Copyright © 2022 tmssoftware.com

2.46.10 Text Flow

Starting from iOS 7 the PDF Rendering Library supports drawing text in multiple columns. The code below demonstrates how

easy it is to specify text, a rectangle and the amount of columns. The text flow feature is also available for rich text.

2.46.11 Text Calculation And Overflow

Each DrawText / DrawRichText call has a number of overloads to draw at a point, in a rectangle or with text flow. Additional

default parameters Calculate and DetectOverFlow can be used to calculate the size of the text and the detect the number

of characters that remain when drawing the text inside a rectangle with overflow capabilities. Specifying a True value to these

parameters forces the method to calculate instead of drawing the text.

2.46.12 Images

The PDF Rendering Library supports drawing images at a specific point, with aspect ratio in a rectangle and optional PNG and

JPG quality. Specifying JPG as drawing type has an additional Quality parameter from 0 to 1 where 0 is the lowest quality

when drawing.

lorem := 'Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has

been the industry''s standard dummy text ever since '+

 'the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen

book. It has survived not only five centuries, but also '+

 'the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the

1960s with the release of Letraset sheets containing Lorem '+

 'Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including

versions of Lorem Ipsum. It is a long established fact that'+

' a reader will be distracted by the readable content of a page when looking at its layout. The point

of using Lorem Ipsum is that it has a more-or-less normal'+

 ' distribution of letters, as opposed to using ''Content here, content here'', making it look like

readable English. '+

 'Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model

text, and a search for ''lorem ipsum'' '+

 'will uncover many web sites still in their infancy. Various versions have evolved over the years,

sometimes by accident, sometimes on purpose (injected humour and the like).';

r := TMSFMXNativePDFLib1.MediaBox;

InflateRect(r, -50, -50);

TMSFMXNativePDFLib1.BeginDocument(‘FileName’);

TMSFMXNativePDFLib1.NewPage;

TMSFMXNativePDFLib1.DrawText(lorem, RectF(r.Left, R.Top, r.Right, R.Top + 250), 3);

TMSFMXNativePDFLib1.EndDocument;

2.46.10 Text Flow

- 180/221 - Copyright © 2022 tmssoftware.com

2.47 TMSFMXNativeMultipeerConnectivity

2.47.1 Usage

The TMSFMXNativeMultipeerConnectivity component

2.47.2 Methods

Methods name Description

SearchForPeers Searches and displays available peers configured with the

same ServiceType property.

SendResource(AFile: String; APeer: MCPeerID) Sends a resource file to a specific peer.

SendResourceToAllPeers(AFile: String) Sends a resource file to all peers.

SendString(AValue: String; APeer: MCPeerID) Sends a String to a specific peer.

SendStringToAllPeers(AValue: String); overload Sends a String to all peers.

SendInteger(AValue: Integer; APeer: MCPeerID) Sends an Integer to a specific peer.

SendIntegerToAllPeers(AValue: Integer) Sends an Integer to all peers.

SendBoolean(AValue: Boolean; APeer:

MCPeerID)

Sends a Boolean to a specific peer.

SendBooleanToAllPeers(AValue: Boolean) Sends a Boolean to all peers.

SendDouble(AValue: Double; APeer: MCPeerID) Sends a Double to a specific peer.

SendDoubleToAllPeers(AValue: Double) Sends a Double to all peers.

SendObject(AValue: TMemoryStream; APeer:

MCPeerID)

Sends a memory stream object to a specific peer.

SendObjectToAllPeers(AValue:

TMemoryStream)

Sends a memory stream object to all peers.

PeerCount: Integer The number of connected peers.

2.47 TMSFMXNativeMultipeerConnectivity

- 181/221 - Copyright © 2022 tmssoftware.com

2.47.3 Public Properties

2.47.4 Properties

Properties name Description

AdvertiserAssistant Assistant that handles users’ responses and presents incoming peer connections

through the BrowserViewController .

BrowserViewController The controller that is used to display a list of available peers, limited to the

MinimumNumberOfPeers and the MaximumNumberOfPeers properties. Already

connected peers are also displayed in this window. The BrowserViewController is

shown when calling SearchForPeers .

Peers[Index: Integer]

PeerDisplayNames[Index:

Integer]

Returns the name of the connected peer at a specific index.

PeerID Your own created peer ID used to connect to other peers. The display name of the

peer can be set at designtime or runtime with the MyPeerID property when the

MyPeerIDKind property is set to pidkCustom . By default the peer is configured to

use the name of the device.

Session The current session, with a session service type. The session name can be set with

the property ServiceType .

Properties name Description

MaximumNumberOfPeers The maximum number of allowed peers in a session, which is 8 by default.

MinimumNumberOfPeers The minimum number of required peers in a session, which is 2 by default. This

number already incorporates your own peer connection.

MyPeerID The name of your own peer ID, used to display to other peers when establishing a

connection. The display name of the peer is set to the device name by default but can

be changed through this property after setting the MyPeerIDKind property to

pidkCustom .

MyPeerIDKind The kind of displayname your own peer will have when establishing a connection with

other peers. More information can be found at the MyPeerID property explanation.

SendDataMode The mode used to send data, such as strings, integers, booleans and memorystreams

reliable or unreliable. The reliable method is slower than the unreliable method but

additionally verifies if the sent data is received correctly.

ServiceType The type of service the peer is offering when establishing a connection to other peers.

This property is used to create a session. Only peers with the same ServiceType

property can connect to eachother.

2.47.3 Public Properties

- 182/221 - Copyright © 2022 tmssoftware.com

2.47.5 Events

2.47.5 Events

- 183/221 - Copyright © 2022 tmssoftware.com

Events name Description

OnBrowserViewControllerDidFinish Event called when the BrowserViewController finished searching and

connecting peers. When the MaximumNumberOfPeers has been

reached, the BrowserViewController will automatically dismiss and

call this event. This event is also called when clicking the Done button.

OnBrowserViewControllerWasCancelled Event called when the cancel button of the BrowserViewController

has been clicked.

OnDidChangeState Event called when the state of one of the connected peers has changed.

The state of the peer can be disconnected, connecting or connected.

This event can be called mulitple times with different peer and state

parameters.

OnDidReceiveBoolean Event called when a Boolean is received from a specific peer.

OnDidReceiveDouble Event called when a Double is received from a specific peer.

OnDidReceiveInteger Event called when an Integer is received from a specific peer.

OnDidReceiveObject Event called when a memorystream objec is received from a specific

peer.

OnDidReceiveResource Event called when a resource file is completely received. Through this

event, the automatically created temporary file will be saved in the

Documents folder of the application. This behavior can be changed by

changing the value of the AllowSave parameter. The filename that is

being used to save the temporary file in the documents folder can be

overridden by changing the ASaveFileName parameter.

OnDidReceiveString Event called when a String is received from a specific peer.

OnDidSendResource Event called when a resource file is sent and has succesfully reached

the peer it was sent to.

OnDidStartReceivingResource Event called when a resource will be received from a specific peer.

OnError Event called when an error occurred during sending or receiving data

and resource files.

OnReceiveResource Event called multiple times with the progress of the resource file that is

being received, sent by a specific peer. Trough this event, the

AProgress parameter can be used to indicate the receiving progress.

The ACancel Boolean parameter can be used to cancel receiving a

resource file.

OnSendResource Event called multiple times with the progress of the resource file that is

being sent to a specific peer. Through this event, the AProgress

parameter can be used to indicate the sending progress. The ACancel

Boolean parameter can be used to cancel sending a resource file.

2.47.5 Events

- 184/221 - Copyright © 2022 tmssoftware.com

2.47.6 Managing peers

Before data and/or resource files can be sent to single peer or multiple peers, the peer(s) must first be connected to a session

based on the the ServiceType property. The ServiceType property is preset with “tms-peertopeer” and can be modified at

designtime. This property identifies your session as an entry point for other peers. A session with a different ServiceType

property, will not be able to identify the peers managed by the session that is created with “tms-peertopeer”.

Each session has it’s own peer id, to identify itself to other peers.

By default, the PeerID instance is assigned a displayname. The displayname is set to the device name by default, but can be

changed to a custom value, by setting the MyPeerIDKind to pidkCustom and setting the MyPeerID property to a value of

choice.

After properly determining the ServiceType and the MyPeerID properties, the application is ready to create the session and

browse for other peers. Peers can be searched by calling the following code:

SearchForPeers will automatically popup the BrowserViewController instance, which will handle the connection of all

peers within a session. Tap on the peers that are available for a connection, and the BrowserViewController will handle and

maintain the connection.

TMSFMXNativeMultipeerConnectivity1.SearchForPeers

2.47.6 Managing peers

- 185/221 - Copyright © 2022 tmssoftware.com

When a peer is connected, the application is ready to send data or resource files to one or multiple peers. To know the

connected peers, you can use the PeerCount function and the Peers property to retrieve a connected peer by specifying an

index. To find out the names of the connected peers and display them in a list, you can use the PeerDisplayNames property

with the same approach.

The PeerCount function, Peers and PeerDisplayNames properties will automatically update as the connections are

automatically managed by the TTMSFMXNativeMultipeerConnectivity component. To know the state of one or multiple

peers, you can use the OnDidChangeState event, that will allow you to monitor the state of each peer, whether it is

disconnected, connecting or connected.

2.47.7 Sending Data

To send data, you can use one of the multiple methods specified and explained in the methods table. Below is a sample to

send a String to all connected peers.

If you wish to send a Boolean to a specific peer you can use the code below:

2.47.8 Receiving Data

Receiving data is done through one of the various events. Each Send* method has a equivalent for receiving that specific type

of data. Sending a string can be received with the OnDidReceiveString , while sending a Boolean can be received by

implementing the OnDidReceiveBoolean . Below is a sample that displays the String value with the Peer displayname as the

text of a label.

2.47.9 Sending and Receiving Files

Sending and Receiving files is done with the same approach as sending and receiving data, with the possibility to cancel and

monitor progress of a send and/or receive operation. Various events are published to manage this operation. More information

can be found at the Method & Events table.

TMSFMXNativeMultipeerConnectivity1.SendStringToAllPeers(‘Hello World’);

var

 peer: MCPeerID;

begin

 peer := TMSFMXNativeMultipeerConnectivity1.Peers[0];

 TMSFMXNativeMultipeerConnectivity1.SendBoolean(true, peer);

end;

procedure TForm1.TMSFMXNativeMultipeerConnectivity1DidReceiveString(

 Sender: TObject; AValue: string;

 APeer: TTMSFMXNativeMultipeerConnectivityPeer);

begin

 Label1.Text := 'Received ' + AValue + ' from ' + APeer.DisplayName;

end;

2.47.7 Sending Data

- 186/221 - Copyright © 2022 tmssoftware.com

2.48 TMSFMXNativeCLLocationManager

2.48.1 Usage

The TMSFMXNativeCLLocationManager component is the central point for configuring the delivery of location- and heading-

related events to your app. You use this component to establish the parameters that determine when location and heading

events should be delivered and to start and stop the actual delivery of those events.

2.48 TMSFMXNativeCLLocationManager

- 187/221 - Copyright © 2022 tmssoftware.com

2.48.2 Methods

Methods name Desription

AuthorizationStatus The status of the location manager. When your application isn’t

authorized to receive location you will receive an

asAuthorizationStatusRestricted / asAuthorationStatusDenied

value. When the value is asAuthorizationStatusNotDetermined your

application needs to ask permissions before starting to monitor location

and/or heading updates.

DismissHeadingCalibrationDisplay When monitoring heading updates the location manager might display a

heading calibration window which can be dismissed with this method.

The calibration window is only shown when True is returned in the

OnShouldDisplayHeadingCalibration event.

Heading The last active heading managed by the location manager.

HeadingAvailable Verify if the location manager can monitor heading updates.

Location The last active location managed by the location manager.

LocationManager Returns a reference to the native CLLocationManager instance.

LocationServicesEnabled Verify if the location services are enabled before starting to monitor for

location updates.

RequestAlwaysAuthorization When the AuthorizationStatus is not determined, request an

“Always” authorization status for your application with this method. The

OnDidChangeAuthorizationStatus is called when the status changes.

RequestWhenInUseAuthorization When the AuthorizationStatus is not determined, request a “When In

Use” authorization status for your application with this method. The

OnDidChangeAuthorizationStatus is called when the status changes.

SignificantLocationChangeMonitoringAvailable Verify if the location manager can monitor location updates, which will

update after a significant difference is detected between the initial value

and the value that is monitored.

StartMonitoringSignificantLocationChanges Start monitoring for location changes that are only retrieved when a

significant difference is detected.

StartUpdatingHeading Start monitoring for heading updates.

StartUpdatingLocation Start monitoring for location changes.

StopMonitoringSignificantLocationChanges Stop monitoring for significant location changes.

StopUpdatingHeading Stop monitoring for heading updates.

StopUpdatingLocation Stop monitoring for location changes.

2.48.2 Methods

- 188/221 - Copyright © 2022 tmssoftware.com

2.48.3 Properties

2.48.4 Events

2.48.5 Sample authorization and managing the location updates

The code below verifies if the location services are enabled and if your application is authorized to use location updates. The

first time the application starts, the user will be prompted with an authorization dialog which asks permissions to use location

updates. Afterwards, the method StartUpdatingLocation will be called and the annotation with the location of the device will

be added to the map.

Properties name Description

ActivityType The type of activity that is executed for monitoring location and heading

updates through the location manager.

DesiredAccuracy The accuracy of the location data in meters. If the value is -1 , the location

manager automatically determines the best accuracy for your device.

DistanceFilter The minimum distance (measured in meters) a device must move

horizontally before an update event is generated.

HeadingOrientation The device orientation to use when computing heading values.

PausesLocationUpdatesAutomatically Property to configure automatic pausing and resuming of location

changes.

Events name Description

OnDidChangeAuthorizationStatus Event called when the authorization status for your app changes.

OnDidFailWithError Event called when the location manager fails updating location/heading.

OnDidPauseLocationUpdates Event called automatically when the location manager has paused location

update changes.

OnDidResumeLocationUpdates Event called automatically when the location manager has resumed location

update changes.

OnDidUpdateHeading Event called when the heading changes.

OnDidUpdateLocations Event called when the location changes.

OnShouldDisplayHeadingCalibration Event that could be called if the device needs to calibrate the heading when

monitored by your application.

if TMSFMXNativeCLLocationManager1.LocationServicesEnabled then

begin

 if TMSFMXNativeCLLocationManager1.AuthorizationStatus = asAuthorizationStatusNotDetermined then

 TMSFMXNativeCLLocationManager1.RequestAlwaysAuthorization

 else

 StartLocationUpdates;

end;

2.48.3 Properties

- 189/221 - Copyright © 2022 tmssoftware.com

procedure TForm1.StartLocationUpdates;

begin

 TMSFMXNativeCLLocationManager1.StartUpdatingLocation;

end;

procedure TForm1.TMSFMXNativeCLLocationManager1DidChangeAuthorizationStatus(

 Sender: TObject;

 AAuthorizationStatus: TTMSFMXNativeCLLocationManagerAuthorizationStatus);

begin

 if AAuthorizationStatus = asAuthorizationStatusAuthorizedAlways then

 StartLocationUpdates;

end;

procedure TForm1.TMSFMXNativeCLLocationManager1DidUpdateLocations(

 Sender: TObject;

 ALocations: TArray<FMX.TMSNativeUICore.TTMSFMXNativeCLLocation>);

var

 ann: TTMSFMXNativeMKAnnotation;

begin

 if Length(ALocations) > 0 then

 begin

 TMSFMXNativeMKMapView1.BeginUpdate;

 if TMSFMXNativeMKMapView1.Annotations.Count = 0 then

 ann := TMSFMXNativeMKMapView1.Annotations.Add

 else

 ann := TMSFMXNativeMKMapView1.Annotations[0];

 ann.Location := MakeMapLocation(ALocations[0].Coordinate.Latitude,

ALocations[0].Coordinate.Longitude);

 TMSFMXNativeMKMapView1.SetCenterLocation(ann.Location, True);

 TMSFMXNativeMKMapView1.EndUpdate;

 end;

end;

2.48.5 Sample authorization and managing the location updates

- 190/221 - Copyright © 2022 tmssoftware.com

2.49 TMSFMXNativeCMMotionManager

2.49.1 Usage

The TMSFMXNativeCMMotionManager component is the gateway to the motion services provided by iOS. These services

provide an app with accelerometer data, rotation-rate data, magnetometer data, and other device-motion data such as attitude.

These types of data originate with a device’s accelerometers and (on some models) its magnetometer and gyroscope.

2.49 TMSFMXNativeCMMotionManager

- 191/221 - Copyright © 2022 tmssoftware.com

2.49.2 Methods

Methods name Description

AccelerometerActive Verify if the accelerometer is active. (Has an active reading between starting and

stopping).

AccelerometerAvailable Verify if the accelerometer is available.

AccelerometerData Returns the most recent accelerometer data.

DeviceMotion Returns the most recent device motion data.

DeviceMotionActive Verify if the device motion is active. (Has an active reading between starting and

stopping).

DeviceMotionAvailable Verify if the device motion is active. (Has an active reading between starting and

stopping).

GyroActive Verify if the gyroscope is active. (Has an active reading between starting and

stopping).

GyroAvailable Verify if the gyroscope is available.

GyroData Returns the most recent gyroscope data.

MagnetometerActive Verify if the magnetometer is active. (Has an active reading between starting and

stopping).

MagnetometerAvailable Verify if the magnetometer is available.

MagnetometerData Returns the most recent magnetometer data.

MotionManager A reference to the native CMMotionManager class.

StartAccelerometerUpdates Starts monitoring accelerometer data changes.

StartDeviceMotionUpdates Starts monitoring device motion changes.

StartGyroUpdates Starts monitoring gyroscope data changes.

StartMagnetometerUpdates Starts monitoring for magnetometer data changes.

StopAccelerometerUpdates Stops monitoring accelerometer data changes.

StopDeviceMotionUpdates Stops monitoring device motion changes.

StopGyroUpdates Stops monitoring gyroscope data changes.

StopMagnetometerUpdates Stops monitoring for magnetometer data changes.

2.49.2 Methods

- 192/221 - Copyright © 2022 tmssoftware.com

2.49.3 Properties

2.49.4 Events

2.49.5 Sample with Device Motion

The code below verifies if Device Motion is available and then executes the StartDeviceMotionUpdates method which then

handles the data through an anonymous method which positions the Ellipse base on the TTMSFMXNativeCMDeviceMotion data

record. An alternative would be the move the code that updates the Ellipse inside the OnGetDeviceMotion event.

Properties name Description

AccelerometerUpdateInterval The interval in seconds for providing updates from the accelerometer.

DeviceMotionUpdateInterval The interval in seconds for providing updates from the device motion.

GyroUpdateInterval The interval in seconds for providing updates from the gyroscope.

MagnetometerUpdateInterval The interval in seconds for providing updates from the magnetometer.

Events name Description

OnAccelerometerError Event called when an error occurred during accelerometer data changes.

OnDeviceMotionError Event called when an error occurred during device motion changes.

OnGetAccelerometerData Event called when data from the accelerometer changes.

OnGetDeviceMotion Event called when device motion changes.

OnGetGyroData Event called when data from the gyroscope changes.

OnGetMagnetometerData Event called when data from the magnetometer changes.

OnGyroError Event called when an error occurred during gyroscope data changes.

OnMagnetometerError Event called when an error occured during magnetometer data changes.

if TMSFMXNativeCMMotionManager1.DeviceMotionAvailable then

begin

 TMSFMXNativeCMMotionManager1.StartDeviceMotionUpdates(

 procedure (AData: TTMSFMXNativeCMDeviceMotion)

 begin

 Ellipse1.Position.X := Max(0,Min(Panel1.Width - Ellipse1.Width, Ellipse1.Position.X +

(AData.Attitude.Roll * 20)));

 Ellipse1.Position.Y := Max(0,Min(Panel1.Height - Ellipse1.Height, Ellipse1.Position.Y +

(AData.Attitude.Pitch * 20)));

 if PtInRect(RectF(Rectangle1.Position.X, Rectangle1.Position.Y, Rectangle1.Position.X +

Rectangle1.Width,

 Rectangle1.Position.Y + Rectangle1.Height), PointF(Ellipse1.Position.X, Ellipse1.Position.Y))

then

 Label2.Text := inttostr(strtoint(Label2.Text) + 1)

 else

 Label2.Text := '0';

 end

2.49.3 Properties

- 193/221 - Copyright © 2022 tmssoftware.com

);

end

else

 ShowMessage('Device Motion is not available on this device');

2.49.5 Sample with Device Motion

- 194/221 - Copyright © 2022 tmssoftware.com

2.50 TMSFMXNativeCMAltimeter

2.50.1 Usage

Use the TMSFMXNativeCMAltimeter component to detect changes of altitude-related data to your app. (iOS 8 or later)

2.50.2 Methods

2.50.3 Events

2.50.4 Sample obtaining relative altitude updates

Through an anonymous method

Through an event

Methods name Description

Altimeter Returns a reference to native the CMAltimeter class.

RelativeAltitudeAvailable Verify whether your device is capable of monitoring changes in relative altitude.

StartRelativeAltitudeUpdates Starts monitoring changes in relative altitude.

StopRelativeAltitudeUpdates Stops monitoring changes in relative altitude.

Events name Description

OnRelativeAltitudeChanged Event called when the relative altitude changes.

OnRelativeAltitudeError Event called when an error occurred during relative altitude data changes.

if TMSFMXNativeCMAltimeter1.RelativeAltitudeAvailable then

begin

 TMSFMXNativeCMAltimeter1.StartRelativeAltitudeUpdates(

 procedure (AData: TTMSFMXNativeCMAltitudeData)

 begin

 Label1.Text := 'Relative altitude is ' + floattostr(AData.RelativeAltitude);

 Label2.Text := 'Pressure is ' + floattostr(AData.Pressure);

 end

)

end;

if TMSFMXNativeCMAltimeter1.RelativeAltitudeAvailable then

 TMSFMXNativeCMAltimeter1.StartRelativeAltitudeUpdates;

procedure TForm107.TMSFMXNativeCMAltimeter1RelativeAltitudeChanged(

 Sender: TObject; AData: TTMSFMXNativeCMAltitudeData);

begin

 Label1.Text := 'Relative altitude is ' + floattostr(AData.RelativeAltitude);

2.50 TMSFMXNativeCMAltimeter

- 195/221 - Copyright © 2022 tmssoftware.com

 Label2.Text := 'Pressure is ' + floattostr(AData.Pressure);

end;

2.50.4 Sample obtaining relative altitude updates

- 196/221 - Copyright © 2022 tmssoftware.com

2.51 TMSFMXNativeLocalAuthentication

2.51.1 Usage

The Local Authentication framework provides facilities for requesting authentication from users with specified security policies.

The Local Authentication framework can be used to authenticate the user via Touch ID. (iOS 8 or later)

2.51.2 Methods

2.51.3 Events

Methods name Description

Authenticate Displays a dialog to allow authentication via Touch ID.

Events name Description

OnAuthenticateError Event called when the user cancelled the dialog, pressed an alternative option such as

“Enter password” or another error occurred.

OnAuthenticateSucces Event called when succesfully authenticated via Touch ID.

2.51 TMSFMXNativeLocalAuthentication

- 197/221 - Copyright © 2022 tmssoftware.com

2.52 TMSFMXNativeUIDocumentInteractionController

2.52.1 Usage

A document interaction controller provides in-app support for managing user interactions with files in the local system. For

example, an email program might use this class to allow the user to preview attachments and open them in other apps. Use

this component to present an appropriate user interface for previewing, opening, copying, or printing a specified file.

2.52.2 Methods

The TTMSFMXNativeUIDocumentInteractionController consists of a series of show and hide methods to display either an

option or a preview menu. Some show methods can be used in combination with other controls such as another

TTMSFMXNativeUIBaseControl descendant or a UIBarButtonItem from a ToolBar .

2.52.3 Properties

Properties

name

Description

File The file to display in the open, options, or preview menu.

FileUTI The UTI for the file to specify additional information. (automatically extracted from the file by

default)

FileName The name for the file. (automatically extracted from the file by default)

2.52 TMSFMXNativeUIDocumentInteractionController

- 198/221 - Copyright © 2022 tmssoftware.com

2.53 TMSFMXNativeAVPlayerViewController

2.53.1 Usage

A TMSNativeAVPlayerViewController displays the video content of an AVPlayer object along with system-supplied

playback controls. When you use a player view controller, the system makes its media content available for the user to play on

the screen of the playback device or on a second screen such as Apple TV. Starting in iOS 9, supported iPad models also

provide Picture in Picture playback from a player view controller.

2.53.2 Methods

Methods name Description

Hide When the ShowInView property is set to False, the PlayerViewController can be

presented fullscreen with the Show method. The Hide method will hide the presented

PlayerViewController .

InitializePlayback Initializes audio, airplay and picture in picture (iOS 9) support.

Pause Pauses the audio or video.

Play Plays the audio or video.

Player Returns a native reference to the AVPlayer , automatically created when using an

AVPlayerViewController .

PlayerViewController Returns a native reference to the AVPlayerViewController that holds a reference to the

AVPlayer instance.

ReadyForDisplay:

Boolean;

Returns a Boolean whether the audio/video is ready to be displayed.

Show When the ShowInView property is set to False, the PlayerViewController can be

presented fullscreen with this method.

Stop Stops playing the audio or video.

VideoBounds: TRectF; Returns the current video rectangle used inside the PlayerViewController .

2.53 TMSFMXNativeAVPlayerViewController

- 199/221 - Copyright © 2022 tmssoftware.com

2.53.3 Properties

2.53.4 Events

Properties name Description

AllowsPictureInPicturePlayback Sets a Boolean whether picture in picture is supported (iOS 9).

Location The location of the local video / audio file.

ShowInView Shows the player in the view controller (default). When set to False, the player

can be shown full screen when using the Show method.

ShowPlaybackControls Sets a Boolean whether the playback controls are visible or not.

URL The URL of the remove video / audio file.

VideoGravity The aspect ratio of the video inside the view controller.

Events name Description

OnDidStartPictureInPicture Event called when picture in picture is started.

OnDidStopPictureInPicture Event called when picture in picture is stopped.

OnRestoreUserInterfaceForPictureInPictureStop Event called when picture in picture is stopping and is

restored to the original user interface.

OnShouldAutomaticallyDismissAtPictureAndPictureStart Event called when picture in picture is starting and asks

if the player view controller should automatically

dismiss.

OnWillStartPictureInPicture Event called when picture in picture will start.

OnWillStopPictureInPicture Event called when picture in picture will stop.

2.53.3 Properties

- 200/221 - Copyright © 2022 tmssoftware.com

2.53.5 Picture in Picture (iOS 9)

To support picture in picture, there are 2 additional steps that need to be taken.

An additional entry is needed inside the plist. The UIBackgroundModes property in the Project Options -> Version Info needs to

contain the audio entry.

When building the application, the audio entry will be added and the application will then be able to support picture in picture

playback mode.

Additionally, the audio/video session needs to be initialized with the playback category, needed to support picture in picture. The

TTMSFMXNativeAVPlayerViewController exposes a class function that needs to be called in the constructor of the form:

When these steps are successfully executed, the button in the right corner will allow you to display the video outside of the

application as demonstrated in the following sample:

1.

2.

TTMSFMXNativeAVPlayerViewController.InitializePlayback;

2.53.5 Picture in Picture (iOS 9)

- 201/221 - Copyright © 2022 tmssoftware.com

2.53.5 Picture in Picture (iOS 9)

- 202/221 - Copyright © 2022 tmssoftware.com

When closing the application, the player will remain on top. The left button in the picture in picture view will allow you to return

to the application.

2.53.5 Picture in Picture (iOS 9)

- 203/221 - Copyright © 2022 tmssoftware.com

2.54 TMSFMXNativeCameraViewController

The TTMSFMXNativeCameraViewController is a view controller that is capable of rendering a preview of the input of a camera

device. After dropping the camera component on the form, a few initialization steps are necessary:

Starting from iOS 10 a new NSCameraUsageDescription key is necessary on order to correctly initialize the camera and

prevent the application from crashing. This key needs to be added to each individual project. Start by going to the project

options and go to version info. Scroll to the bottom, right-click and select “Add Key”.

A dialog will popup, prompting for the new version info key. Fill in “NSCameraUsageDescription”.

After clicking “OK”, the new entry still needs a value, which can be anything descriptive for your application. In the demo, we

have added “Uses the camera for taking photos and scanning barcodes”

2.54 TMSFMXNativeCameraViewController

- 204/221 - Copyright © 2022 tmssoftware.com

After configuring the project, the camera needs to be initialized. This is done via the InitializeCamera call:

The additional parameter determines if the camera preview can be started or not. Initialization is only necessary once during

during the lifetime of an application. The authorization based on the NSCameraUsageDescription (iOS 10 and newer) will

prompt for camera access. As soon as the application has been granted camera access the application has a correctly

initialized camera. After initialization, the OnInitialized event is called. If for some reason initialization fails, or the user has

not granted permission to access the camera, a dialog is shown during authentication to determine if the user still wants to

access the camera.

TMSFMXNativeCameraViewController1.InitializeCamera(True);

2.54 TMSFMXNativeCameraViewController

- 205/221 - Copyright © 2022 tmssoftware.com

In the popup version, the initialization is automatically started. To start the popup, call one of the Show* methods that can be

popped up from on a native UIBarButtonItem or a TControl . On iPad, a popup can be shown that covers a section of the

screen. The PopupWidth and PopupHeight properties can be used to set the width and height of the popup. On iPhone, all

calls will automatically show the popup full screen, as popups are not supported on iPhone devices.

When taking a photo programmatically with CapturePhoto or with the capture photo button in the popup version, the

OnCapturePhoto event will be triggered. Additional events are available to speed up the process of capturing a photo

(OnCapturePhotoData , OnCapturePhotoStream).

2.54 TMSFMXNativeCameraViewController

- 206/221 - Copyright © 2022 tmssoftware.com

2.55 TMSFMXNativeBarCodeScanner

The TMSFMXNativeBarCodeScanner component is a component that inherits from TMSFMXNativeCameraViewController and

also has a popup version. The bar code scanner will automatically scan for the supported codes that are stored inside the

SupportedCodes property. The supported codes are: UPCE, Code39, Code39Mod43, EAN13, EAN8, Code93, Code128,

PDF417, QR, Aztec, Interleaved2of5, ITF14, DataMatrix. By default all codes are supported, but the SupportedCodes property

set can be configured to only allow a set of codes. If a code is dectected, the OnCaptureCode event is triggered and the

TMSFMXNativeBarCodeScanner is automatically stopped. This is to prevent that multiple codes are scanned and processed.

After each succesful capture, the TMSFMXNativeBarCodeScanner needs to be restarted. This can be done with

TMSFMXNativeBarCodeScanner1.Start . The popup version automatically starts and stops scanning, and also automatically

closes when a bar code has been detected.

2.55 TMSFMXNativeBarCodeScanner

- 207/221 - Copyright © 2022 tmssoftware.com

2.56 TMSFMXNativeAppShortcuts

2.56.1 Overview

Usage

The TMSFMXNativeAppShortcuts class adds different shortcuts with linked actions by pressing your app's icon on the home

screen.

Public Methods

Published Events

Methods name Description

ClearShortcutItems Clears the list of shortcut items on the iOS device.

UpdateShortcutItems Pushes the list of shortcut items on the iOS device.

Events name Description

OnShortcutItemsUpdated Event called when the list of shortcut items is pusehd on the iOS device.

OnShortcutItemExecuted Event called when the a shortcut item was executed.

OnShortcutItemNotFound Event called when the app was opened via a shortcut item, but the item couldn't be

found.

2.56 TMSFMXNativeAppShortcuts

- 208/221 - Copyright © 2022 tmssoftware.com

2.56.2 Properties

Overview

PUBLISHED PROPERTIES

Property name Description

ShortcutItems Collection of TMSFMXNativeAppShortcutItem.

2.56.2 Properties

- 209/221 - Copyright © 2022 tmssoftware.com

ShortcutItem

OVERVIEW

Usage

The TMSFMXNativeAppShortcutItem is the collection item used in TMSFMXNativeAppShortcuts.

Public Properties

Published Properties

Published Events

Go back to Properties

Property name Description

Data Object that can be used for additional information.

DataString String that can be used for additional information.

Property name Description

Active Add the shortcut item to application.

Icon Optional icon (TMSFMXNativeAppShortcutIconType) default none.

Subtitle User-visible subtitle.

Title User-visible title.

Type App-specific string that you employ to identify the type of quick action to perform.

Events name Description

OnChanged Event called when the properties of the shortcut item are changed.

OnExecute Event called when the application is opened via this item.

2.56.2 Properties

- 210/221 - Copyright © 2022 tmssoftware.com

SHORTCUTICONTYPE

Usage

The TMSFMXNativeAppShortcutIconType is an enumerator for the Icon property of TMSFMXNativeAppShortcutItem.

2.56.2 Properties

- 211/221 - Copyright © 2022 tmssoftware.com

Values

2.56.2 Properties

- 212/221 - Copyright © 2022 tmssoftware.com

Possible values

asiNone

asiAdd

asiAlarm

asiAudio

asiBookmark

asiCapturePhoto

asiCaptureVideo

asiCloud

asiCompleted

asiCompose

asiConfirmation

asiContact

asiDate

asiFavorite

asiHome

asiInvitation

asiLocation

asiLove

asiMail

asiMarkLocation

asiMessage

asiPause

asiPlay

asiProhibited

asiSearch

asiShare

asiShuffle

asiTask

2.56.2 Properties

- 213/221 - Copyright © 2022 tmssoftware.com

Go back to ShortcutItem

Possible values

asiTime

asiUpdate

2.56.2 Properties

- 214/221 - Copyright © 2022 tmssoftware.com

2.57 TMSFMXNativeSpeechRecognition

2.57.1 Usage

With TMSFMXNativeSpeechRecognition you can transcribe captured audio and recordings to written text.

2.57.2 Published Properties

2.57.3 Public Properties

Property name Description

StopAfterPause Stop recording after a pause is detected.

RestartAfterPause Restart the transcription after a pause is detected.

PauseInterval The interval in ms to trigger when no changes are in the result.

ContextualStrings List of strings that are uncommon but should be tried to match in the text.

RetrievePartialResults If false will only trigger the result event when the task is finished or recording stopped.

Locale String which indicates the locale to transcribe the speech or audio file.

Property name Description

AudioEngine The internal AVAudioEngine .

InputNode The internal AVAudioEngine input node.

IsRecording Indicates if the microphone is currently recording.

IsTranscribing Indicates if the speech recognizer is currently transcribing.

MicRequest The internal SFSpeechAudioBufferRecognitionRequest connected to the

SpeechRecognizer .

PermissionStatus Indicates if the speech recognition is authorized, after the

RecognitionPermissionRequest method.

RequiresOnDeviceRecognition A Boolean value that determines whether a request must keep its audio data on

the device if supported.

SpeechRecognizer The internal SFSpeechRecognizer .

SpeechRecognizerAvailable A Boolean value that indicates whether the speech recognizer is currently

available.

SupportedLocales List of the different language settings that are supported on the device.

2.57 TMSFMXNativeSpeechRecognition

- 215/221 - Copyright © 2022 tmssoftware.com

2.57.4 Public Methods

2.57.5 Published Events

Methods name Description

FinishRequest Finishes the request to transcribe an audio file.

RecognitionPermissionRequest Asks the first time for the user’s permission to perform speech recognition

using Apple’s servers.

StopRecording Stops the recording via the microphone.

TranscribeFromFile(APath:

string)

Starts the request to transcribe an audio file.

TranscribeFromMicrophone Starts the recording of the microphone and transcribes the input.

Events name Description

OnPermissionResult Event called when the permission request is handled.

OnTranscribeFileResult Event called when a transcription is ready of the audio file.

OnTranscribeMicrophoneResult Event called when a transcription is ready of microphone recording.

OnTranscribeError Event called when an error is thrown.

OnTranscribeFileStarted Event called when a transcription of an audio file is started.

OnTranscribeMicrophoneStarted Event called when a transcription of a microphone recording is started.

OnTranscribePause Event called when a pause is detected in the microphone recording.

2.57.4 Public Methods

- 216/221 - Copyright © 2022 tmssoftware.com

2.58 TMSFMXNativeSpeechCommandRecognition

2.58.1 Overview

Usage

With TMSFMXNativeSpeechCommandRecognition you can transcribe captured audio and recordings to written text.

Public Properties

Public Methods

Published Events

Property name Description

PermissionStatus Indicates if the speech recognition is authorized, after the RecognitionPermissionRequest

method.

SupportedLocales List of the different language settings that are supported on the device.

Methods name Description

FinishRequest Finishes the request to transcribe an audio file.

RecognitionPermissionRequest Asks the first time for the user’s permission to perform speech recognition using

Apple’s servers.

StopRecording Stops the recording via the microphone.

TranscribeFromMicrophone Starts the recording of the microphone and transcribes the input.

Events name Description

OnPermissionResult Event called when the permission request is handled.

OnTranscribeMicrophoneResult Event called when a transcription is ready of microphone recording.

OnTranscribeError Event called when an error is thrown.

OnTranscribeMicrophoneStarted Event called when a transcription of a microphone recording is started.

OnTranscribePause Event called when a pause is detected in the microphone recording.

2.58 TMSFMXNativeSpeechCommandRecognition

- 217/221 - Copyright © 2022 tmssoftware.com

2.58.2 Properties

Overview

PUBLISHED PROPERTIES

Property name Description

Commands Collection of TTMSFMXNativeSpeechCommand.

StopAfterPause Stop recording after a pause is detected.

PauseInterval The interval in ms to trigger when no changes are in the result.

ContextualStrings List of strings that are uncommon but should be tried to match in the text.

Locale String which indicates the locale to transcribe the speech or audio file.

2.58.2 Properties

- 218/221 - Copyright © 2022 tmssoftware.com

ShortcutItem

OVERVIEW

Usage

The TMSFMXNativeSpeechCommand is the collection item used in TMSFMXNativeSpeechCommandRecognition.

Configure your command

The text will be converted to a regular expression internally. You can use three different special characters to get more out of

your command:

With the asterisk you can indicate that you want to retrieve the rest of the text as a parameter e.g. Get me *things .

With the colon you can retrieve one word as a parameter e.g. :Do for me .

With the brackets you can add it as a possible part of the text e.g. Hello (there) phone .

Published Properties

Published Events

Go back to Properties

•

•

•

Property name Description

Name Id of the command.

Text The text to check for.

IsRegex Set to true if the text is already a regular expression.

StartsWithText The partial result should start with the text.

EndsWithText The partial result should end with the text.

Events name Description

OnCommand Event called when the text is detected in the transcription.

2.58.2 Properties

- 219/221 - Copyright © 2022 tmssoftware.com

2.59 TMSFMXNativeWKWebView

2.59.1 Usage

The TMSFMXNativeWKWebView class defines a view that you use to incorporate web content seamlessly into your app’s UI.

2.59.2 Public Properties

2.59.3 Public Methods

Property name Description

WebView Returns a reference to the native iOS WKWebView .

Method name Description

CanGoBack: Boolean Returns a boolean if the WebView can go back a page.

CanGoForward: Boolean Returns a boolean if the WebView can go forward a page.

ExecuteJavaScript(AScript: String): String Executes JavaScript on the current page.

GetView Returns a reference to the native iOS UIView .

GoBack Goes back one page.

GoForward Goes forward one page.

isLoading Returns a boolean whether the WebView is loading or not.

LoadFile(AFile: String) Loads a specific file in the WebView.

LoadHTMLString(AHTML: String) Loads a specific HTML string or HTML content in the WebView.

Navigate(AUrl: String) Navigates to a specific URL.

Reload Reloads the current page.

StopLoading Stops loading the current page.

2.59 TMSFMXNativeWKWebView

- 220/221 - Copyright © 2022 tmssoftware.com

2.59.4 Published Events

Event name Description

OnDidFailLoadWithError Event that is called when the loading failed.

OnDidFinishLoad Event that is called when the loading is finished.

OnDidStartLoad Event that is called when the loading is started.

OnShouldStartLoadWithRequest Event that is called when the WebView should start loading with a specific

request.

2.59.4 Published Events

- 221/221 - Copyright © 2022 tmssoftware.com

	TMS iCL
	1. Getting started
	1.1 Overview
	1.1.1 Availablility
	1.1.2 Frameworks
	1.1.3 View hierarchy
	1.1.4 Deployment
	1.1.5 iOS Simulator vs Device
	1.1.6 Resources

	2. Reference
	2.1 TTMSFMXNativeUIButton
	2.1.1 Usage
	2.1.2 Published Properties
	2.1.3 Public Properties
	2.1.4 Events

	2.2 TTMSFMXNativeUISearchBar
	2.2.1 Usage
	2.2.2 Published Properties
	2.2.3 Public Properties
	2.2.4 Events

	2.3 TTMSFMXNativeUISlider
	2.3.1 Usage
	2.3.2 Published Properties
	2.3.3 Events

	2.4 TTMSFMXNativeUISwitch
	2.4.1 Usage
	2.4.2 Properties
	2.4.3 Methods
	2.4.4 Events

	2.5 TTMSFMXNativeUITableView
	2.5.1 Overview
	Usage
	Methods
	Events
	Public Events
	Adding Sections and Items
	Sorting
	Toolbar
	Editing
	Searching / Filtering
	Lookup
	DetailView and SubDetailView
	Master-Detail
	Virtual Mode
	Custom Collection
	Custom Items

	2.5.2 Properties
	Overview
	Published Properties
	Public Properties

	Sections
	Overview
	Items

	Options
	Overview
	Editing
	LookUp
	Refreshing
	Scrolling
	Searching

	2.6 TTMSFMXNativeUIToolBar
	2.6.1 Overview
	Usage
	Methods
	Events

	2.6.2 Properties
	Overview
	Published Properties
	Public Properties

	Items

	2.7 TMSFMXNativeUIPickerView
	2.7.1 Overview
	Usage
	Methods
	Events

	2.7.2 Properties
	Overview
	Published Properties
	Public Properties

	Columns
	Overview
	Items

	2.8 TMSFMXNativeUIDatePicker
	2.8.1 Usage
	2.8.2 Published Properties
	2.8.3 Public Properties
	2.8.4 Methods
	2.8.5 Events
	2.8.6 Countdown timer

	2.9 TMSFMXNativeUITextView
	2.9.1 Overview
	Usage
	Events

	2.9.2 Properties
	Overview
	Published Properties
	Public Properties

	TextInputTraits

	2.10 TMSFMXNativeUILabel
	2.10.1 Usage
	2.10.2 Published Properties
	2.10.3 Public Properties

	2.11 TMSFMXNativeUIScrollView
	2.11.1 Usage
	2.11.2 Published Properties
	2.11.3 Public Properties
	2.11.4 Events

	2.12 TMSFMXNativeUIProgressView
	2.12.1 Usage
	2.12.2 Published Properties
	2.12.3 Public Properties
	2.12.4 Events

	2.13 TMSFMXNativeUISegmentedControl
	2.13.1 Overview
	Usage
	Methods
	Events

	2.13.2 Properties
	Overview
	Published Properties
	Public Properties

	Items

	2.14 TMSFMXNativeUIStepper
	2.14.1 Usage
	2.14.2 Published Properties
	2.14.3 Public Properties
	2.14.4 Events

	2.15 TMSFMXNativeUITextField
	2.15.1 Overview
	Usage
	Events

	2.15.2 Properties
	Overview
	Published Properties
	Public Properties

	TextInputTraits

	2.16 TMSFMXNativeMKMapView
	2.16.1 Overview
	Usage
	Methods
	Events
	Adding Annotations
	Pin vs View
	Adding Overlays
	User Location
	Directions (iOS 7 or later)
	Tiles (iOS 7 or later)
	Image overlay (iOS 7 or later)

	2.16.2 Properties
	Overview
	Published Properties
	Public Properties

	Annotations
	Overlays

	2.17 TMSFMXNativeCLGeoCoder
	2.17.1 Usage
	2.17.2 Methods
	2.17.3 Events

	2.18 TMSFMXNativeFMXWrapper
	2.18.1 Usage
	2.18.2 Published Properties

	2.19 TMSFMXNativeUIImageView
	2.19.1 Usage
	2.19.2 Properties
	2.19.3 Methods
	2.19.4 Public Properties
	2.19.5 Face Detection

	2.20 TMSFMXNativeUIPopoverController
	2.20.1 Usage
	2.20.2 Published Properties
	2.20.3 Public Properties
	2.20.4 Methods

	2.21 TMSFMXNativeUIView
	2.21.1 Usage
	2.21.2 Published Properties
	2.21.3 Public Properties
	2.21.4 Published Events

	2.22 TMSFMXNativeUIImagePickerController
	2.22.1 Usage
	2.22.2 Published Properties
	2.22.3 Public Properties
	2.22.4 Methods
	2.22.5 Public Events
	2.22.6 Events

	2.23 TMSFMXNativeUITabBarController
	2.23.1 Usage
	2.23.2 Published Properties
	2.23.3 Public Properties
	2.23.4 Events
	2.23.5 Adding tabs
	2.23.6 Designtime handling

	2.24 TMSFMXNativeUINavigationController
	2.24.1 Usage
	2.24.2 Published Properties
	2.24.3 Methods
	2.24.4 Public Properties
	2.24.5 Published Events
	2.24.6 Pushing and popping pages (ViewControllers)

	2.25 TMSFMXNativeUIViewController
	2.25.1 Usage
	2.25.2 Published Properties
	2.25.3 Public Properties
	2.25.4 Published Events

	2.26 TMSFMXNativeUIViewPopOverController
	2.26.1 Usage
	2.26.2 Published Properties
	2.26.3 Public Methods

	2.27 TMSFMXNativeUIViewSheetController
	2.27.1 Usage
	2.27.2 Published Properties
	2.27.3 Public Methods

	2.28 TMSFMXNativeUIPageViewController
	2.28.1 Usage
	2.28.2 Published Properties
	2.28.3 Public Properties
	2.28.4 Public Events
	2.28.5 Published Events

	2.29 TMSFMXNativeUIPDFPageViewController
	2.29.1 Usage
	2.29.2 Published Properties
	2.29.3 Public Properties
	2.29.4 Published Events

	2.30 TMSFMXNativeUIPDFViewController
	2.30.1 Usage
	2.30.2 Published Properties
	2.30.3 Public Properties

	2.31 TMSFMXNativeUIActionSheet
	2.31.1 Usage
	2.31.2 Published Properties
	2.31.3 Methods
	2.31.4 Public functions
	2.31.5 Public Properties
	2.31.6 Published Events

	2.32 TMSFMXNativeMFMailComposeViewController
	2.32.1 Usage
	2.32.2 Published Properties
	2.32.3 Methods
	2.32.4 Public Properties
	2.32.5 Published Events

	2.33 TMSFMXNativeMFMessageComposeViewController
	2.33.1 Usage
	2.33.2 Published Properties
	2.33.3 Public Properties
	2.33.4 Published Events

	2.34 TMSFMXNativeUIRichTextView
	2.34.1 Usage
	2.34.2 Published Properties
	2.34.3 Public Properties
	2.34.4 Public Methods
	2.34.5 Import and export of (rich) text

	2.35 TMSFMXNativeUIRichTextViewToolbar
	2.35.1 Usage

	2.36 TMSFMXNativeUIFontPicker
	2.36.1 Usage

	2.37 TMSFMXNativeUIColorPicker
	2.37.1 Usage

	2.38 TMSFMXNativeMPMoviePlayerViewController
	2.38.1 Usage
	2.38.2 Published Properties
	2.38.3 Public Properties
	2.38.4 Public Methods
	2.38.5 Published Events

	2.39 TMSFMXNativeUIActivityViewController
	2.39.1 Usage
	2.39.2 Published Properties
	2.39.3 Public Methods

	2.40 TMSFMXNativeSLComposeViewController
	2.40.1 Usage
	2.40.2 Public Properties
	2.40.3 Public Methods
	2.40.4 Published Events

	2.41 TMSFMXNativeUICollectionView
	2.41.1 Overview
	Usage
	Methods
	Public Events
	Published Events
	Templates
	First Initialization
	Adding template controls
	Initializing / modifying values
	Identifiers
	Interaction
	Designtime editor
	Performance

	2.41.2 Properties
	Overview
	Published Properties
	Public Properties

	Options
	Overview
	Scrolling

	Template

	2.42 TMSFMXNativeUIActivityIndicatorView
	2.42.1 Usage
	2.42.2 Published Properties
	2.42.3 Public Methods

	2.43 TMSFMXNativeUIWebView
	2.43.1 Usage
	2.43.2 Published Properties
	2.43.3 Public Properties
	2.43.4 Public Methods
	2.43.5 Published Events
	2.43.6 Executing Javascript
	2.43.7 Loading HTML

	2.44 TMSFMXNativeiCloud
	2.44.1 Usage
	2.44.2 Methods
	2.44.3 Properties
	2.44.4 Events
	2.44.5 Supported types
	2.44.6 Entitlements

	2.45 TMSFMXNativeiCloudDocument
	2.45.1 Usage
	2.45.2 Properties
	2.45.3 Methods
	2.45.4 Events
	2.45.5 Initialization
	2.45.6 Notes sample
	2.45.7 Entitlements

	2.46 TMSFMXNativePDFLib
	2.46.1 Usage
	2.46.2 Methods
	2.46.3 Public Properties
	2.46.4 Properties
	2.46.5 Creating a new document
	2.46.6 Opening an existing document
	2.46.7 Drawing pages from an existing PDF document
	2.46.8 Graphics Library
	2.46.9 Graphics Library Rich Text
	2.46.10 Text Flow
	2.46.11 Text Calculation And Overflow
	2.46.12 Images

	2.47 TMSFMXNativeMultipeerConnectivity
	2.47.1 Usage
	2.47.2 Methods
	2.47.3 Public Properties
	2.47.4 Properties
	2.47.5 Events
	2.47.6 Managing peers
	2.47.7 Sending Data
	2.47.8 Receiving Data
	2.47.9 Sending and Receiving Files

	2.48 TMSFMXNativeCLLocationManager
	2.48.1 Usage
	2.48.2 Methods
	2.48.3 Properties
	2.48.4 Events
	2.48.5 Sample authorization and managing the location updates

	2.49 TMSFMXNativeCMMotionManager
	2.49.1 Usage
	2.49.2 Methods
	2.49.3 Properties
	2.49.4 Events
	2.49.5 Sample with Device Motion

	2.50 TMSFMXNativeCMAltimeter
	2.50.1 Usage
	2.50.2 Methods
	2.50.3 Events
	2.50.4 Sample obtaining relative altitude updates

	2.51 TMSFMXNativeLocalAuthentication
	2.51.1 Usage
	2.51.2 Methods
	2.51.3 Events

	2.52 TMSFMXNativeUIDocumentInteractionController
	2.52.1 Usage
	2.52.2 Methods
	2.52.3 Properties

	2.53 TMSFMXNativeAVPlayerViewController
	2.53.1 Usage
	2.53.2 Methods
	2.53.3 Properties
	2.53.4 Events
	2.53.5 Picture in Picture (iOS 9)

	2.54 TMSFMXNativeCameraViewController
	2.55 TMSFMXNativeBarCodeScanner
	2.56 TMSFMXNativeAppShortcuts
	2.56.1 Overview
	Usage
	Public Methods
	Published Events

	2.56.2 Properties
	Overview
	Published Properties

	ShortcutItem
	Overview
	Usage
	Public Properties
	Published Properties
	Published Events

	ShortcutIconType
	Usage
	Values

	2.57 TMSFMXNativeSpeechRecognition
	2.57.1 Usage
	2.57.2 Published Properties
	2.57.3 Public Properties
	2.57.4 Public Methods
	2.57.5 Published Events

	2.58 TMSFMXNativeSpeechCommandRecognition
	2.58.1 Overview
	Usage
	Public Properties
	Public Methods
	Published Events

	2.58.2 Properties
	Overview
	Published Properties

	ShortcutItem
	Overview
	Usage
	Configure your command
	Published Properties
	Published Events

	2.59 TMSFMXNativeWKWebView
	2.59.1 Usage
	2.59.2 Public Properties
	2.59.3 Public Methods
	2.59.4 Published Events

