
 
 

 

 

 

 

1 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

 

 

 

 

 

 

 

 

TMS MQTT 

DEVELOPERS GUIDE 

 

 

 

 

 

 

 

 

 

  

 

 
Mar 2023 

Copyright © 2017 - 2023 by tmssoftware.com bvba 

Web: https://www.tmssoftware.com 

Email: info@tmssoftware.com 

https://www.tmssoftware.com/
mailto:info@tmssoftware.com


 
 

 

 

 

 

2 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

 

 
Index 

Introduction ................................................................................................. 4 

Usage ......................................................................................................... 4 

Installation ................................................................................................ 4 

Prerequisites ........................................................................................... 4 

Installation in Delphi ................................................................................. 4 

Installation in Lazarus/FPC .......................................................................... 4 

Getting started ........................................................................................... 5 

At Design Time ........................................................................................ 5 

At Runtime ............................................................................................. 5 

Free Brokers ........................................................................................... 5 

Connecting ................................................................................................ 6 

Connection settings ................................................................................... 6 

Username and Password ............................................................................. 7 

Code example ....................................................................................... 8 

Keeping a connection alive .......................................................................... 9 

Code example ....................................................................................... 9 

Automatic reconnecting .............................................................................. 9 

Code example ...................................................................................... 10 

Last Will Testament (LWT) ......................................................................... 10 

The following parameters can be provided: ................................................... 10 

Code example ...................................................................................... 11 

Publishing ................................................................................................ 11 

Topic Name ........................................................................................... 11 

Packet Payload ....................................................................................... 11 

Quality of Service (QoS) ............................................................................. 11 

Retain-flag ............................................................................................ 12 

Code example ........................................................................................ 12 

Subscribing ............................................................................................... 13 

Topic Filter ........................................................................................... 13 

Single-level wildcard + ........................................................................... 13 

Multi-level wildcard #............................................................................. 13 

Subscription Quality of Service .................................................................... 13 

Code example ........................................................................................ 14 

Ensure a subscription was successful .............................................................. 14 



 
 

 

 

 

 

3 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Unsubscribing ............................................................................................ 15 

Receiving published messages ........................................................................ 16 

Pinging ................................................................................................... 16 

Monitoring in- and outgoing packets ................................................................. 17 

Logging ................................................................................................... 17 

Demo ........................................................................................................ 18 



 
 

 

 

 

 

4 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

 

Introduction 

The TMS MQTT component as a full-featured Delphi MQTT Client that implements the 3.1.1 & 5.0 

version of the MQTT protocol.  

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html 

http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html  

 

The component is developed to work on all major operating systems (Windows, Mac, Linux, iOS and 

Android) and it supports the VCL, FMX and FPC frameworks. 

 

It has the following Key features:  

- Quality of Service 0, 1 and 2  

- Automatic pinging  

- Automatic reconnect  

- Last Will and Testament (LWT)  

- SSL connections  

- Authentication 

- v3.1.1 protocol and v5.0 protocol support 

Usage 

Installation 

Prerequisites 

The TMS MQTT Library has a dependency on Indy so make sure you have a working version of Indy 

installed. 

Installation in Delphi 

To install TMS MQTT in RAD studio, download and install the appropriate installer for your version of 

the IDE. 

Installation in Lazarus/FPC 

To install TMS MQTT in lazarus, download and open the TMS.MQTT.lpi package and install it manually 

into the IDE. 

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://www.indyproject.org/


 
 

 

 

 

 

5 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Getting started 

At Design Time 

The TTMSMQTTClient comes as a non-visual component that, after successful installation, can be 

found in the tool palette under TMS MQTT. Just add an instance of the client to your form to get 

started.  

All necessary settings to connect the client will be available through the Object Inspector. 

At Runtime 

The TTMSMQTTClient can also be created at runtime. See below for an example on how to do that. 

 

procedure TMQTTExampleForm.FormCreate(Sender: TObject); 

begin 

  MQTTClient := TTMSMQTTClient.Create(Self); 

end; 

Free Brokers 

Instead of having to install your own broker first, note that to get started with MQTT, you can use one 

of the public free brokers listed on the following page: 

http://moxd.io/2015/10/public-mqtt-brokers/  

http://moxd.io/2015/10/public-mqtt-brokers/


 
 

 

 

 

 

6 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Connecting 

Connection settings 

Before connecting the client to a broker the following parameters can be set. 

Property Type Description 

Default 

value Mandatory 

ClientID string This is the unique ID for the Client random 

string 

no 

BrokerHostName string Hostname of the broker you want to 

connect to 

 

yes 

BrokerPort integer The port to use when connecting to the 

broker 

1883 no 

UseSSL boolean Whether or not to connect through SSL false no 

Credentials TMQTTCredentials The credentials to use when connecting 

(more info below) 

 

no 

KeepAliveSettings TMQTTKeepAliveSettings Setting to keep the connection alive (more 

info below) 

 

no 

LastWillSettings TMQTTLastWillSettings The LWT settings (more info below) 

 

no 

 

Connecting the client is done using the Connect prodecure on the TTMSMQTTClient instance.  

This procedure takes one optional parameter to state if it should start a new session or continue with a 
previous session.  
Connecting the client is an asynchronous process. That means that you will have to subscribe to 
the OnConnectedStatusChanged event to know when the connection was successful. 

See below for a typical example on how to connect the client from code, the same thing can of course be 
achieved by using the Object Inspector in design-time. 

 



 
 

 

 

 

 

7 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

procedure TMQTTExampleForm.ConnectButtonOnClick(Sender: TObject); 

begin 

  MQTTClient.ClientID := 'MyUniqueClientID'; 

  MQTTClient.BrokerHostName := 'broker.mydomain.com'; 

  MQTTClient.OnConnectedStatusChanged := ClientOnConnectedStatusChanged; 

  MQTTClient.Connect; 

end; 

 

procedure TMQTTExampleForm.ClientOnConnectedStatusChanged(ASender: TObject; const 

AConnected: Boolean; AStatus: TTMSMQTTConnectionStatus); 

begin 

  if (AConnected) then 

  begin 

    // The client is now connected and you can now start interacting with the broker. 

    ShowMessage('We are connected!'); 

  end 

  else 

  begin 

    // The client is NOT connected and any interaction with the broker will result in 

an exception. 

    case AStatus of 

      csConnectionRejected_InvalidProtocolVersion, 

      csConnectionRejected_InvalidIdentifier, 

      csConnectionRejected_ServerUnavailable, 

      csConnectionRejected_InvalidCredentials, 

      csConnectionRejected_ClientNotAuthorized: 

        ; // the connection is rejected by broker 

      csConnectionLost: 

        ; // the connection with the broker is lost 

      csConnecting: 

        ; // The client is trying to connect to the broker 

      csReconnecting: 

        ; // The client is trying to reconnect to the broker 

    end; 

  end; 

end; 

Username and Password 

Some broker connections require a client to provide a username and password when 
connecting.  
This can be achieved by editing the Credentials property on 

the TTMSMQTTClient instance. 

Property Type Description Default value Mandatory 

Username string The username 

 

no 

Password string The password 

 

no 



 
 

 

 

 

 

8 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

 

Code example 
procedure TMQTTExampleForm.ConnectCredentialsButtonClick(Sender: TObject); 

begin 

  MQTTClient.ClientID := 'MyUniqueClientID'; 

  MQTTClient.BrokerHostName := 'broker.mydomain.com'; 

  MQTTClient.Credentials.Username := 'myUsername'; 

  MQTTClient.Credentials.Password := 'myPassword'; 

  MQTTClient.Connect; 

end; 



 
 

 

 

 

 

9 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Keeping a connection alive 

The MQTT protocol requires an open connection between the client and the broker at all times.  
When connecting to the broker a client must provide a keep alive interval, this is the maximum allowed 
timespan in which no messages can be exchanged between the client and the broker. If this period is 
exceeded, the broker must disconnect the client.  
To maintain an open connection, the client must thus send a PINGREQ packet to the broker if no other 

packets has been exchanged within the keep alive timespan. 

The Keep Alive Settings can be configured using the KeepAliveSettings property on 

the TTMSMQTTClient instance before connecting. 

Property Type Description 

Default 

value Mandatory 

KeepConnectionAlive boolean Whether or not the client should keep the connection 

alive 

true no 

KeepAliveInterval word The keep alive interval in seconds 120 no 

Code example 
procedure TMQTTExampleForm.ConnectKeepAliveButtonClick(Sender: TObject); 

begin 

  MQTTClient.ClientID := 'MyUniqueClientID'; 

  MQTTClient.BrokerHostName := 'broker.mydomain.com'; 

  MQTTClient.KeepAliveSettings.KeepConnectionAlive := true;     // Enable 

Keep Alive 

  MQTTClient.KeepAliveSettings.KeepAliveInterval := 60;         // 1 minute 

interval 

  MQTTClient.Connect; 

end; 

Automatic reconnecting 

The TMS MQTT Client features a way to automatically reconnect to the broker if the connection gets lost 
unexpectedly. This feature is disabled by default.  
Enabling automatic reconnecting can be done by editing the KeepAliveSettings property on 

the TTMSMQTTClient instance before connecting. 



 
 

 

 

 

 

10 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Property Type Description 

Default 

value Mandatory 

AutoReconnect boolean Whether or not the client should try to restore a broken 

connection 

false no 

AutoReconnectInterval word The interval to try reconnecting in seconds 30 no 

Code example 
procedure TMQTTExampleForm.ConnectAutoReconnectButtonClick(Sender: TObject); 

begin 

  MQTTClient.ClientID := 'MyUniqueClientID'; 

  MQTTClient.BrokerHostName := 'broker.mydomain.com'; 

  MQTTClient.KeepAliveSettings.AutoReconnect := true;           // Enable 

Auto-Reconnect 

  MQTTClient.KeepAliveSettings.AutoReconnectInterval := 10;     // Try 

reconnecting every 10 seconds 

  MQTTClient.Connect; 

end; 

Last Will Testament (LWT) 

The MQTT protocol allows a client to provide an optional Last Will Testament (LWT) when connecting to 
a broker.  
When provided, the broker will publish a message to the given topic as soon as it lost the connection with 
the client and didnt recieved a proper disconnect message.  
The last will is a way to notify other clients that a client has lost it’s connection. 

The LWT can be configured using the LastWillSettings property on 

the TTMSMQTTClient instance before connecting. 

The following parameters can be provided: 

Property Type Description Default value Mandatory 

Topic string The topic that should be used to publish the LWT message 

 

yes 

WillMessage string The actual message 

 

no 

Retain boolean Whether or not the message should be retained on the broker false no 

QoS TMQTTQoS the Quality of Service that should be used to send the LWT qosAtMostOnce no 



 
 

 

 

 

 

11 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Property Type Description Default value Mandatory 

message 

Code example 
procedure TMQTTExampleForm.ConnectLWTClick(Sender: TObject); 

begin 

  MQTTClient.ClientID := 'MyUniqueClientID'; 

  MQTTClient.BrokerHostName := 'broker.mydomain.com'; 

  MQTTClient.LastWillSettings.Topic := 'clients/disconnected'; 

  MQTTClient.LastWillSettings.WillMessage := 'MyUniqueClientID'; 

  MQTTClient.Connect; 

end; 

Publishing 
After a connection has been established you can start publishing messages to a specific topic.  
This can be done by calling the Publish method on the TTMSMQTTClient instance.  

The method takes 4 parameters of which only the first is mandatory. 

Topic Name 

The topic to where you publish should be a valid UTF8 string and should be at least 1 character long.  
The topic name can consist of one or more levels separated by a forward slash (/) and cannot contain 
any wildcard characters (+ OR #). 

Here are some examples of valid topics to publish to:  
- myapp/heatsensor  
- myapp/garage/temperature  
- m/g/t  
- humidity 

Please note that the topics are case-sensitive. 

Packet Payload 

The payload of a packet can be sent as a string or as an array of bytes (TBytes).  

This parameter is optional, by default a nil value will be sent. 

Quality of Service (QoS) 

This parameter defines the level of guarantee that a message will be received by the broker.  
You have 3 options: 



 
 

 

 

 

 

12 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Name Description 

qosAtMostOnce At most once delivery 

qosAtLeastOnce At least once delivery 

qosExactlyOnce Exactly once delivery 

Retain-flag 

This parameter states whether the payload of the packet should be retained by the broker or not. The 
broker will only store one value per topic, so only the last value will be retained and sent to the 
subscribers. 

By default this is set to false. 

Code example 
procedure TMQTTExampleForm.PublishButtonClick(Sender: TObject); 

var 

  packetId: Word; 

begin 

  packetId := MQTTClient.Publish(  

    'myapp/hellotopic',   // the topic to publish to 

    'Hello World!',       // the content (payload) of the packet (string or TBytes) (default nil) 

    qosAtLeastOnce,       // the Quality of Service that should be used (default qosAtMostOnce) 

    true                  // whether or not to retain the message on the broker (default false) 

    ); 

end; 



 
 

 

 

 

 

13 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Subscribing 
The Subscribe function on the TTMSMQTTClient instance can be used to subscribe to one or more 

topics. The function return the packetId of the subscribe packet sent to the broker. 

Topic Filter 

A topic filter should consist of at least one character and may contain one or more wildcard character.  
There are two types of wildcard characters: 

Single-level wildcard + 

The single-level wildcard character can be used to match all topics within a single level of topics. A topic 
filter can contain one or more of these wildcards. 

Some valid examples:  
- garage/sensor1/+  
- garage/+/temperature  
- +/+/temperature 

Multi-level wildcard # 

The multi-level wildcard matches multiple levels and can only be used once in a topic filter.  
It should always be the last character of the filter and it should always be preceded by the level separator 
(/) unless it is the only character in the filter. 

Some valid examples:  
- garage/#  
- garage/sensor1/# 

The single-level and multi-level wildcards can also be combined in a topic filter. The following examples 
are also valid: 

• garage/+/status/# 

• +/temperature/# 

Subscription Quality of Service 

The Quality of Service that should be used when sending the packets to the client.  
By default this is set to qosAtMostOnce. 



 
 

 

 

 

 

14 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Code example 

procedure TMQTTExampleForm.SubscribeButtonClick(Sender: TObject); 

var 

  packetId: Word; 

begin 

  packetId := MQTTClient.Subscribe( 

    'myapp/sensors/#',     // the topic filter 

    qosAtMostOnce          // the Quality of Service that should be used 

(default qosAtMostOnce) 

    ); 

end; 

Ensure a subscription was successful 

Subscribing to one or more topics is an asynchronous process. The Client will send a SUBSCRIBE packet 

to broker and, if successful, the broker will return a SUBACK packet containing an accepted-flag for each 

topic that was requested.  
By persisting the PacketID returned by the Subscribe method and by listening to 

the OnSubscriptionAcknowledged event we can make sure that a specific subscribe was successful 

or not. 

procedure TMQTTExampleForm.ValidateSubscribeButtonClick(Sender: TObject); 

begin 

  MQTTClient.OnSubscriptionAcknowledged := SubscriptionAcknowledged; 

  FSubscribeRequestPacketId := MQTTClient.Subscribe('myapp/sensors/#'); 

end; 

 

procedure TMQTTExampleForm.SubscriptionAcknowledged(ASender: TObject; 

APacketID: Word; ASubscriptions: TMQTTSubscriptions); 

begin 

  if (APacketID = FSubscribeRequestPacketId) and ASubscriptions[0].Accepted 

then 

  begin 

    ShowMessage('We are subscribed!'); 

  end; 

end; 



 
 

 

 

 

 

15 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Unsubscribing 
You can use the Unsubscribe to cancel the subscription on one or more topics. 

procedure TMQTTExampleForm.UnsubscribeButtonClick(Sender: TObject); 

begin 

  FUnSubscribeRequestPacketId := MQTTClient.Unsubscribe('myapp/#'); 

end; 

 
To validate that the unsubscribe packet has been acknowledged by the broker you can listen to 
the OnPacketReceived and check for an incoming UNSUBACK packet with the same PacketID as the 

unsubscribe request. 

procedure TMQTTExampleForm.FormCreate(Sender: TObject); 

begin 

  MQTTClient := TTMSMQTTClient.Create(Self); 

  MQTTClient.OnPacketReceived := PacketReceived; 

end; 

 

procedure TMQTTExampleForm.PacketReceived(ASender: TObject; APacketInfo: 

TMQTTPacketInfo); 

begin 

  if (APacketInfo.PacketType = mtUNSUBACK) AND (APacketInfo.PacketId = 

FUnSubscribeRequestPacketId) then 

  begin 

     ShowMessage('We are unsubscribed!'); 

  end; 

end; 



 
 

 

 

 

 

16 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Receiving published messages 
After subscribing to a topic, the broker will start sending packets to the client.  
To work with these packets in your application you can listen to the OnPublishReceived event on 

the TTMSMQTTClient instance. 

procedure TMQTTExampleForm.FormCreate(Sender: TObject); 

begin 

  MQTTClient := TTMSMQTTClient.Create(Self); 

  MQTTClient.OnPublishReceived := PublishReceived;     

end; 

 

procedure TMQTTExampleForm.PublishReceived(ASender: TObject; APacketID: Word; 

ATopic: string; APayload: TBytes); 

begin 

  ShowMessage('Message received on topic: ' + ATopic + sLineBreak + 

TEncoding.UTF8.GetString(APayload)); 

end; 

Please note that due to compatibility issues with generics in C++ builder, there is a separate 

event OnPublishReceivedEx  that should be used in C++ projects. 

The event handler in c++ would look something like the code below: 

 
void __fastcall TForm2::TMSMQTTClient1PublishReceivedEx(TObject *ASender, 

WORD APacketID, UnicodeString ATopic, TTMSMQTTBytes APayload) 

{ 

   ShowMessage(TEncoding::UTF8->GetString(APayload)); 

} 

Pinging 
If you enable the keep alive functionality the client will periodically send ping request (PINGREQ) packets 

to the broker to keep the connection alive. You can however send a manual ping request by calling 
the Ping procedure on the TTMSMQTTClient instance. If the client receives a ping request it will 

automatically respond with a ping response (PINGRESP) packet, you don’t need to do that manually. 



 
 

 

 

 

 

17 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Monitoring in- and outgoing packets 
You can monitor all outgoing and incoming packets by subscribing to 
the OnPacketReceived and OnPacketSent events on the TTMSMQTTClient instance. These events 

provide basic information about the packets in the form of a TMQTTPacketInfo record. The record 

contains the following information: 

Property Type Description 

PacketId Word The PacketID 

PacketType TMQTTPacketType The type of the packet 

PacketQos TMQTTQoS The Quality of Service 

IsDuplicate Boolean Whether it is a duplicate message (in case of Qos > 0) 

IsRetained Boolean Whether it is a retained message 

Please note that this information does not contain any payload information, subscribe to one of the other 
events to know more about specific types of packets that are received. 

Logging 
When debugging your application it might be handy to enable logging on the MQTTClient.  
This can be done by creating a logger instance and assigning it to the Logger property of 

the TTMSMQTTClient component.  

By default there are 2 Loggers available in the tool palette, the TTMSMQTTLogger and 

the TTMSMQTTFileLogger. 

The TTMSMQTTLogger will write the log messages in the output window, the TTMSMQTTFileLogger will 

write to a file.  
You can of cource create your own logger by inheriting from the existing classes. 

The logger has a property Verbosity that can be adjusted to manipulate the amount of details you want 

to see in the logs. 



 
 

 

 

 

 

18 

 

 

 

TMS SOFTWARE  

TMS MQTT 

DEVELOPERS GUIDE 

Demo 

The TMS MQTT Components comes with a demo application for VCL, FMX and FPC.  
The demo applications are very simple and allow you to, after entering your name and a message, put a 
marker on a world map.  
The map can be viewed on http://www.tmssoftware.biz/public/mqtt/demo/ and by clicking on the markers 
you can send messages back to the client applications. 

 

 

 

 

http://www.tmssoftware.biz/public/mqtt/demo/

