

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

1

TMS FNC Maps
DEVELOPERS GUIDE

Sep 2020
Copyright © 2020 by tmssoftware .com bvba

Web: http : //www .tmssoftware .com
Email: info@tmssoftware .com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

2

Index

Availability ... 3

Online references .. 3

Description .. 3

Getting Started .. 4

TTMSFNCMaps .. 5

Initialization ... 6

Dynamic switching ... 7

Performance .. 7

Markers ... 7

PolyElements ... 9

Loading GPX/GeoJSON .. 12

Popups ... 18

Interaction ... 19

Customization .. 20

Events .. 24

Common Types .. 25

TTMSFNCGoogleMaps ... 27

Dragging Markers .. 27

Editing Polyelements ... 28

Loading KML Layers ... 29

Clusters .. 29

Events .. 33

Map Style ... 34

Traffic & Bicycling .. 34

TTMSFNCGeocoding .. 35

TTMSFNCDirections ... 38

TTMSFNCLocation ... 41

TMS FNC Maps Book ... 43

Content .. 43

How to order ... 44

Terms of use .. 45

Limited warranty ... 45

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

3

Availability

Supported frameworks and platforms

- VCL: Win32/Win64
- FMX: Win32/Win64, MacOS-X, iOS, Android
- LCL: Win32/Win64, Mac OS-X, iOS, Android, numerous Linux variants including Raspbian

o TTMSFNCMaps and descendant classes only run on Windows.
- WEB: Chrome, Edge, Firefox, é

Supported IDEõs

- Delphi XE7 and C++ Builder XE7 or newer releases
- Lazarus 1.8.0 with FPC 3.0.4 or newer releases.

Important Notice : TMS FNC Maps requires TMS FNC Core (separately available at the My Products
page)

Online referen ces

TMS software website:
http: //www.tmssoftware.com

TMS FNC Maps page:
http://www.tmssoftware.com/site/tmsfncmaps.asp

Description

TMS FNC Maps is a cross-framework, cross -platform and cross -service mapping component lib rary. It
includes an abstract map (TTMSFNCMaps) that is capable of rendering polygons (including rectangles
and circles), polylines, markers, show HTML formatted popups and many more. It has events for
mouse interaction as well as some basic options to con figure the look and feel. Optionally, the
underlying JavaScript can be modified to allow additional customization options. Also included is a
component for calculating directions between 2 coordinates or addresses (TTMSFNCDirections), the
ability to conver t a coordinate to an address or vice versa (TTMSFNCGeoCoding) and retrieving your
current location (TTMSFNCLocation). Below is a list of services that are currently supported.

- OpenLayers (OpenStreetMaps)

- TomTom

- Microsoft Azure

- Microsoft Bing

- Google

- Here

- MapBox

http://www.tmssoftware.com/
http://www.tmssoftware.com/site/tmsfncmaps.asp

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

4

Getting Started

After installing TMS FNC Core, please follow instructions on getting the TTMSFNCWebBrowser up and
running, which is the underlying component for TMS FNC Maps. More information about the browser
and its capabilities ca n be found at the following link:

http://www.tmssoftware.biz/Download/Manuals/TMSFNCWebBrowserDevGuide.pdf

After installing TMS FNC Maps, the first thing that needs to be done is acquiring an API key (except
for OpenLayers which is free and doesnõt require an API key). Steps to obtain an API key for
enabling the map as well as using directions, geocoding and location services can be found at th e
following page:

https://www.tmssoftware.com/site/cloudkey.asp

Click on the service you are using and follow the steps to obtain an API key. The API key that is
requested can be used for all features that are avail able after installing TMS FNC Maps:

- TTMSFNCMaps (and descendants)
- TTMSFNCDirections
- TTMSFNCGeoCoding
- TTMSFNCLocation

http://www.tmssoftware.biz/Download/Manuals/TMSFNCWebBrowserDevGuide.pdf
https://www.tmssoftware.com/site/cloudkey.asp

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

5

TTMSFNCMaps

TTMSFNCMaps is an abstract layer on top of the services that are listed under the òDescriptionó
chapter. It serves a way to display / manipulate and retrieve information of the chosen service in an
abstract way, which means that whenever you are switching to another service, the code that was
written will be 100% compatible and will behave exactly the sa me as the service you were originally
been using, ofcourse under the disclaimer that the service does not change the underlying APIs.

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

6

Initialization

When dropping an instance of TTMSFNCMaps (after successful installation of TMS FNC Core and
TTMSFNCWebBrowser) on the form youõll notice the designtime message indicating that Google
Maps canõt be displayed because the API key is not set. Changing the Service property will show a
different message depending on the chosen service. Please enter a value under the API key property
after selecting the component at designtime , or specify an API key at runtime that matches the
service selected under the Service proper ty . Also note that the only selectable area (for moving,
resizing) is the area at the top. The blue area is actually a real life mapping instance, so entering
the API key at designtime will show you a live preview of the map.

procedure TForm1.FormCreat e(Sender: TObject);

beg in

 TMSFNCMaps1.APIKey := 'xxxxxxxxxxxxxxxx';

end;

After setting the API key, you should see the map of the service of choice.

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

7

Dynamic switching

A feature of TTMSFNCMaps is dynamic switching. It allows switching to another service even though
you have already added markers, polygons, polylines , ... The only settings that are not persisted are
the default location and zoom which are re -initialized to the default values. Switching or initializing
a specific service can be done w ith the following code:

procedure TForm1. ChangeService ;

begin

 TMSFNCMaps1.Service := msBingMaps;

end;

Important notice: dynamic switching is not supported under TMS WEB Core. You can only switch to
another mapping service once, because of the technical issue of not being abl e to reload scripts
that are necessary to render the map correctly. In TMS WEB Core, please set the APIKey and Service
at runtime in the constructor of the form.

Performance

When using the maps, adding markers, polyelements or chan ging existing propertie s of an object
that has been added to the map it is always a good practice to wrap the code with
BeginUpdate/EndUpdate. This ensures the JavaScript calls are bundled and this will lower execution
times, which automatically increases performance. Below is a sample that demonstrates how to use
BeginUpdate & EndUpdate calls for speeding up the process.

TMSFNCMaps1.BeginUpdate;

//add markers, polyelements, load GPX, GeoJSON file, é

TMSFNCMaps1.EndUpdate;

Markers

Markers identify a loca tion on the map. Each service has its own marker icon that can (optionally)
be changed. A marker is tied to a specific location (coordinate) on the map. The default location is
the Statue of Liberty in New York (Latitude = 40.689247, Longitude = -74.044502). Below is a piece
of sample code that adds a marker, and the result shown on the map. The marker class is
TTMSFNCMapsMarker.

TMSFNCMaps1.BeginUpdate;

TMSFNCMaps1.AddMarker(DefaultCoordinate, 'First Marker!');

TMSFNCMaps1.EndUpdate;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

8

The title of the m arker can optionally be set, in this case the marker title is being shown as a hint in
Google Maps. In Here Maps for example, the marker can be clicked when a Title is set which will
show the value in a popup:

When a marker has been added, changing properties will automatica lly update the marker, such as
changing the coordinate property to relocate the marker or specifying another title.

The marker icon can also be customized. Below is a sample that changes the default Google Maps
icon to a custom icon .

TMSFNCMaps1.BeginUpd ate;

TMSFNCMaps1.AddMarker(DefaultCoordinate, 'First Marker!',

'http://myIconURL.png');

TMSFNCMaps1.EndUpdate;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

9

Please note that AddMarker is a helper function that accesses the Marker collection. The marker
collection can also be accessed via

TMSFNCMaps1.Markers.Add;

PolyElements

PolyElements can be added in the same way as adding Markers. PolyElements include one of the
following types:

- TTMSFNCMapsPolyline
- TTMSFNCMapsPolygon
- TTMSFNCMapsRectangle
- TTMSFNCMapsCircle

Adding a polyline and polygon is d one with AddPolyline and AddPolygon respectively. Both calls
accept an array of coordinates (TTMSFNCMapsCoordinateRec). Both TTMSFNCMapsPolyline and
TTMSFNCMapsPolygon have the ability to specify a stroke color, width and opacity. Th e
TTMSFNCMapsPolygon has the ability to specify a fill color, width and opacity. The following sample
demonstrates how to add a polygon that represents the Bermuda triangle. The code can also be
replaced by AddPolyline, but without access to the Fill* prop erties.

procedure TFor m1.AddMarkerToMap ;

var

 arr: TTMSFNCMapsCoordinateRecArray;

 pg: TTMSFNCMapsPolygon;

begin

 SetLength(arr, 3);

 arr[0] := CreateCoordinate(25.789106, - 80.226529);

 arr[1] := CreateCoordinate(18.4663188, - 60.1057427);

 arr[2] := CreateCoordinate(32.29 4887, - 64.781380);

 TMSFNCMaps1.BeginUpdate;

 pg := TMSFNCMaps1.AddPolygon(arr);

 pg.FillColor := gcOrange;

 pg.FillOpacity := 0.5;

 pg.StrokeColor := gcGreen;

 pg.StrokeWidth := 4;

 TMSFNCMaps1.EndUpdate;

end;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

10

Adding a circle (TTMSFNCMapsCircle) is done by specifying a center coordinate and a radius (in
meter) . TTMSFNCMapsCircle inherits from TTMSFNCMapsPolygon and therefore also can specify fill
and stroke properties.

Below is a sample that demonstrates how adding a circ le is done with a radiu s of 200 km.

procedure TForm1 . AddCircleToMap ;

var

 c: TTMSFNCMapsCircle;

begin

 TMSFNCMaps1.BeginUpdate;

 c := TMSFNCMaps1.AddCircle(DefaultCoordinate, 200000);

 c.FillColor := gcOrange;

 c.FillOpacity := 0.5;

 c.StrokeColor : = gcGreen;

 c.StrokeWi dth := 4;

 TMSFNCMaps1.EndUpdate;

end;

Adding a rectangle (TTMSFNCMapsRectangle) is done with the AddRectangle call which accepts a
bounds (TTMSFNCMapsBoundsRec). This is defined by a NorthEast and SouthWest coordinate. Below
is a sample that demonstr ates this.

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

11

procedure TForm1.AddRectangleToMap;
var
 c: TTMSFNCMapsRectangle;
 b: TTMSFNCMapsBoundsRec;
 ne, sw: TTMSFNCMapsCoordinateRec;
begin
 TMSFNCMaps1.BeginUpdate;
 ne := CalculateCoordinate(DefaultCoordinate, 45, 100000) ;
 sw := CalculateCoordinate(DefaultCoordinate, 225, 100000);
 b := CreateBounds(ne.Latitude, ne.Longitude, sw.Latitude, sw.Longitude);
 c := TMSFNCMaps1.AddRectangle(b);
 c.FillColor := gcOrange;
 c.FillOpacity := 0.5;
 c.StrokeColor := gcGreen;
 c.StrokeWidth := 4;
 TMSFNCMaps1.EndUpdate;
end;

There is a little more explanation necessary for this piece of code that adds a rectangle. The
rectangle is 200km wide. The coordinate s are calculated based on the center of the rectangle and
the bearing (0-360).

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

12

To calculate the northeast coordinate, we need to take the center coordinate and traval into the 45
degreesõ direction . The parameter òDistanceó is determining how far we actually travel. The
CalculateCoordinate is a helper function in the *.TMSFNCMapsCommonTypes unit that calculates the
coordinate based on these parameters. The same applies to the SouthWest coordinate, which li es in
the 225 degreesõ direction. Finally, we are able to create a bounds rectangle with these coordinate
and plot it on the map.

Loading GPX/GeoJSON

Loading GPX/ GeoJSON is done with a single call. Specify the GPX/GeoJSON file that you wish to
load and the map will render the polyelements/lines that are retrieved inside the GPX/GeoJSON
file. The optional parameters are to AutoDisplay the data that is loaded and to automatically zoom
to the bounds of the data that has been entered. The AutoDisplay and Zoo mToBounds parameters
are both true by default. Below is a sample with a GPX file.

GPX

TMSFNCMaps1.BeginUpdate;

TMSFNCMaps1.LoadGPXFromFile('run.gpx');

TMSFNCMaps1.EndUpdate;

Changing the line that has automatically been added is as simply as taking t he last element from th e
Polylines collection.

procedure TForm1. LoadGPX;

var

 pl: TTMSFNCMapsPolyline;

begin

 TMSFNCMaps1.BeginUpdate;

 TMSFNCMaps1.LoadGPXFromFile(' run.gpx ');

 pl := TMSFNCMaps1.Polylines[TMSFNCMaps1.Polylines.Count - 1];

 pl.StrokeC olor := gcRed;

 pl.Str okeWidth := 5;

 pl.StrokeOpacity := 0.5;

 TMSFNCMaps1.AddMarker(pl.Coordinates[0].Coordinate.ToRec);

 TMSFNCMaps1.AddMarker(pl.Coordinates[pl.Coordinates.Count -

1].Coordinate.ToRec);

 TMSFNCMaps1.EndUpdate;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

13

end;

For each Track found in the GPX f ile, the OnCreateGPXTrack event is triggered and for each
Coordinate found, the OnCreateGPXSegment event.
The OnCreateGPXTrack AEventData parameter contains Data.Name/Segments information as well as
the full XML node, so if extra da ta is available this ca n be parsed manually.
The OnCreateGPXSegment AEventData parameter contains
Data.Longitude/Latitude/Elevation/TimeStamp information as well as the full XML node, so if extra
data is available this can be parsed manually.

Examples:

¶ Log standard gpx data

procedure TForm1.TMSFNCMaps1CreateGPXSegment(Sender: TObject;

 AEventData: TTMSFNCMapsGPXSegmentEventData);

begin

 TTMSFNCUtils.Log(AEventData.Node.GetXML);

end;

procedure TForm1.TMSFNCMaps1CreateGPXSegment(Sender: TObject;

 AEventData: TTMSFNCMapsGPXSe gmentEventData);

begin

 TTMSFNCUtils.Log('Lat:Lon: ' + FloatToStr(AEventData.Data.Longitude) + '

: ' + FloatToStr(AEventData.Data.Longitude)

 + ' Height: ' + FloatToStr(AEventData.Data.Elevation) + ' TimeStamp: '

+ DateTimeToStr(AEventData.Data.TimeSta mp));

end;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

14

¶ Parse extension data and display it on the map

If a given gpx file contains extra data beyond the standard available data, this can be parsed
manually through AEventData.Node.
In this example the gpx file contains a heartrate value for ea ch coordinate. The heartrate is
extracted from the XML and a marker is added on the map along the route each time the value is
above 190.

Sample gpx data:

<trkpt lat="50.7915" lon="3.1208">

 <ele>49</ele>

 <time>2020 - 04- 07T13:32: 17.000Z</time>

 <exten sions>

 <hr>174</hr>

 </extensions>

</trkpt>

Code:

procedure TForm1.TMSFNCMaps1CreateGPXSegment(Sender: TObject;

 AEventData: TTMSFNCMapsGPXSegmentEventData);

var

 HeartRate: Integer;

begin

 HeartRate := StrToInt(NodeToStrin g(FindNode(FindNode(AEv entData.Node,

'extensions'), 'hr')));

 if HeartRate > 190 then

 TMSFNCMaps1.AddMarker(CreateCoordinate(AEventData.Data.Latitude,

AEventData.Data.Longitude), IntToStr(HeartRate));

end;

If a GPX file contains elevation and/o r timestamp data, this data will also be available in the result
of the LoadGPXFromFile call.

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

15

Elevation data can optionally be displayed with the ADisplayElevation parameter. This is achieved
by adding multiple color coded polylines to the map . The color s to use can be provided in the
AElevationColors parameter. If a single color is provided, the polyline will be displayed darker for
lower parts and lighter for higher parts of the path . If no color s are provided, the AStrokeColor is
used. If no AStrokeColor is provided, the def ault color is used.

Timestamp data can optionally be displayed through markers along the polyline path with the
ADisplayTimeStamp parameter. To limit the amount of markers, the
AMinSecondsBetweenTimeStamps can be used to set the minimum time between disp layed markers.

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

16

GeoJSON

GeoJSON has multiple types of data, called òFeaturesó, such as Point, Line, Polygon, etc é Below is
a sample of a GeoJSON that is being loaded in the TTMSFNCMaps instance.

procedure TForm1. LoadGeoJSON;

var

 pl: TTMSFNCMaps Polygon;

 I: Integer;

begin

 TMSFNCMaps1.BeginUpdate;

 TMSFNCMaps1.LoadGeoJSONFromFile(' data.geojson');

 for I := 0 to TMSFNCMaps1.Polygons.Count - 1 do

 begin

 pl := TMSFNCMaps1.Polygons[I];

 pl.FillColor := gcBlue;

 pl.FillOpacity := 0.2;

 pl.StrokeColor := gcBlue;

 pl.StrokeOpacity := 0.5;

 end;

 TMSFNCMaps1.EndUpdate;

end;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

17

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

18

Popups

Popups are informative messages that can be shown anywhere on the map. They are tied to a
specific coordinate and can be show n and hidden programmat ically in various cases, such as clicking
on a marker, hovering over a circle, etcé A popup is capable of displaying HTML formatted text.
Below is a sample that shows how to display a popup at the default coordinate with information on
the Statue of Libert y in New York.

procedure TForm1.AddPopupToMap;

const

 s = '<div width="300"><h3>Liberty Enlightening the World<h3>' + LB +

 '"The Statue of Liberty Enlightening the World" was a gift of friendship

from the people of ' + LB +

 'France to the United S tates and is recognized as a universal symbol of

freedom and democrac' + LB +

 'y. The Statue of Liberty was dedicated on October 28, 1886. It was

designated as a National' + LB +

 ' Monument in 1924. Employees of the National Park Service have been

caring for the colossal copper statue since 1933.

' + LB +

 '<img height="100"

src="http://myserver.com/images/StatueOfLiberty.jpg"></div>';

begin

 TMSFNCMaps1.ShowPopup(DefaultCoordinate, s)

end;

Optional parameters are to offset the popup in pixels based on the default coordinate . When
showing a popup, the return value is an ID, which can be used to close it with the ClosePopup
method. The close all popups that are opened in the map, use CloseAllPopups;

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

19

Locale

The map is capable of changing the language that is displayed at some elements such as the
maptype and the street/city names. Not all maps support a full translat ion and not all maps support
every language. Please look up the languages that are supporte d depending on the chosen service.
The way the map language is translated is based on the Locale string property which is set to en -US
by default. A couple of examples of locales are:

en-US (English ð United States)
en-GB (English ð Great Britain)
fr -FR (French ð France)
nl-NL (Dutch ð Netherlands)
it -IT (Italian ð Italy)
pt -BR (Portuguese ð Brazil)

Applying this to the map is as simple as assigning a value to the Options.Locale property:

TMSFNCMaps1.Options.Locale := 'pt - BR';

TMSFNCMaps1.ReInitialize;

Note that a ReInitia lize call is necessary to make sure the map is properly initialized .

Interaction

The map supports panning, zooming changing map type, scrolling with the mouse or keyboard and
many more. Also programmatically, you are able to go to a specific location, zo om to a specific map
bounds. Below is a list of methods that can be used to programmatically interact with the map.

TMSFNCMaps1.ZoomToBounds

The ZoomToBounds method has a couple of overloads to specify an array of coordinates, a bo unds
record, or a north east/southwest coordinate. ZoomToBounds will automatically navigate to a
specific area determined by the northeast and southwest coordinates either coming directly from
the bounds parameter or automatically calculated based on an arr ay of coordinates.

TMSFNCMaps1.SetCenterCoordinate

TMS SOFTWARE

TMS FNC Maps
DEVELOPERS GUIDE

20

The SetCenterCoordinate will navigate to a specific location on the map without changing the zoom
level.

TMSFNCMaps1.SetZoomLevel

The SetZoomLevel method can be used to set a specific zoom level at th e current location on t he
map.

Some maps expose a zoom control and/or maptype control that allows changing the zoom level or
switch to another map type such as a night mode or a satellite view depending on the chosen
service. The properties to enable/disa ble these controls are available under Options. By default,
the values are true for both properties. Below is a sample what happens when setting them to false
like the code below.

TMSFNCMaps1.Options.ShowMapTypeControl := false;

TMSFNCMaps1.Options.ShowZo omControl := false;

Customization

Each service is implemented in a specific way so the polyelements, markers, rectangles, circles and
every other aspect of the abstract TTMSFNCMaps class is working as expected even when switching
to another service. I f you are missing a particular feature/event or you want to change existing
features, you have access to a series of customization events that allow you to change what
happens. Through JavaScript there are a series of constants defined to get access to obj ects inside
JavaScript. A complete list of variables is found in the *.TMSFNCMaps.pas unit below the version
number. Below is a list of events that allow customization.

OnCustomizeCSS

Event to customize the CSS, style information that is tied to the map, or to other objects in the map
such as popups.

OnCustomizeJavaScript

Event that is called to completely customize all JavaScript that is used to render the map and
add/update markers, polyelements and many more.

OnCustomizeMap

Event called when the map i s being loaded. Additio nal map settings can be added here. The map
identifier that can be used is the MAPVAR constant defined in the TMSFNCMaps unit.

