

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

1

TMS FMX UI Pack

DEVELOPERS GUIDE

September 2019
Copyright © 2016-2019 by tmssoftware.com bvba

Web: https://www.tmssoftware.com
Email: info@tmssoftware.com

https://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

2

Index

Availability ... 7

Description .. 7

Windows support .. 7

List of available controls .. 9

Shapes ... 9

Components .. 9

TMSFMXNavBar ... 24

TTMSFMXEdit / TTMSFMXEditBtn .. 25

TTMSFMXIPEdit ... 27

TTMSFMXLabelEdit .. 27

TTMSFMXGraphicCheckLabel .. 28

TTMSFMXPageSlider ... 29

Properties / Events .. 30

TTMSFMXTableView .. 31

Architecture ... 31

Styling .. 33

Properties / Methods / Events .. 34

Item storage and buffering .. 39

Adding and removing items .. 40

Sorting ... 41

Categories .. 42

Lookup ... 45

Filtering / Searching... 46

Editing / Deleting ... 47

DetailView ... 48

Layout .. 50

User interface interaction with the TableView ... 53

MultiSelect... 53

Additional Item Elements .. 54

Performance .. 55

Binding Controls .. 55

LiveBindings ... 57

HTML support .. 60

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

3

TTMSFMXPopup .. 62

TTMSFMXCircularGauge .. 64

TTMSFMXLinearGauge .. 68

TTMSFMXJogMeter ... 69

TTMSFMX7SegLED ... 70

TTMSFMXCompass .. 71

TTMSFMXClock .. 71

TTMSFMXRotarySwitch / TTMSFMXKnobSwitch .. 72

TTMSFMXMatrixLabel ... 73

TTMSFMXScope ... 75

TTMSFMXSpinner .. 77

TTMSFMXLEDMeter / TTMSFMXLEDScope ... 79

TTMSFMXLED / TTMSFMXLEDBar ... 80

TTMSFMXSlider ... 80

TTMSFMXTileList ... 81

Architecture ... 81

Styling .. 82

Properties / Methods / Events .. 83

Adding and removing tiles ... 86

Badges ... 87

Tile Styles ... 88

Columns and Rows .. 91

Paging / Scrolling ... 92

PageSize ... 93

ColumnWidth / RowHeight ... 94

Filtering / Searching / Lookup ... 95

Keyboard navigation .. 95

Reordering tiles ... 95

Performance .. 95

MultiSelect... 96

LiveBindings ... 97

TTMSFMXHotSpotImage ... 97

Adding a new hotspot ... 98

Magic Wand Tool ... 100

Saving and loading hotspots .. 101

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

4

Compatibility ... 101

TTMSFMXHotSpotEditorDialog ... 101

TTMSFMXSpeedButton ... 102

TTMSFMXCalendar / TTMSFMXCalendarPicker .. 102

TTMSFMXTrackBar .. 106

TTMSFMXButton ... 106

TTMSFMXColorSelector / TTMSFMXColorPicker .. 107

TTMSFMXBitmapSelector / TTMSFMXBitmapPicker .. 107

TTMSFMXFontNamePicker / TTMSFMXFontSizePicker .. 109

TTMSFMXWebBrowser / TTMSFMXWebBrowserPopup .. 110

TTMSFMXSignatureCapture .. 112

TTMSFMXListEditor ... 112

Architecture ... 112

Appearance ... 113

Items .. 113

Events .. 114

TTMSFMXTaskDialog ... 114

TTMSFMXCheckGroup / TTMSFMXRadioGroup TTMSFMXCheckGroupPicker /

TTMSFMXRadioGroupPicker ... 116

TTMSFMXToolBar .. 118

Set of components .. 118

Adding new components at designtime .. 119

Adding new components at runtime... 120

Toolbar button... 120

TTMSFMXDateTimeEdit .. 122

TTMSFMXRatingGrid ... 122

TTMSFMXPassLock .. 124

TTMSFMXTouchKeyboard / TTMSFMXPopupTouchKeyboard ... 127

Description .. 127

Properties & Events ... 127

Methods .. 128

TTMSFMXScrollMenu .. 129

Description .. 129

Properties & Events ... 129

Methods .. 130

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

5

TTMSFMXGridFilterPanel .. 131

TTMSFMXRichEditor .. 137

Description .. 137

Organization .. 137

Getting Started .. 138

Properties & Events ... 138

Methods .. 139

Programmatic access to the document ... 144

Using merge fields ... 146

Using accompanying toolbars ... 148

Importing & exporting in rich text ... 148

Importing & exporting in HTML format... 149

Import or export to mini-HTML ... 150

TTMSFMXTabSet / TTMSFMXPageControl .. 151

Adding new tabs .. 157

Removing tabs ... 157

Moving tabs ... 157

Modes .. 158

Position .. 158

Appearance ... 159

Interaction ... 160

Reorder .. 161

Editing .. 161

Progress indication .. 162

Badges ... 163

Custom drawing .. 163

PageControl ... 164

Performance .. 164

TMS Mini HTML rendering engine .. 166

Samples ... 169

TMS TableView Overview Demo ... 169

TMS TableView LiveBindings Demo 1 & 2 ... 170

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

6

TMS Instrumentation WorkShop Demo .. 173

TMS PageSlider Demo ... 173

TMS TileList Demo ... 175

TMS TileList LiveBindings Demo .. 176

TMS HotSpotImage Demo ... 177

General FireMonkey component usage guidlines ... 178

Visual part .. 178

Non-visual part .. 178

Naming convention ... 178

Styling .. 178

Components .. 182

Cross-platform deployment of applications with TMS FMX UI Pack components 183

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

7

Availability

TMS FMX UI Pack is a component set that is suitable for cross platform development with the
Embarcadero FireMonkey framework and is designed for use with Win32, Win64, macOS, iOS and
Android operating systems. With the registered version of TMS FMX UI Pack, FireMonkey HD
applications for Windows and macOS can be created as well as FireMonkey iOS and Android mobile
applications that can be deployed to iPhone, iPad, iPod, or Android devices.

Versions:

TMS FMX UI Pack requires Delphi XE6 & C++Builder XE6 or newer releases.

Description

TMS FMX UI Pack contains components for use in user interfaces designed with the Embarcadero
FireMonkey framework. The components have been designed from the ground up based on the core
concepts of the FireMonkey framework: made up of styles, fully cross-platform, scalable and
compatible with FireMonkey’s effects, rotation, and livebindings.

Windows support

For Delphi & C++Builder versions before XE8, Windows support in the TMS FMX UI Pack is based on
the Delphi Chromium Embedded opensource library and can be installed and compiled by following
the steps below.
For XE8 and 10 Seattle, this is not needed and the built-in browser is used.

1) Download and Extract http://www.tmssoftware.biz/download/ChromiumFMX.zip
2) Open the package ChromiumFMX.dpk, compile and then install the package.
3) Add the directory where the ChromiumFMX source is located to your Win32 library path in the IDE
(ceffmx.pas, ceflib.pas, ...)
4) Navigate to the directory where the TMS FMX UI Pack source is installed.
5) Open the file FMX.TMSFMXPackWebBrowser.Win.pas and comment the line {$DEFINE
CHROMIUMOFF}
6) Copy the files inside the lib directory from the extracted ChromiumFMX.zip file to the directory
where your application executable is or will be located.
7) Create or open a new or existing project and build your project.

Our browser solution for the Windows target is only available in the registered version of TMS FMX
UI Pack. Windows is NOT supported in the trial version.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

8

IMPORTANT NOTICE:
If the FireMonkey framework is new to you, please see the chapter “General FireMonkey component
usage guidelines” that offers an introduction that is recommended to read before you start working
with the TMS FMX UI Pack. Another interesting source of information is
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Application_Platform

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

9

List of available controls

Shapes

TTMSFMX7SegLEDShape

7-segment LED shape used
in the 7-segment LED
component

TTMSFMXNeedleShape

A needle shape used in
various gauge and meter
components.

TTMSFMXSectionShape

A section shape used in
the gauge component.

TTMSFMXSetPointShape

A setpoint shape used in
the gauge component.

TTMSFMXPieShape

A pie shape used in the
circular gauge and
variants. This is used to
create a 180 ° version for
example.

Components

TTMSFMX7SegLED

TTMSFMXJogMeter

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

10

TTMSFMXLinearGauge

TTMSFMXCircularGauge

TTMSFMXCompass

TTMSFMXClock

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

11

TTMSFMXRotarySwitch

TTMSFMXKnobSwitch

TTMSFMXMatrixLabel

TTMSFMXScope

TTMSFMXSpinner

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

12

TTMSFMXLEDMeter

TTMSFMXLEDScope

TTMSFMXLED, TTMSFMXLEDBar

TTMSFMXSlider

TTMSFMXPageSlider

Smoothly animated pager.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

13

TTMSFMXRating

TTMSFMXTileList

TTMSFMXBadge

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

14

TTMSFMXTableView

Smoothly animated scrolling list.

TTMSFMXHTMLText

Text shape that supports HTML (see MiniHTML
chapter)

TTMSFMXBitmap

Bitmap shape which can load and display an
image directly or through a BitmapContainer.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

15

TTMSFMXBitmapContainer

Container that holds multiple bitmaps

TTMSFMXSearchEdit

Inherits from TEdit and adds an optional clear
and search button, and has a rounded
appearance.

TTMSFMXBarButton

Inherits from TButton and adds a Layout and
Kind property for different appearances used in
the TableView.

TTMSFMXPopup

Component that allows displaying any type of
control inside a customizable popup dialog.

TTMSFMXSpeedButton

Inherits from TSpeedButton and adds a Grouping
possibility and an image.

TTMSFMXHotSpotImage

Component that is able to display an (optionally
stretched) image with predefined clickable and
customizable hotspots.

Hotspots are added with a complete separate
designer.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

16

TTMSFMXGrid

Feature packed and highly stylable grid
component created from scratch. Explained
in a separate documentation “TMS FMX
Grid”

TTMSFMXEdit / TTMSFMXEditBtn

Autocomplete and lookup enabled control
that extends TEdit. Has the capability of
display and editing various editing types
such as float, money, lowercase, uppercase,
…

TTMSFMXIPEdit

An edit control for inputting IP addresses.

TTMSFMXLabelEdit

A label with a built-in inplace editor.

TTMSFMXGraphicCheckLabel

A checkbox with configurable checkmark
image.

TTMSFMXPanel

Expandable / Collapsable container for
other controls.

http://www.tmssoftware.biz/download/manuals/TMSFMXGridDevGuide.pdf
http://www.tmssoftware.biz/download/manuals/TMSFMXGridDevGuide.pdf

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

17

TTMSFMXProgressBar

Extends TProgressBar and adds a display
text with format capabilities.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

18

TTMSFMXNavBar

Navigation bar with several panels
that can hold controls and can be
divided in sections.

TTMSFMXCalendar /
TTMSFMXCalendarPicker

Calendar with multiselect,
disjunctselection, as well as the
capability of displaying
weeknumbers and weekdays.

TTMSFMXMemo

Feature packed and highly
stylable memo component.
Explained in a separate
documentation “TMS FMX Memo”

http://www.tmssoftware.biz/download/manuals/TMSFMXMemoDevGuide.pdf

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

19

TTMSFMXTrackBar

Highly styleable and configurable
trackbar with optional snapping,
tickmarks and formatted values
text.

TTMSFMXColorPicker /
TTMSFMXColorSelector

A color selector and picker with
many customization / custom
drawing options and events.

TTMSFMXBitmapPicker /
TTMSFMXBitmapSelector

A bitmap selector and picker with
many customization / custom
drawing options and events.

TTMSFMXButton

A standard TButton extended with
an optional image and html
enabled text.

TTMSFMXWebBrowser /
TTMSFMXWebBrowserPopup

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

20

TTMSFMXSignatureCapture

TTMSFMXListEditor

TTMSFMXFontNamePicker /
TTMSFMXFontSizePicker

TTMSFMXCheckGroup /
TTMSFMXRadioGroup

TTMSFMXCheckGroupPicker /
TTMSFMXRadioGroupPicker

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

21

TTMSFMXTaskDialog

TTMSFMXToolBar

TTMSFMXGridFilterPanel

Separate panel for filtering
TTMSFMXGrid

TTMSFMXRichEditor

Feature packed and rich editor
component

TTMSFMXDateTimeEdit

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

22

Combination of date and time edit
component

TTMSFMXRatingGrid

Control for capturing ratings for
different items or for presenting
feature comparison lists

TTMSFMXPassLock

Control for capturing passwords
on a keypad or circle pattern

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

23

TTMSFMXScrollMenu

TTMSFMXTouchKeyBoard /
TTMSFMXPopupTouchKeyBoard

TTMSFMXTabSet /
TTMSFMXPageControl

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

24

TMSFMXNavBar

TTMSFMXNavBar is a container for TTMSFMXNavBarPanel that is able to display several sections per
panel. Each panel is displayed in a list that can be collapsed with a slider.

Adding a panel can be done by right-clicking the component and clicking “new panel”.

Next panel and previous panel is used to navigate through the panels that you have created.
To create a panel programmatically, first create and then add the panel as a child to the navbar:

var

 aPanel: TTMSFMXNavBarPanel;

begin

 aPanel := TTMSFMXNavBarPanel.Create(TMSFMXNavBar1);

 aPanel.Caption := 'Hello World!';

 TMSFMXNavBar1.AddPanel(aPanel);

The amount of visible panel items can be controlled with TMSFMXNavBar1.SplitterPosition

which is limited to the panelcount.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

25

TTMSFMXEdit / TTMSFMXEditBtn

TTMSFMXEdit and TTMSFMXEditBtn extends TEdit and adds several capabilities such as
autocompletion, Lookup and supports edit types such as alphanumeric, numeric, float, uppercase,
lowercase, money, ….

The lookuplist can be enabled by setting the enabled property to true:

 TMSFMXEdit1.Lookup.Enabled := True;

To display the list while typing, items can be added to the displaylist. The amount of displayed
items when typing can be controlled with TMSFMXEdit1.Lookup.DisplayCount.

 TMSFMXEdit1.Lookup.DisplayList.Add('abs');

 TMSFMXEdit1.Lookup.DisplayList.Add('Item 1');

 TMSFMXEdit1.Lookup.DisplayList.Add('Hello World !');

When typing, the list shows after 2 characters, with the property
TMSFMXEdit1.Lookup.NumChars this can be modified. When typing text, the text that is typed

can also be automatically added to the list by setting TMSFMXEdit1.Lookup.History to true.

Autocompletion can be actived with TMSFMXEdit1.AutoComplete := True; The edit

automatically displays the item that matches the characters typed in the edit.

 TMSFMXEdit1.AutoComplete := True;

 TMSFMXEdit1.Lookup.DisplayList.Add('Hello World !');

The text in the edit can be displayed as password characters by setting TMSFMXEdit1.Password
:= True;

The TTMSFMXEditBtn extends the TTMSFMXEdit, inheriting all features and adds a button to the edit
that can display a popupcontrol.

The popupcontrol can be added with

TMSFMXEditBtn1.PopupControl := TreeView1;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

26

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

27

TTMSFMXIPEdit

TTMSFMXIPEdit is an edit control for inputting IP addresses. The control supports IPv4, IPv6 and Mac
address input as well as automatic masking and focus advance.

Properties
IPAddress: Get or set the IP address
IPAddressType: Set the type of address; IPv4, IPv6 or Mac

TTMSFMXLabelEdit

TTMSFMXLabelEdit is a label with a built-in inplace editor. Start editing can be programmatic, by
click on Edit button or by click on label. End editing with click on Accept/Cancel button.

Properties
AcceptBitmap / AcceptBitmapName: Assign a custom image for the Accept button
CancelBitmap / CancelBitmapName: Assign a custom image for the Cancel button
EditMaxLength: The maximum number or characters that can be entered
EditMode: Programmatically enable or disable editing
EditType: Define the type of characters that can be entered; Numeric, UpperCase …
EditValidChars: Define the valid characters that can be entered, when EditType is set to
etValidChars
EditBitmap / EditBitmapName: Assign a custom image for the Edit button
Text: Get or set the label text

Events
OnEditStart: Event fired when editing is started
OnEditStop: Event fired when editing is ended

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

28

TTMSFMXGraphicCheckLabel

TTMSFMXGraphicCheckLabel is a checkbox with configurable checkmark image. The control has
several built-in presets.

Properties
Checked: Programatically change the state to checked / unchecked
Kind: Set the kind of preset images and text to use
StateChecked / StateUnChecked: Configure the checked / unchecked appearance

- Bitmap / BitmapName: Assign a custom image
- Text: Set the text displayed next to the image

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

29

TTMSFMXPageSlider

TTMSFMXPageSlider is a drill down page control that holds and animates multiple pages sliding from
left to right and vice versa as drill down is happening.

1) Header: The top-aligned rectangle that can hold other controls and contains by default the
HTML enabled TTMSFMXHTMLText.

2) HeaderText: HTML enabled text.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

30

3) Footer: The bottom-aligned rectangle that can hold other controls and contains by default
the HTML enabled TTMSFMXHTMLText.

4) FooterText: HTML enabled text.
5) Content: The client-aligned rectangle that can hold other controls.
6) Contenteffect: A shadow effect on the default style

Adding a new page at design time can be done by right-clicking the component and choosing “New
page” from the context menu.

To create a new page at runtime the following code can be used:

var

 sp: TTMSFMXPage;

begin

 sp:= TTMSFMXPage.Create(TMSFMXPageslider1);

 sp.PageSlider := TMSFMXPageslider1;

 sp.Header := 'Runtime created page';

end;

To remove a page at runtime, simply destroy the page:

TMSFMXPage.Free;

Pages slide in from the right and are animated. To change a page simply set the ActivePageIndex to
the correct page. You will notice that pages with a PageIndex that occur before the
ActivePageIndex will automatically slide along the Active Page.

Navigation through pages can also be done with the keyboard and the mouse. Click on a page and
slide it from right to left to increase the ActivePageIndex or vice versa to decrease. This all happens
with animation that can optionally be set faster or slower or be turned off with the AnimationFactor
property.

When a page is active, you will notice that the page leaves a minimum amount of width to the left,
this is necessary to interact with and show the previous page. This is set with the MinimumWidth
property.

Properties / Events

- ActivePage: The page that is currently active.

- ActivePageIndex: The index of the page that is currently active. This property is used to

switch between pages at designtime and runtime.

- AnimationFactor: The speed of the animation, the higher the factor the slower the

animation.

- Fill: The fill of the background of the page.

- Footer / Header: The caption of the footer / header which support HTML.

- MinimumWidth: The width that is left visible of the page when the page is inactive.

- PageIndex: The page index of the page.

- BitmapContainer: container of bitmaps used in the Header and Footer to display images

with HTML.

- OnPageChange: Event called when a page has changed

- OnPageChanging: Event called when a page is about to change. With this event page

changing can be blocked with the AllowChange parameter.

- OnPageMoved: Event called when a page is moved to another PageIndex

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

31

TTMSFMXTableView

Architecture

1) Header: a rectangle shape with a caption and that can hold optionally a backbutton and an
editbutton. The backbutton is used to return from the detail view and the edit button is
used to put the tableview in edit mode.

2) Footer: a rectangle shape with a caption. When the TableView is in edit mode, the 3
buttons (Archive, Move and Mark) are displayed in this footer rectangle.

3) BackGround: the background is a placeholder for the items that also enables scrolling of
items and keyboard handling.

4) DefaultItem: the basic default layout of the item. When adding items, the layout is copied
(cloned) for each item.

5) Edit Rectangle: the rectangle that is displayed when the TableView is in edit mode.

6) Left Rectangle: a placeholder rectangle that can contain other elements, such as, but not
limited to, a checkbox, radiobutton or image.

7) Center Rectangle: the rectangle that contains the Caption and Description of the item.

8) Right Rectangle: the right rectangle has the same purpose as the left rectangle, but is right
aligned.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

32

9) Bulb Rectangle: a custom designed shape that can display text in a rounded shaped

appearance.

10) Detail Rectangle: a rectangle that contains a predefined detail image and is enabled when
an item has a DetailView assigned.

11) Delete Rectangle: a rectangle that contains a delete button and is enabled when swiping on
the item.

12) PlaceHolder Rectangle: element internally used to position the elements with extra spacing
when the lookupbar / scrollbar are enabled.

13) Default Category: the basic layout of a category. When adding items, the category is
automatically added according to the kind of item.

14) Header Search: a search edit box displayed when filtering or search is enabled.

15) Inplace Edit: search edit box that is transformed to work as an inplaced editor and is
displayed when clicking on the caption or description when the appropriate properties are
set to enable editing.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

33

Styling

With the FireMonkey design philosophy in mind, we have made the TableView completely styleable.
When editing the custom or default style when right-clicking on the component (See: General
Firemonkey component usage guidelines) the basic TableView layout is defined with several
styleable elements. Elements can be removed, added and modified and updates are reflected in the
component when applying the edited style.

Programmatically, almost every element is accessible with a function. When you want to style an
element programmatically, you can use the appropriate function. Below is an overview of each
element that is styleable at designtime and at runtime:

1) TTMSFMXTableView.GetHeaderRectangle

2) TTMSFMXTableView.GetFooterRectangle

3) TTMSFMXTableView.GetListBackGround &

TTMSFMXTableView.GetListContainer

4) TTMSFMXTableView.GetDefaultItem & TTMSFMXTableViewItem.Shape

5) TTMSFMXTableViewItem.ShapeEditRectangle

6) TTMSFMXTableViewItem.ShapeLeftRectangle

7) TTMSFMXTableViewItem.ShapeCaption &

TTMSFMXTableViewItem.ShapeDescription &
TTMSFMXTableViewItem.ShapeCenterRectangle

8) TTMSFMXTableViewItem.ShapeRightRectangle

9) TTMSFMXTableViewItem.ShapeBulbRectangle

10) TTMSFMXTableViewItem.ShapeDetailRectangle

11) TTMSFMXTableViewItem.ShapeDeleteRectangle

12) TTMSFMXTableViewItem.ShapePlaceHolder

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

34

13) TTMSFMXTableView.GetDefaultCategory & TTMSFMXTableViewCategory.Shape

14) TTMSFMXTableView.GetSearchEdit

15) TTMSFMXTableView.GetInplaceEdit

These are the most important functions that return the element that is available in the default style
or the style of the item when it is cloned. There are more functions available specific for the item
and the tableview such as the deletebuttonshape, bulbshape, checked and uncheckedimage and
default animations on the backbutton. A complete list can be found when typing the name of the
component and search through all the “Get*” functions and for the Tableview Item the functions
that have “Shape” in the name.

Below is a sample that shows the power of styling.

Properties / Methods / Events

Below is a list of properties, methods and events in alphabetic order that expose the core
functionality of the component and that need a short introduction before delving into the details of
the component.

TTMSFMXTableView published properties

- ArchiveText: The text of the left button that is displayed in the footer when in edit mode.
- AutoDeleteItem: deletes the item automatically.
- AutoFilter: When filtering or searching is enabled, the filtering is applied automatically.
- AutoLoadBuffer: When buffering is used (BufferSize > 0) the list automatically loads the

next buffer when scrolling in the list.
- AutoLookup: When using the lookupbar, the list automatically displays the correct

category.
- AutoToggleDetail: When a DetailView is assigned and the item is clicked. The DetailView is

automatically displayed with animation.
- BackButton: Displays a back button in the left corner of the header when the DetailView is

displayed.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

35

- BitmapContainer: Support for BitmapContainer, which is able to contain a collection of
reusable TBitmap items.

- BufferSize: Used to load an initial buffer of the total collection of items. When scrolling the
buffer is repositioned to load the next BufferSize of items.

- Categories: Collection of custom categories, used when the CategoryType is set to
ctCustom.

- CategoryType: The type of categories that are used. A choice can be made between
alphabetic, alphanumeric or custom.

- DefaultDetailView: The Default detail view that is used by all items if the DetailView
property of the item is nil.

- EditButton: Displays an edit button in the right corner of the header. This button can be
used to set the TableView in edit mode. This button is also used in combination with
filtering / searching. In this mode the button is switched to a Cancel button.

- Filtering: the type of filtering the list applies. In combination with the search edit box, the
vfFilterStart and vfFilterRandom option creates a subset of items and vfSearch highlights
the item that matches the search string.

- FooterText: The text in the footer.
- HeaderText: The text in the header.
- ItemOptions: Enables or disables cloning of certain elements that are present in the default

item. The performance of the list can be increase when using in combination with the
BufferSize property.

- Items: a collection of TableView items.
- LayoutMode: defines the layout of the item list. The lmNormal option displays the list as a

normal TableView and the lmGroup displays the items in grouped mode. The grouped mode
used the GroupIndex per item to create groups.

- LookupBar: Enables or disables the lookupbar.
- MarkText: The text of the right button that is displayed in the footer when in edit mode.
- MoveText: The text of the center button that is displayed in the footer when in edit mode.
- MultiSelect: Enables or disables multiselect on items.
- ScrollIndicator: Shows or hides the scrollindicator that visualizes the amount of items in the

collection with an optional fading animation.
- SelectedItemIndex: The index of the item that has been selected.
- ShowFilter: Show the search edit box on top of the list which can be used to apply filtering

or highlight an item in the list.
- ShowFilterOnSwipe: Enables or disables the ability of showing the search edit box

Category item published properties in Categories collection

- Caption: The Caption displayed in the category.
- ID: To link items to the specific category.
- LookupText: The text displayed in the lookupbar.

Item published properties in Items collection

- Bitmap: The bitmap displayed in the left rectangle image when enabled in the ItemOptions.
- BitmapName: The name of the bitmap displayed in the left rectangle image when enabled

in the ItemOptions and when a BitmapContainer is assigned and contains an image with the
correct name.

- BulbText: The text of the bulb rectangle, that is displayed when enabled in the
ItemOptions.

- CanDelete: When CanDelete is false, the deletebutton will not be displayed and the item
cannot be deleted.

- CanEditCaption: Displays an inplace editor when clicking on the caption.
- CanEditDescription: Displays an inplace editor when clicking on the description.
- CanSelect: Enables selection of an item.
- Caption: The caption of the item.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

36

- CategoryID: The id of the category linked to the item when displaying custom categories.
- DataBoolean: Boolean property that is linked to a control placed in the right rectangle. This

property also triggers the OnItemData event.
- DataGroupIndex: The index that is used in combination with a radiobutton, to create a

RadioButtonGroup.
- DataObject: Has the same functionality as the DataBoolean property but of type TObject.
- DataString: Has the same functionality as the DataBoolean property but of type String.
- DataValue: Has the same functionality as the DataBoolean property but of type Single.
- DeleteButton: Displays the deletebutton.
- Description: The description of the item.
- DetailView: The view that is displayed when clicking on an item, to navigate to the detail.
- GroupIndex: The index that is used to group items in the lmGroup layoutmode.
- LeftMargin: The margin / indenting of an item from the left side.
- RightMargin: The margin / indenting of an item from the right side.
- Selected: Sets the item selected.
- Tag: Tag property that can be used to hold additional information.
- Visible: Shows or hides the item.

Public procedures, functions, properties

- property TopItem: Integer;

Sets the first visible item in the list.

- function SelectedItem: TTMSFMXTableViewItem;

Returns the selected item.

- function CountSelected: Integer;

Returns the count of selected items.

- function ItemFromDifferentCategory(item1, item2:

TTMSFMXTableViewItem): Boolean;

Returns whether the first item is from a different category of the second item.

- function ItemAtXY(X, Y: Single): TTMSFMXTableViewItem;

Returns the Item at a specific position in the TableView.

- function GetCharacterForItem(AItem: TTMSFMXTableViewItem): String;

Returns the Character of the item that is used when categories are applied.

- function FindItemWithFilter(AFilter: String): TTMSFMXTableViewItem;

Returns the item with a specific filter applied.

- function IsItemInItemList(AItem: TTMSFMXTableViewItem): Boolean;

Returns if the item is loaded in the list (depending on the BufferSize and scrollposition)

- function IsItemVisibleInList(AItem: TTMSFMXTableViewItem): Boolean;

Returns if the item is visible in the list.

- function isEditMode: Boolean;

Returns if the edit mode is active or inactive.

- function isDetailMode: Boolean;

Returns if a detail view is visible or not visible.

- function GetCurrentListView: TControl;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

37

Returns the current view in edit mode, the main list control or the detail list control.

- function FindFirstItemWithCategory(ACategory: String):

TTMSFMXTableViewItem;

Returns the first item with a specific Category when using AlphaBetic / AlphaNumeric
categories.

- function FindFirstItemWithCategoryID(ACategoryID: Integer):

TTMSFMXTableViewItem;

Returns the first item with a specific CategoryID when using custom categories.

- procedure ToggleEditMode;

Toggles between edit mode and normal mode.

- procedure ApplyFilter(AFilter: String);

Applies and automatically updates the list with a specific filter.

- procedure UpdateTableView;

Forces a complete update of the list of items in the TableView.

- procedure BeginUpdate;

Blocks an update of the TableView. This is necessary when adding a large amount of items.
Used in combination with EndUpdate;

- procedure EndUpdate;

Blocks an update of the TableView. This is necessary when adding a large amount of items.
Used in combination with BeginUpdate;

- procedure LoadNextBuffer(ABufferSize: Integer = -1);

Loads the next list with specific BufferSize. (ABufferSize = -1 loads the default BufferSize).

- procedure LoadPreviousBuffer(ABufferSize: Integer = -1);

Loads the previous list with specific BufferSize. (ABufferSize = -1 loads the default
BufferSize).

- procedure EditMode;

Sets the list in edit mode.

- procedure CancelEditMode;

Cancels the edit mode. Sets the list back to normal mode.

- procedure ShowDetailView;

Shows the detail view of the item.

- procedure HideDetailView;

Hides the detail view of the item.

- procedure LoadBufferBetween(BufferStart, BufferStop: Integer);

Loads the list between a start and stop buffer.

- procedure LookupCustomCategory(ACategoryID: Integer);

Automatically positions the category on top in the list with a specific CategoryID.
This can be used in combination with custom categories.

- procedure LookupCategory(ACategory: String);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

38

Automatically positions the category on top in the list with a specific Category. This can be
used in combination with AlphaBetic / AlphaNumeric categories.

- procedure LookupItem(AItemIndex: Integer; SelectItem: Boolean =

False);

Automatically positions the item on top in the list with a specific index, and the possibility
to select that item.

- procedure DeSelectAllItems;

Deselects all items.

- procedure SelectAllItems;

Selects all items that are loaded in the list.

- procedure SelectItemsBetween(AStartIndex, AStopIndex: Integer;

AddToSelection: Boolean = False);

Selects a subset of items between a StartIndex and StopIndex. AddToSelection parameter
adds the subset to an internal list, when AddToSelection is false, the list is clear before
adding the new subset.

- procedure SelectItems(Selection: Array of Integer; AddToSelection:

Boolean = False);

Selects a subset of items for which the item indexes are passed as an array of integers. This
procedure works in the same way as the subset between a StartIndex and StopIndex.

Published events

- OnAfterFilter: Event called after Filtering is applied.
- OnAfterSearch: Event called after Seaching is applied.
- OnAnimationCustomize: The transition between the list and the detailview is animated.

These 2 list animations can be customized through this event.
- OnApplyStyleLookup: When editing the default or custom Style through the StyleBook, this

event is called after applying the style. When starting the application, modifications can be
made in this event to the style that is either the default style or the edited style from the
StyleBook.

- OnArchiveClick: Event called when clicking on the ArchiveButton, which is displayed when
the TableView is set in EditMode.

- OnBackButtonClick: When the TableView is in edit mode, the BackButton is enabled. The
OnBackButtonClick event is triggered when clicking on this button.

- OnBeforeFilter: Event called before Filtering is applied.
- OnBeforeSearch: Event called before searching is applied.
- OnCategoryAnchorClick: Event called when clicking on an anchor when using HTML in the

Category.
- OnCategoryClick: When using categories and the lookupbar is enabled, the OnCategoryClick

event is called when clicking on a custom category or an alphanumeric character.
- OnCategoryCustomize: When using categories, this event is called after creating a clone of

the default category that is available in the default TableView style. Modifications on
appearance and functionality can be made through this event.

- OnHeaderAnchorClick: Event called when clicking on an anchor when using HTML in the
Header.

- OnFooterAnchorClick: Event called when clicking on an anchor when using HTML in the
Footer.

- OnItemAfterDetail: Event called when the animation is completed that animates the
detailview after clicking on the item.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

39

- OnItemAfterDraw: Event called after the item is drawed. This event can be used for custom
drawing on top of the item.

- OnItemAfterReturnDetail: Event called when the animation is completed that animates the
main list view back to the original state after clicking on the backbutton.

- OnItemBeforeDetail: Event called before the animation is started when clicking on an item
to animate the DetailView.

- OnItemBeforeDraw: Event called before the item is drawn. This event can be used to hide
the background and perform custom drawing.

- OnItemBeforeReturnDetail: Event called before the animation is started when animating
the main list back to the original state after clicking on the backbutton.

- OnItemCaptionAnchorClick: Event called when clicking on an anchor when using HTML in
the Item Caption.

- OnItemClick: Event called when clicking on an item.
- OnItemCompare: Event called when sorting the items. Custom sorting can be applied to the

items collection.
- OnItemCustomize: This event is called after creating a clone of the default item that is

available in the default TableView style. Modifications on item appearance, interaction and
functionality can be made through this event.

- OnItemData: Event called when modyfing one of the Data* properties of an item.
- OnItemDescriptionAnchorClick: Event called when clicking on an anchor when using HTML

in the Item Description.
- OnItemDelete: Event called when deleting an item.
- OnItemSelected: Event called when selecting an item.
- OnManualLoadNextBuffer: When AutoLoadBuffer is false, this event is called when the list

tries to load the next buffer.
- OnManualLoadPreviousBuffer: When AutoLoadBuffer is false, this event is called when the

list tries to load the previous buffer.
- OnManualLookup: When AutoLookup is false, this is event is called when the lookupbar is

used to lookup a category.
- OnMarkClick: Event called when clicking on the mark button which is displayed when the

TableView is set in EditMode.
- OnMoveClick: Event called when clicking on the move button which is displayed when the

TableView is set in EditMode.
- OnScroll: Event called when scrolling in the list.
- OnScrollFinished: Event called when the scrolling is finished.

Item storage and buffering

The TableView implements a specific way of loading / displaying items. The design choices are
driven by making the TableView performant and resource friendly. Items are stored in a
TCollection. When the component is first made visible on a form, from this collection a displaylist of
item shapes that are cloned from the default item shape are automatically created. Only a small
number of items are created initially. The other remaining items remain in the collection waiting to
be shown in the control by means of the generation of display items (shapes). This loading process is
necessary to make sure the TableView offers a good performance on various operating systems. In
other words, there is no speed impact when adding 10 items or 10000 items to the Items collection.
Displayed items are only on demand and incrementally created. This loading / displaying process is
controlled by a single property: BufferSize.

The BufferSize property is set, by default, to 50. This means that only for the first 50 items display
items are created. While scrolling in the list, the list automatically creates display items for the
next 50 items. This buffering method increases performance if balanced correctly. Setting the
BufferSize to 0 will create display items at once for all items. Loading 10000 items with BufferSize
set to 0 will have an initial large performance hit as the creation of display items is a resource
intensive process (FireMonkey framework limitation) Setting BufferSize to 50 is good balance.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

40

If the BufferSize is set, the AutoLoadBuffer property will create the display items automatically
when scrolling beyond the end of the list. When AutoLoadBuffer is set to False, the TableView will
not create the display items automatically but instead the appropriate events will be triggered.
Creating display items can then be done manually.

OnManualLoadNextBuffer: Event triggered if AutoLoadBuffer is false, BufferSize > 0 and the list is
scrolled to the end.

OnManualLoadPreviousBuffer: Event triggered if AutoLoadBuffer is false, BufferSize > 0 and the list
is scrolled to the beginning.

When implementing these events, loading the buffer can be done with:

 TMSFMXTableView1.LoadNextBuffer();

 TMSFMXTableView1.LoadPreviousBuffer();

These two methods have a parameter with which you can decide how many display items are
loaded. If no parameter is passed the loading will use the BufferSize property.

It’s a matter of experimenting with the starting BufferSize, the buffersize that is loaded next and
the quantity of the items in the collection to have the best performance.

Adding and removing items

After dropping a TableView component (TTMSFMXTableView) on the form you will notice that, by
default, the TableView has some items already added. Adding items can be done at designtime and
at runtime. Click on the component to view the Items property. This is a default collection editor
and can be used to add or remove items.

Items can also be added programatically:

var

 it: TTMSFMXTableViewItem;

 i: Integer;

begin

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

41

 TMSFMXTableView1.BeginUpdate;

 for I := 0 to 100 do

 begin

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Item ' + inttostr(I);

 it.Description := 'Hello World !';

 end;

 TMSFMXTableView1.EndUpdate;

Note that all calls to the TMSFMXTableView must include a BeginUpdate and EndUpdate statement.
Whenever an item is added, the display list is rebuilt. With a BeginUpdate and EndUpdate statement
the update process is blocked and then executed once.
To remove an item programmatically, just call the item’s destructor.

Sorting

After adding items, sorting can be applied to the collection. This will be done alphabetically by
default, but can be customized with the OnItemCompare event.

If no sorting is applied, the items are displayed in the order that they are added in the collection.

var

 it: TTMSFMXTableViewItem;

 i: Integer;

begin

 TMSFMXTableView1.BeginUpdate;

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Pear';

 it.Description := 'This is a Pear';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Banana';

 it.Description := 'This is a Banana';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Apple';

 it.Description := 'This is an Apple';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Lemon';

 it.Description := 'This is a Lemon';

 TMSFMXTableView1.EndUpdate;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

42

When calling TMSFMXTableView1.Items.Sort; the Items are sorted alphabetically. Two

optional parameters can be passed to sort case sensitive (default) or incase sensitive and ascending
(default) or descending:

TableView.

Sorting is important for the next paragraph in this manual: Categories.

Categories

In the TableView there are 4 types of categories:

- AlphaBetic
- AlphaNumericFirst (Numbers are added to the lookupbar and are displayed first)
- AlphaNumericLast (Numbers are added to the lookupbar and are displayed last)
- Custom

These types can be set with the CategoryType property. With the AlphaBetic / AlphaNumeric
categories, the TableView automatically searches and adds categories with the first letter of the
item caption. The range that is used to display categories in AlphaBetic mode is A…Z and
AlphaNumeric adds 0…9. In the sample below the items are sorted and the CategoryType property is
set to ctAlphaBetic.

var

 it: TTMSFMXTableViewItem;

 i: Integer;

begin

 TMSFMXTableView1.BeginUpdate;

 TMSFMXTableView1.CategoryType := ctAlphaBetic;

 it := TMSFMXTableView1.Items.Add;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

43

 it.Caption := 'Pear';

 it.Description := 'This is a Pear';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Banana';

 it.Description := 'This is a Banana';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Apple';

 it.Description := 'This is an Apple';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Lemon';

 it.Description := 'This is a Lemon';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Apple 2';

 it.Description := 'This is an Apple 2';

 TMSFMXTableView1.Items.Sort;

 TMSFMXTableView1.EndUpdate;

end;

When using categories, the LookupBar on the right side of the control is enabled and displayed by
default. The LookupBar can be used to navigate directly through the categories. This is explained in
the lookup paragraph.

If the CategoryType is set to ctAlphaBetic / ctAlphaNumericFirst or ctAlphaNumericLast the
categories are predefined. You can use custom categories by setting the CategoryType to ctCustom
and adding your own categories. Custom categories works with linking the CategoryID property of
the item to the ID of the category.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

44

var

 it: TTMSFMXTableViewItem;

 cat: TTMSFMXTableViewCategory;

 i: Integer;

begin

 TMSFMXTableView1.BeginUpdate;

 TMSFMXTableView1.CategoryType := ctCustom;

 cat := TMSFMXTableView1.Categories.Add;

 cat.Id := 0; // all items with CategoryID 0 belong to this category

 cat.Caption := 'Category 1';

 cat.LookupText := 'Cat 1';

 cat := TMSFMXTableView1.Categories.Add;

 cat.Id := 1; // all items with CategoryID 0 belong to this category

 cat.Caption := 'Category 2';

 cat.LookupText := 'Cat 2';

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Pear';

 it.Description := 'This is a Pear';

 it.CategoryID := 0;

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Banana';

 it.Description := 'This is a Banana';

 it.CategoryID := 0;

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Apple';

 it.Description := 'This is an Apple';

 it.CategoryID := 1;

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Lemon';

 it.Description := 'This is a Lemon';

 it.CategoryID := 1;

 it := TMSFMXTableView1.Items.Add;

 it.Caption := 'Apple 2';

 it.Description := 'This is an Apple 2';

 it.CategoryID := 1;

 TMSFMXTableView1.Items.Sort;

 TMSFMXTableView1.EndUpdate;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

45

As result you can see the 2 categories in the list and the corresponding lookuptext for each category
in the lookupbar. Sorting can also be applied on categories in the same way as sorting is applied to
items. The categories are then sorted alphabetically and ascending based on the caption.

Lookup

After activating categories, the (optional) lookupbar is automatically displayed. Clicking and
dragging along the lookupbar will automatically perform a lookup. This can be disabled with the
AutoLookup property. If the AutoLookup property is false, the OnManualLookup event is triggered
when a category is clicked. From there you can perform a lookup with one of the two methods
below depending on the type of categories you have chosen:

 TMSFMXTableView1.LookupCategory(ACharacter);

 //Performs a lookup of an AlphaBetic / AlphaNumeric category with a

specific character.

 TMSFMXTableView1.LookupCustomCategory(ACharacterID);

 //Performs a lookup of a Custom category with a specific characterID.

When navigating through the categories the lookupbar will, when necessary, load the buffer that is
needed to display the selected category. Depending on the BufferSize and the active buffered items
the lookup will be either instant or could have a small loading time. Adapt the BufferSize to an
optimal value depending on the device on which the application will run.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

46

Filtering / Searching

The TableView supports Filtering or Searching. Filtering only shows the items that match the search
text while searching highlights the first item found. Similar to the operation of the lookupbar, this
way of navigating through items automatically takes care of loading the correct buffer that is
needed to display the matched items.

Filtering / Searching can be enabled in two ways: either programmatically with the
ShowFilter:Boolean property or by swiping the list down. The last method is optional and can be
configured with the ShowFilterOnSwipe property. To programmatically show the filter entry edit
control use:

 TMSFMXTableView1.ShowFilter := True;

After setting ShowFilter to true or swiping the list down, the search edit box appears.

The search edit box can be hidden by clicking the cancel button in the TableView header.
By default, when filtering is performed, the TableView only shows the items that match the string
in the edit box.
The filter method can be changed by setting the Filtering property and can be set to vfFilterStart,
vfFilterRandom, vfSearch or vfNone.

- vfFilterStart: Shows the items that match the string from the beginning of the text in the
edit box.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

47

- vfFilterRandom: Shows the items that contains the filter in the text, not necessarily from
the beginning of the text.

- vfSearch: Highlights the first item that matches the string in the edit box.
- vfNone: No filtering or searching is applied.

The filtering or searching is automatically performed everytime the text in the search edit box is
changed. With the AutoFilter property set to false, this is not longer the case. When AutoFilter is
false, the filtering is applied by pressing the Enter key.

Following events are triggered when performing filtering / searching:

OnBeforeFilter, OnBeforeSearch, OnAfterFilter and OnAfterSearch

Via these events, custom filtering or custom searching can be done. To perform a manual filtering
you can use the ApplyFilter method:

 TMSFMXTableView1.ApplyFilter('Filter');

Editing / Deleting

Editing can be enabled with the EditButton: Boolean property. When clicking the edit button, the
TableView is set in edit mode. This automatically animates checkboxes from the left and adds
buttons in the footer of the TableView. Clicking on the items automatically checks the checkbox
and updates the buttons. The text for these editing related buttons can be set with the MarkText,
ArchiveText and MoveText properties.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

48

Clicking on the Archive Button will delete the selected items from the list. Each button has a
separate event that can be used to perform different operations. Deleting an item can also be done
from a delete button associated with the item. The delete button is made visible by swiping from
right to left on the item or programmatically:

Clicking on the delete button will delete the item. The automatic delete functionality in the
deletebutton and the archive button can be disabled with the AutoDeleteItem property.

Note: Editing and searching are mutually exclusive functions. When searching is enabled the edit
functionality is disabled and vice versa.

DetailView

The TableView has support for showing a Detailview. The detail view can be any type of component
that descends from TControl. Each item in the TableView can have its own DetailView or all items
can share the same DetailView (DetailView property on item level versus DefaultDetailView on
TableView level). If the DetailView is assigned, the item is marked with a default detail arrow
image. If the DetailView property is nil, the item automatically looks for the DefaultDetailView
control that can be assigned on the TableView level.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

49

Clicking on the item that has a DetailView assigned automatically slides the main items list out of
view and slides in the DetailView. An extra back button, controlled by the TableView BackButton
property can be optionally shown and when clicked, it will slide out the DetailView and slide in the
regular main items list.

In this sample, we have placed three panels on the form and assigned each panel to a different
item:

 TMSFMXTableView1.Items[0].DetailView := Panel1;

 TMSFMXTableView1.Items[1].DetailView := Panel2;

 TMSFMXTableView1.Items[2].DetailView := Panel3;

Clicking on the first item shows Panel1, the second item Panel2 and the third item Panel3.

The automatic toggle between the main list and the detail list can be disabled by setting
AutoToggleDetail: Boolean to false. From the OnItemClick or OnItemSelected event handler you can
use the ToggleDetailView() method to show the assigned DetailView of the item. With the
OnBackButtonClick event you can programmatically return back to the main list.

TForm1.TMSFMXTableView1BackButtonClick(Sender: TObject;

 AItem: TTMSFMXTableViewItem);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

50

begin

 AItem.ToggleDetailView;

end;

TForm1.TMSFMXTableView1ItemClick(Sender: TObject;

 AItem: TTMSFMXTableViewItem);

begin

 AItem.ToggleDetailView;

end;

Layout

The TableView has 2 ways of displaying the list. The list can either be displayed in a normal view
(default) or in a grouped view. This can be selected with the TTMSFMXTableView.LayoutMode
property.

Normal view:

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

51

Grouped view:

Items are assigned to a group (Category) via the Item’s CategoryID property. When using categories,
multiple items can be assigned to a group (Category).

This sample code snippet initializes two groups with each two items in the TableView:

var

 itm: TTMSFMXTableViewItem;

begin

 TMSFMXTableView1.BeginUpdate;

 TMSFMXTableView1.Items.Clear;

 TMSFMXTableView1.Categories.Clear;

 // group 0

 TMSFMXTableView1.Categories.Add.Caption := 'Internet settings';

 // group 1

 TMSFMXTableView1.Categories.Add.Caption := 'Email settings';

 TMSFMXTableView1.CategoryType := ctCustom;

 itm := TMSFMXTableView1.Items.Add;

 itm.CategoryID := 0;

 itm.GroupIndex := 0;

 itm.Caption := 'Proxy';

 itm.Description := 'Proxy server name';

 itm := TMSFMXTableView1.Items.Add;

 itm.CategoryID := 0;

 itm.GroupIndex := 1;

 itm.Caption := 'IP address';

 itm.Description := '192.168.0.1';

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

52

 itm := TMSFMXTableView1.Items.Add;

 itm.CategoryID := 1;

 itm.Caption := 'POP server';

 itm.Description := 'pop.myserver.com';

 itm := TMSFMXTableView1.Items.Add;

 itm.CategoryID := 1;

 itm.Caption := 'SMTP server';

 itm.Description := 'smtp.myserver.com';

 TMSFMXTableView1.LayoutMode := lmGroup;

 TMSFMXTableView1.EndUpdate;

end;

As you can see with in the above result, the items from the first category are added separately. This
can be controlled with the GroupIndex property. Items can be added to different categories with
the CategoryID and within the category, multiple groups can be created with the GroupIndex
property.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

53

User interface interaction with the TableView

The list supports scrolling, navigation and selection. Interaction with the list can be done with the
keyboard and the mouse.

With the keyboard you can navigate through the items, each time you press the up, down, left or
right keys the list selects the previous or next item. The home key selects the first item while the
end key selects the last item. When pressing the pagedown or pageup key the list jumps in steps of
the BufferSize, if the BufferSize = 0 the step is set to 10.

When navigating through the list with the keyboard, the list automatically loads the next buffer.

To navigate in the list with the mouse, you can click and hold your left mouse button on the list
then drag up or down depending in the direction you want the list to scroll. When making a flick
gesture the list will scroll a certain amount of items with an inertia animation. The faster you flick
with the mouse the faster and the further the list will scroll.

MultiSelect

The TableView supports multiple item selection. Multiple item selection can be enabled by setting
the MultiSelect property to true. Clicking on an item selects that item and when you click on
another item, the previous item is deselected. To select multiple items, you need to hold the CTRL
or SHIFT key on the keyboard. With the CTRL key you are able to select items of choice and with
the SHIFT key the list selects all items between the first and the last item you have clicked.

MultiSelect can be done by keyboard alone, pressing the direction keys and holding the CTRL or
SHIFT key at the same time. Below is a sample of multiple items selected in the list by holding the
CTRL key and clicking several items.

Programmatically, in multiselect mode, the selected of an item can be get or set with the item’s
Selected: Boolean property. In addition, two helper methods exist: SelectAllItems, DeSelectAllItems
to programmatically select or unselect all items at once.

This sample code snippet programmatically selects items 1,3,5:

 TMSFMXTableView1.MultiSelect := true;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

54

 TMSFMXTableView1.DeSelectAllItems;

 TMSFMXTableView1.Items[1].Selected := true;

 TMSFMXTableView1.Items[3].Selected := true;

 TMSFMXTableView1.Items[5].Selected := true;

Additional Item Elements

Other than the delete button, the detail arrow image and the checked / unchecked image, the item
has three additional elements that are optionally (See notes in Performance chapter) available:

- LeftRectangle
- RightRectangle
- BulbRectangle

The BulbRectangle contains a TTMSFMXHTMLText shape that contains optional HTML formatted Text
and can be set with the BulbText property.

 TMSFMXTableView1.Items[0].BulbText :='Bulb <i>Text</i>';

The Left Rectangle contains a TTMSFMXBitmap component that can be linked to a BitmapContainer.
By default the Left Rectangle is disabled. You can enable it by checking the correct option in the
ItemOptions property.

Note that an extra area is offered where a bitmap can be shown. You can either show a
BitmapContainer item and link it via the BitmapName, or directly load the bitmap in the item.

var

 bmp: TTMSFMXBitmapItem;

begin

 bmp := TMSFMXTableView1.Items.Add;

 bmp.Name := 'item_bitmap';

 bmp.Bitmap.LoadFromFile('mybitmap.png');

 TMSFMXTableView1.BitmapContainer := TMSFMXBitmapContainer1;

 TMSFMXTableView1.Items[0].BitmapName := 'item_bitmap';

 //or

 TMSFMXTableView1.Items[0].Bitmap.LoadFromFile('mybitmap.png');

end;

The right rectangle is an empty rectangle by default and can contain any visual element that is
available in FireMonkey. The TableView supports a small set of controls, that are ready to use and
do not need further binding with properties and events. This is explained in the next chapter.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

55

Performance

A default TableView has some performance related options already preset to optimal values for the
most typical use of the TableView. The BufferSize is set to 50, which will only load and display the
first 50 items in the UI. Second performance related setting is the ItemOptions property. This
contains a set of options that can be used to decrease the time the TableView needs to build up the
display items list.

As explained in the Architecture chapter, the default item contains various elements that are
cloned when adding items. These setting under ItemOptions affect what parts of an item are cloned
or not. When an element is not checked in the ItemOptions, the element is not cloned when the
display item list is built and that increases the performance.

By default the ItemOptions have unchecked LeftRectangle, RightRectangle and BulbRectangle. This
means that these elements will not be cloned and will not be available in the item. You can further
improve performance by unchecking elements that are not necessary for your application.

Binding Controls

When the right rectangle is activated in the ItemOptions, an extra space will be available that can
be filled with the control added in the StyleBook. You can add any type of control, but the list
already implements a small set that does not need extra binding.

- CheckBox
- RadioButton
- TrackBar
- ArcDial

Open the StyleBook editor by clicking on the Edit Custom Style option in the popupmenu after right-
clicking on the component. Select the default item -> right rectangle element and place a new
TCheckBox component inside the rectangle.

Select the TCheckBox component and set the StyleName to ‘item_checkbox’. When adding a
RadioButton, TrackBar or ArcDial, the component base classname – ‘T’ must be prepended with
‘item_’. The StyleName must be lowercase.

- CheckBox: ‘item_checkbox’
- RadioButton: ‘item_radiobutton’
- TrackBar: ‘item_trackbar’
- ArcDial: ‘item_arcdial’

Applying the style in the IDE style editor results in the Checkbox being visible at designtime in each
item in the list. In the TableView, the CheckBox OnChange event has been assigned and the
IsChecked property is linked to the Item from the Items collection.

To persist the value of the checkbox, the Item has a few Data* properties to store the value:

- DataBoolean
- DataGroupIndex
- DataString
- DataValue
- DataObject

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

56

For the CheckBox and RadioButton the DataBoolean property is used, for the TrackBar and ArcDial
the DataValue property is used. When changing the DataBoolean property to true, the checkbox will
be checked. When checking the checkbox, the DataBoolean property will be set.

This binding happens in the same way for the other controls. For the RadioButton the Item has an
extra DataGroupIndex property that can be used to create a RadioGroup, i.e. all items with a
RadioButton with the same DataGroupIndex value form a group.

Manual binding is also available through events for non-supported controls. Below is a sample
binding a TEdit to the DataString property of the item.

First, add a TEdit control to the right rectangle element in the StyleBook. Set the TEdit control
stylename to ‘item_edit’. This will be important to access the edit with the correct name.
Second, there are 3 important events that are needed for binding with TEdit.

- OnItemCustomize
- OnItemData
- OnChange

The OnItemCustomize event is used to connect the edit with the DataString property. The
OnItemData is called when the Data properties are modified. The OnChange event is implemented
and sets the DataString property with the value of the edit. The combination results in the code
below:

TForm1.ItemEditChanged(Sender: TObject);

var

 i: Integer;

 it: TTMSFMXTableViewItem;

begin

 i := (Sender as TEdit).Tag;

 if (i >= 0) and (i <= TMSFMXTableView1.Items.Count - 1) then

 begin

 it := TMSFMXTableView1.Items[i];

 it.DataString := (Sender as TEdit).Text;

 end;

end;

TForm1.TMSFMXTableView1ItemCustomize(Sender: TObject;

 AItem: TTMSFMXTableViewItem; AItemShape: TTMSFMXTableViewItemShape;

 AItemControlShape: TControl);

var

 shpr: TRectangle;

 edt: TEdit;

begin

 shpr := AItem.ShapeRightRectangle;

 if Assigned(shpr) then

 begin

 edt := (shpr.FindStyleResource('item_edit') as TEdit);

 if Assigned(edt) then

 begin

 edt.OnChangeTracking := ItemEditChanged;

 edt.Tag := AItem.Index;

 end;

 end;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

57

TForm1.TMSFMXTableView1ItemData(Sender: TObject;

 AItem: TTMSFMXTableViewItem; AItemShape: TTMSFMXTableViewItemShape;

 AItemControlShape: TControl);

var

 shpr: TRectangle;

 edt: TEdit;

begin

 shpr := AItem.ShapeRightRectangle;

 if Assigned(shpr) then

 begin

 edt := (shpr.FindStyleResource('item_edit') as TEdit);

 if Assigned(edt) then

 edt.Text := AItem.DataString;

 end;

end;

LiveBindings

LiveBindings is new way of data-binding controls, for more information and samples on LiveBindings,
please read the documentation on
http://docwiki.embarcadero.com/RADStudio/en/LiveBindings_in_RAD_Studio first.

The TableView has a basic implementation that populates the list and takes care of binding the
SelectedItemIndex. When dropping a TableView on the form you will notice a LiveBindings property.

To create a new LiveBinding, you can either click on the arrow and select “New LiveBinding…” or
click directly on “New LiveBinding…” at the bottom of the object inspector.

This action will automatically drop a BindingsList component on the form and will show the
BindingsList editor window.

http://docwiki.embarcadero.com/RADStudio/en/LiveBindings_in_RAD_Studio

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

58

When reading the documentation in the “LiveBindings in RAD Studio” you will notice that
LiveBindings is not limited to DataBase support. There is also support for binding various properties
of the TableView to other controls. Below is a sample that binds the TrackBar position to the
TableView rotationAngle.

Drop a new TableView and a TrackBar component on the form. Select the TrackBar component and
add a new TBindExprItems expression. In the BindingsList component you see the TBindExprItems
component listed.

Point the SourceComponent to the TrackBar and the ControlComponent to the TMSFMXTableView1.
Start the FormatExpressions editor by double-clicking on the “(TExpressionsDir)” label. Click on the
add button to add a new format expression and fill in the Binding properties. The ControlComponent

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

59

is set to TMSFMXTableView1 and we want the RotationAngle to be modified. Fill in RotationAngle in
the Control Expression field. For the Source Expression which is linked with the SourceComponent
we fill in “Value”.

Now there is one step left to implement before the application is ready. When dragging the slider of
the TrackBar, the RotationAngle of the TMSFMXTableView component will be unaffected. This is
because the TMSFMXTableView did not receive a notice from the BindingsList component, therefore
we need to notify the bind component that the value of the TrackBar has changed.

This is done by implementing the OnChange event and notifying the BindingsList component:

var

 FNotifying: Integer;

procedure TForm557.TrackBar1Change(Sender: TObject);

begin

 // Some controls send notifications when setting properties,

 // like TTrackBar

 if FNotifying = 0 then

 begin

 Inc(FNotifying);

 // Send notification to cause expression re-evaluation of dependent

expressions

 try

 BindingsList1.Notify(Sender, '');

 finally

 Dec(FNotifying);

 end;

 end;

end;

Now when dragging the slider of the TrackBar, the BindingsList is notified and the TMSFMXTableView
rotates according to the Value of the TrackBar. Multiple bindings can be made and are triggered
simultaneously due to the Notify procedure of the BindingsList.

In the BindingsList editor window you will notice that a new category is added for the TableView:
“DB TableView Links”. The link “TTMSFMXBindDBTableViewLink” can be used to connect to a
DataSource through a BindScope. This link is designed to work specifically with DataBase
connections.

The TableView DB link automatically generates Expressions to link the SelectedItemIndex to the
correct record in the Database. Internally the DataSet is automatically loaded and for each record
in the DataSet an item is added.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

60

In the object inspector, after expanding the LiveBindings property, you will notice a
ColumnExpressions property. This is because the implementation inherits from the standard
TBindGridLink and is necessary to link Database fields to multiple elements in the TableView.

More on the TTMSFMXBindDBTableViewLink is explained in the Samples chapter at the TMS
TableView LiveBindings Demo 1 & 2.

HTML support

The TableView supports HTML in various elements such as the headertext, footertext, bulbtext, the
caption and the description. The HTML engine in FireMonkey is a port of the VCL HTML engine, thus
supporting most functionality that was available in the VCL HTML Engine.

As ImageLists do no exist in the FireMonkey framework, the HTML engine supports displaying images
from a BitmapContainer and this is demonstrated in the sample below.

Drop a TableView and a BitmapContainer on the form. In the BitmapContainer we have loaded an
image and named it htmlimage:

The name is necessary because the HTML Engine will search for an image with a name that is set in
the tag.

Now assign the BitmapContainer to the TableView component:

In this sample we will display an image in HTML in the caption of an item.
This can be done by using the tag.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

61

 TMSFMXTableView1.Items[0].Caption := ' This is an

image';

The item will display the caption with an image that comes from the BitmapContainer. In this way,
one item can be used multiple times.

For more information about the HTML engine and supported tags please read the chapter HTML
rendering engine.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

62

TTMSFMXPopup

The TTMSFMXPopup is a component that has the capability to display a FireMonkey control inside a
fully customizable transparent popup window. It is specifically designed match the layout of a
native iOS popup window. This component can be easily configured to display itself positioned at a
specific control on the form or a given absolute position. The popup control can have optionally a
footer and a header and in the footer and header buttons can be added as well as HTML formatted
text.

Header and footer are configurable via following properties:

- FooterButtons: collection of TTMSFMXPopupButton instances displayed from left in the
footer

- FooterHeight: sets the height in pixels of the footer
- FooterText: string holding HTML formatted text for the footer
- HeaderButtons: collection of TTMSFMXPopupButton instances displayed from left in the

header
- HeaderHeight: sets the height in pixels of the header
- HeaderText: string holding HTML formatted text for the header

Following properties exist for the TTMSFMXPopupButton:

- BitmapName: name of image in the connected BitmapContainer to use for the button
- Kind: sets the type of the button, following button types are predefined: bkArchive,

bkBack, bkCancel, bkDelete, bkDone, bkEdit, bkMark, bkMove, bkNormal
- Layout: property to set layout of the button to normal or pointer
- ShowText: when true, text is shown next to the image in the button
- Text: button caption text
- Width: width of the button

Properties on TTMSFMXPopup that control appearance and position of the popup:

- ArrowHeight: The height of the arrow.
- ArrowPosition: The position of the arrow.
- ArrowWidth: The width of the arrow.
- DetailControl: The control that will be displayed and automatically positioned inside the

popup.
- HeaderText: The text of the header that supports HTML.
- Placement: Property to determine the position of the popup relative or absolute to a given

placement control.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

63

- PlacementTarget: The control used as a reference to position the popup after it is
displayed.

- PlacementRectangle: A custom rectangle used to display the popup, in combination with
the PlacementTarget and Placement properties.

After setting properties where the popup must be shown you can use the following methods to
popup or close the dialog:

TMSFMXPopup1.Popup;

TMSFMXPopup1.Close;

Example:

This code snippet assigns a TTMSFMXTableView control to be displayed on the popup and configures
the TTMSFMXPopup to open at the bottom of a button on the form with a button in the header to
close the popup again:

procedure TForm1.FormCreate(Sender: TObject);

begin

 // hide the popup footer

 TMSFMXPopup1.ShowFooter := false;

 // tableview should be displayed in the popup only

 TMSFMXTableView1.Visible := false;

 // assign the tableview as detail control for the popup

 TMSFMXPopup1.DetailControl := TMSFMXTableView1;

 // set the control as reference for position of the popup

 TMSFMXPopup1.PlacementTarget := Button1;

 // show the popup at the bottom of the button centered

 TMSFMXPopup1.Placement := TPlacement.plBottomCenter;

 // add a header button that closes the popup

 TMSFMXPopup1.HeaderButtons.Clear;

 with TMSFMXPopup1.HeaderButtons.Add do

 begin

 Kind := TTMSFMXBarButtonKind.bkBack;

 Width := 50;

 end;

end;

procedure TForm1.TMSFMXPopup1HeaderButtonClick(Sender: TObject;

 AButton: TTMSFMXPopupButton; AButtonShape: TTMSFMXBarButton);

begin

 if AButton.Index = 0 then

 TMSFMXPopup1.Close;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

64

TTMSFMXCircularGauge

TTMSFMXCircularGauge is a highly customizable circular gauge with optionally multiple needles,
setpoints and sections. Divisions, subdivisions can be configured as well as aperture of the values or
aperture of the entire control, enabling to use it as a full circle gauge, half circle gauge, ¾ circle
gauge etc…

Customizing the appearance of a FireMonkey component is done via editing its style.

Design of the TTMSFMXCircularGauge

Following style elements make up the appearance of the TMSFMXCircularGauge:

1) The outer background element of the gauge.
2) The inner element of the gauge. This element holds the sections, needles, setpoints,

divisions and subdivisions.
3) The displaytext of the gauge, this can be set on component level.
4) 5) The Division and SubDivision text appearance.
6) 7) The Division and SubDivision line appearance.
8) The outer center element.
9) The needle.
10) The inner center element which holds the needle.

When starting the IDE style editor for the gauge, there are two TText elements and two TLine
elements (item 4 till 7). These elements are used to define the appearance of the Divisions and the
SubDivisions in the gauge. The style of these elements will be reflected in the control when applying
the style. A single style element for the Division and SubDivision will control the appearance of each
divider line/text and subdivider line text in the gauge.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

65

By default the Divisions and SubDivisions are visible. The properties ShowDivisions,
ShowSubDivisions control this visibility. In the Object Inspector, the component has properties that
can be used to specify the number of Divisions / SubDivisions, change the minimum, maximum and
the value. The values are distributed in the circular gauge between a start and stop angle that can
be set with DivisionsStartAngle, DivisionsStopAngle. For the gauge itself, the LayoutStartAngle,
LayoutStopAngle define the start angle and end angle of the shape and these are default set to 0°
and 360° to have a full circular gauge. Set these values to 0°, 180° for example to have a half
circular gauge.

Division angles: Layout angles:

Changing the Value property of the gauge will update the needle position accordingly.

The gauge has three different collections of shapes that will be dynamically added to the StyleBook
when used and can each be modified afterwards. Adding a setpoint, section or extra needle will
automatically add an element in the StyleBook.

Remember that the position of the extra needle and the setpoint, or the start value and end value
of the section, are properties that are accessible in the IDE Object Inspector. The visual
configuration of these setpoints, sections or extra needles can be changed with the IDE style editor
and will determine the way these elements look.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

66

You can style each element separately, add or remove elements and create a custom version of the
default gauge. Below is a sample of the gauge after adding new section elements, and modifying
the background, inner- and outerelement appearances.

Other than via the designer, a section for example can also be added in code:

Example:

This code snippet adds a yellow section for the range of values from 20 to 40:

 with TMSFMXCircularGauge1.Sections.Add do

 begin

 StartValue := 20;

 EndValue := 40;

 Shape.Fill.Color := claYellow;

 end;

Programmatically changing style elements

In code, the different style elements can also be changed. The component exposes these style
elements via functions. For example, TTMSFMXCircularGauge provides the function GetDivision,
GetDivisionText etc…

In code, the color of the divider lines could be changed with:

 TMSFMXCircularGauge1.GetDivision.Fill.Color := claYellow;

 TMSFMXCircularGauge1.GetDivision.Stroke.Color := claYellow;

 TMSFMXCircularGauge1.Update; //needed to update the style!

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

67

Events

- OnValueClick: Event triggered when the inner element of the gauge is clicked and passes
the value at the mouse coordinate.

- OnSectionClick, OnSetPointClick, OnExtraNeedleClick: Events triggered when clicking on
section, setpoint or needle elements. When implementing the OnSectionClick event
handler, clicking a section will not trigger the OnValueClick since the section lays on top of
the values.

Properties

- DivisionFormat: The format of the main divisions in the gauge, formatting is done internally
with the FormatFloat() function. See FormatFloat in the Delphi help for information on the
available formatting specifiers.

- Divisions: The amount of divisions between MinimumValue and MaximumValue.
- DivisionsStartAngle / DivisionsStopAngle: The start and end angles between which the

dividers are distributed in the gauge inner circle.
- ExtraNeedles: Extra needles can be added in this collection, the needles can be styled in

the style editor and the position can be set with the Value property of each needle.
- LayoutStartAngle / LayoutStopAngle: The start and stop angle used to display the gauge.

By default this is 0°and 360° to display the gauge as a full circle.
- MinimumValue / MaximumValue: Defines the minimum and maximum for the values

displayed in the gauge. The number of values displayed is determined by the minimum,
maximum and the number of divisions and subdivisions.

- Sections: A collection of elements used inside the gauge to mark special areas or ranges of
values. Sections start from the center but the size can be set with the inner- and
outermargin properties.

- SetPoints: SetPoints are used to mark a special value, and are placed at the outer border of
the gauge. SetPoints can have different shapes and can be styled, in the same way as the
extra needles and the sections.

- ShowDivisions / ShowSubDivisions / ShowDivisionText / ShowSubDivisionText: Properties
used to hide / show values and divider lines on the gauge.

- SubDivisionFormat: Sets the format of the subdivisions. Subdivisions are formatted in the
same way as the Divisions.

- SubDivisions: Defines the amount of divisions between 2 main divisions.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

68

TTMSFMXLinearGauge

TTMSFMXLinearGauge is very similar to the TTMSFMXCircularGauge. It also offers a needle, divisions
and subdivisions, optional sections, setpoints or extra needles.

Design of the TTMSFMXLinearGauge

1) The outer background element of the gauge.
2) The inner element of the gauge. This element holds the sections, needles, setpoints,

divisions and subdivisions.
3) The needle of the gauge.
4) 5) The Division and SubDivision text appearance.
6) 7) The Division and SubDivision line appearance.

The linear gauge is internally based on the circular gauge, but implements a different style to
display it in a rectangular way. The SetPoint, Section and ExtraNeedle collections are also available
in the TTMSFMXLinearGauge. The SetPoints are clickable in the circular gauge and thus also in the
linear gauge. When clicking on a setpoint, the OnSetPointClick event is triggered.

When adding setpoints, sections or extra needles, the shapes are visible in the IDE style editor in
the same way as with the circular gauge.

With the ValueDirection property you can control whether the divider lines and values are displayed
on top of or below the gauge.

Modifying the style of the TTMSFMXLinearGauge to display vertical

Set TTMSFMXLinearGauge.RotationAngle to 90 and via the IDE style editor, change the divisiontext
style resource’s OrientationAngle to -90. That is all that is needed to create a vertical variant of the
TTMSFMXLinearGauge. By default the values are displayed now on the left of the gauge, but this can
be easily changed by setting TTMSFMXLinearGauge.ValuePosition = vpUp.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

69

TTMSFMXJogMeter

The jogmeter is a similar component as the TTMSFMXLinearGauge but has no minimum and
maximum values. The range is defined via a combination of Divisions, Aperture and Step. The
needle always remains in the center of the control and the displayed range changes if the value is
set.

This component descends from the TTMSFMXLinearGauge component and provides a jogmeter
specific implementation.

This code sample shows how the TTMSFMXJogMeter can be setup for a specific range of values:

 TMSFMXJogMeter1.Step := 0.1;

 TMSFMXJogMeter1.DivisionFormat := '0.00 mg';

 TMSFMXJogMeter1.Divisions := 25;

 TMSFMXJogMeter1.ShowSubDivisionText := True;

 TMSFMXJogMeter1.SubDivisions := 5;

The innerelement and the subdivision line was also made slightly smaller to ensure all values fit.
This can be done in the IDE style editor. After applying this code and changing the innerelement the
gauge should look like the sample below:

Note that the same techniques used to create a vertical variant of the TTMSFMXLinearGauge can be
applied to create a vertically oriented TTMSFMXJogMeter.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

70

TTMSFMX7SegLED

TTMSFMX7SegLED is a control to display a value via 7 segment LEDs.

Style:

The 7-segment LED uses one LED shape that can be used to change the appearance, the fill of the
active and non-active LED segments. The Fill and FillActive brushes can be accessed via the IDE
style editor after clicking on the LED shape.

The 7-segment LED control has a Decimals and Digits property, which are used to increase or
decrease the amount of 7-segment LEDs that are visible. Digits sets the number of 7-segment LEDs
before the decimal point and Decimals sets the number of 7-segment LEDs after the decimal point.
The Value property is used to set the number that must be displayed. Note that the control will not
automatically adapt its width when the number of digits or decimals is changed. It will try to fit all
7-segment LEDs within the available space. Modify the width of the control when needed.

 var

 val: double;

 begin

 TMSFMX7SegLED1.Digits := 4;

 TMSFMX7SegLED1.Decimals := 2;

 val := 1234.56;

 TMSFMX7SegLED1.Value := val;

 end;

Programmatically, the style of the LED can be changed via accessing the shape:

 TMSFMX7SegLED1.Shape.FillActive.Color := claGreen;

 TMSFMX7SegLED1.Update;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

71

TTMSFMXCompass

The compass control descends from the gauge base class. It can be considered as a gauge with the
needle pointing to the north and 8 extra needles for each wind direction. These needles are
accessible in the style editor as:

needle: needle pointing to the north
North_Needle: background needle in north direction
South_Needle: background needle in south direction
West_Needle: background needle in west direction
East_Needle: background needle in east direction
NorthWest_Needle: background needle in northwest direction
SouthWest_Needle: background needle in southwest direction
NorthEast_Needle: background needle in northeast direction
SouthEast_Needle: background needle in southeast direction

The DivisionText style is used here to define the style of the wind direction texts in the compass.

The orientation of the compass can then be easily modified with the
TTMSFMXCompass.RotationAngle property.

TTMSFMXClock

The clock can display the current machine time or can display the time set by the ClockTime
property. When the Active property is true, it displays the machine time. Otherwise, the time
shown on the clock can be set via code:

 TMSFMXClock1.ClockTime := EncodeTime(3,15,20,0);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

72

TTMSFMXRotarySwitch / TTMSFMXKnobSwitch

Two switch controls with a discrete but configurable number of positions are offered. The
TTMSFMXRotarySwitch is a basic switch, the TTMSFMXKnobSwitch offers LEDs in the outer circle that
indicate in what position the switch is.

The values between with the switch control can select are set via the Positions collection. Each
position has a Text property and a Tag property. For each position there is a value added on the
switch. The position of the switch can be easily get or set via TTMSFMXRotarySwitch.Value. The first
position value is 0, the second position 1, etc…

In the TTMSFMXKnobSwitch the division lines are replaced by ellipse shapes that have a default glow
effect. The needle is replaced by a rectangle that represents the “knob”. The rectangle on the
“knob” has a default glow effect that has the same color as the ellipse shapes. When changing the
value, that actually is an integer between 0 and the count of the positions, the ellipse shapes light
up from zero till the value of the position of the switch.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

73

TTMSFMXMatrixLabel

The matrix label has only one stylable element, the LEDText shape itself. This has properties to
change the amount of LEDs, the size of the LEDs and the direction. The Text that is displayed inside
the matrixlabel is set with the Text property in the Object Inspector.

The matrixlabel has the capability to autoscroll the text from right to left or vice versa. This is set
with the ScrollDirection property. The text can be formatted as is, lowercase, uppercase or
propercase. Propercase means that each word in the text starts with a capital letter.

Parts of the text can have different colors. This can be done by using a ‘%’ character followed by a
hex number from 0-F. This will change the color to a predefined set of colors. The color remains
applied until a new color code is set in the text.

Example:

TMSFMXMatrixLabel1.Text := ‘tms%Asoft%Cware%0.com’

Indexes of colors are:
%0: default color (green)
%1: black
%2: dark red
%3: dark green
%4: dark yellow
%5: dark blue
%6: dark fuchsia
%7: dark aqua
%8: gray
%9: silver
%A: red
%B: green
%C: yellow
%D: blue

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

74

%E: fuchsia
%F: aqua
Properties

- AutoScroll: Automatically scrolls the text from in the scrolldirection if true.
- ScrollDirection: The direction in which the text scrolls if the AutoScroll property is true.
- Text: The text of the label.
- TimeInterval: Sets the scroll speed.

Style element properties

- LEDs: The number of visible matrix LEDs.
- LEDStyle: The size of the matrix LEDs : ls14x20, ls19x27, ls9x13.
- LEDsVisible: Shows / hides the inactive LEDs in the matrix.
- Margin: the amount of spacing between the top / bottom of the label and the LEDs.
- Orientation: LEDs can be displayed horizontal / vertical.
- Spacing: The amount of spacing between the LEDs
- Text: The text of the label. The text set in the StyleBook is overriden by the property at

component level.
- TextColor: The default color of the text.
- TextStyle: The automatic casing that will be applied: uppercase, lowercase, propercase or

as is.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

75

TTMSFMXScope

The TTMSFMXScope has the capability of displaying values of multiple channels with a certain
interval and frequency. The scope cannot be styled as the scope has no default style implemented.

The scope has a channels collection property that can be used to add channels. Each channel has a
Color, Font, ShowValue, Style, ValueFormat, Visible and Width property. The Style property is used
to switch between line and bar styles.

 Bar style Line style

The scope is started with the Active property. With the AutoUpdate property set to true, the scope
automatically scrolls from left to right or vice versa. The direction can be set with a separate
property TTMSFMXScope.Direction. When the scope is scrolling, the OnNeedData event is called for
each channel at each scroll step. The OnNeedData event has channel index parameter and a var
Value parameter via which the value of the channel in the scope should be set.

The grid can be customized with the GridColor and GridLineWidth properties and the displayed
values of the grid are customized via the Y-Axis class property. The Y-Axis has properties to format
the divisions, subdivisions and set the position of the Y-Axis. The MinValue and MaxValue are set on
the scope itself.

The scope can also display the last added value for each channel, styled with a font and the color of
the channel. With the property ShowValue, the value is shown in a rounded rectangle, formatted
with the ValueFormat property.

The value is displayed per channel, and is automatically positioned right or left in the grid,
depending on the Direction property.

- AnimateGrid / AutoUpdate: Properties used to automatically scroll and animate the grid.
- BaseColor: The color used for the base center line.
- Channels: A collection which contains channels that are displayed inside the scope. Each

Channel has a color, style, visible and width property. The Style defines the difference
between line and bar.

- Direction: The scroll direction of the grid when autoupdating.
- Frequency: The frequency in pixels on which the data is drawn and updated.
- GridColor / GridLineWidth: The color and width of the grid lines.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

76

- MaxValue / MinValue: The values that define the Y-Axis range and the area in which the
channels are drawn.

- YAxis
o DivisionColor / DivisionTextColor / DivisionSize / DivisionFont: The color of the

main divisions between MinValue and MaxValue.
o SubDivisionColor / SubDivisionTextColor / SubDivisionSize / SubDivisionFont: The

color of the sub divisions between 2 division values.
o Divisions / SubDivisions: The amount of values between MinValue and MaxValue.
o Format / FormatType: The formatting of the values drawn in the Y-Axis.
o Position: The position of the Y-Axis.
o Size: The size of the Y-Axis.

When AutoUpdate is set the false, the scope can still be programmatically updated. This is done via
the method TTMSFMXScope.UpdateData(ChannelIndex, Value) and when the values for all channels
have been set, TTMSFMXScope.AddData internally adds all channel data, updates the display and
scrolls one step.

procedure TForm1.FormCreate(Sender: TObject);

begin

 // initialization

 TMSFMXScope1.Channels.Clear;

 TMSFMXScope1.Channels.Add.Color := claRed;

 TMSFMXScope1.Channels.Add.Color := claYellow;

 TMSFMXScope1.Channels.Add.Color := claAqua;

 TMSFMXScope1.MinValue := 0;

 TMSFMXScope1.MaxValue := 30;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 // set values for each channel and step the scope

 TMSFMXScope1.UpdateData(0, Random(10));

 TMSFMXScope1.UpdateData(1, 10+ Random(10));

 TMSFMXScope1.UpdateData(2, 20 + Random(10));

 TMSFMXScope1.AddData;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

77

TTMSFMXSpinner

TTMSFMXSpinner is a scrolling selector control as can be found in iPhone, iPad, iPod. It can be used
to select a date or time but is versatile enough to select other types of data.

TTMSFMXSpinner style

The TTMSFMXSpinner style contains a minimum set of rectangles that define the layout. The
topshadow and bottomshadow rectangles, the background and the selection rectangle. And the
inner element rectangle which holds the columns.

TTMSFMXSpinner columns

The spinner has a Columns collection property, and when adding columns, they become available in
the IDE style editor. Each column can be styled separately.

Each wheel of the spinner can be configured to scroll through a specific range of numbers, datetime
values or custom values. The type of the range is set with RangeType property. For numbers, the
range is set with RangeFrom and RangeTo properties.

For a datetime range, the range is set with DateRangeFrom and DateRangeTo properties. The
formatting of numbers and/or date time values displayed is controlled by DateTimeValueFormat or
ValueFormat. For DateTimeValueFormat all formatting capabilities of the Delphi method
FormatDateTime() are available. For the ValueFormat, all formatting capabilities of the Delphi
method Format() are available. Each wheel has the option to make the wheel range cyclic. This is
chosen by setting Cyclic = true. When this is true, the first range value is shown again immediately
after the last range value and vice versa.

In the sample code snippet below, the spinner is configured to allow selecting a day and hour
between now and 10 years.

 TMSFMXSpinner1.Columns[0].RangeType := srtDateTime;
 TMSFMXSpinner1.Columns[0].StepType := sstDay;

 TMSFMXSpinner1.Columns[0].RangeFrom := Now;

 TMSFMXSpinner1.Columns[0].RangeTo := Now + 365 * 10;

 TMSFMXSpinner1.Columns[0].DateTimeValueFormat := 'DDD dd MMM';

 TMSFMXSpinner1.Columns[1].RangeType := srtNumber;

 TMSFMXSpinner1.Columns[1].StepType := sstNumber;

 TMSFMXSpinner1.Columns[1].RangeFrom := 0;

 TMSFMXSpinner1.Columns[1].RangeTo := 23;

 TMSFMXSpinner1.Columns[1].ValueFormat := '%d';

 TMSFMXSpinner1.Columns[1].Cyclic := true;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

78

 TMSFMXSpinner1.Columns[2].RangeType := srtNumber;

 TMSFMXSpinner1.Columns[2].StepType := sstNumber;

 TMSFMXSpinner1.Columns[2].Step := 5;

 TMSFMXSpinner1.Columns[2].RangeFrom := 0;

 TMSFMXSpinner1.Columns[2].RangeTo := 55;

 TMSFMXSpinner1.Columns[2].ValueFormat := '%.2d';

 TMSFMXSpinner1.Columns[2].Cyclic := true;

- ColumnAppearance
o AutoSize: When true, size of the spinner columns is calculated automatically.
o Spacing: Sets the spacing between the columns.
o TextSpacing: Sets the spacing between the text drawn in the columns.

- Columns: A collection of spinner columns that can be configured in various ways.

o Cyclic: When true, values are displayed as endless loop. The values are cyclic
repeated when scrolling up or down.

o DateRangeFrom / DateRangeTo: The range used when the rangetype is configured
to used dates (srtDateTime). The step defines the amount of divisions between
these 2 range properties.

o Font / FontAppearance: The color and font of the text in a column.
o OnlyDate: If the RangeType is set to use datetime values, the SelectedValue

contains only the Date part.
o RangeFrom / RangeTo: Defines the range of values used when setting the

RangeType to srtNumber.
o SelectedValue: Gets or sets the selected value. This property is used for both

datetime range and the number range.
o Step: The amount of steps between the start and end range in either number or

datetime mode.
o StepType: When not using srtNumber range type, the StepType can be set to

increase per second, minute, hour, day, month or year.
o TextAlign: Sets the alignment of the text within a column.
o ValueFormat: Sets the formatting of the value when RangeType is srtNumber.
o Width: Sets the width of the column if the Autosizing is false.

- SmoothScrolling: When dragging and holding the left mouse button the value changes. If

smoothscrolling is false, the value is snapped inside the selected value area. If
smoothscrolling is true, the value is only snapped when releasing the left mouse button.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

79

TTMSFMXLEDMeter / TTMSFMXLEDScope

The TTMSFMXLEDScope is a collection of TTMSFMXLEDMeter components (channels). The scope
displays a range of LED meters that have LED segments that be displayed in an active or inactive
state. The LED meters are added through the Channels collection property and can be configured
separately. Each LED channel has a Start-, Stop-, ActiveStart- and ActiveStopColor. The transition
between these colors is automatically calculated for each LED segment in the meter.

The maximum value is set with the Steps property. This sets the number of small LED segments
displayed. With the Value property, the number of LEDs highlighted with the Active color is set.
Each channel has a peak value that is displayed as a white segment by default. The peak value is
automatically raised to the maximum value of the channel. If the channel value lowers, the peak
value remains on the highest value. The peak value is an optional indicator enabled with the
ShowPeak property. The peak value can also be programmatically set via PeakValue.

A TTMSFMXLEDMeter can be treated as a single channel.

- Channels: a collection of channels that contain a LED meter shape.
o ActiveStartColor / ActiveStopColor / StartColor / StopColor: Sets the color range

for active and inactive states.
o PeakColor / PeakValue / ShowPeak: Sets the color of the peak value, the peak

value displayed and whether the peak value is visible.
o Steps: The amount of segments between the StartColor and StopColor. The color

transition is automatically calculated.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

80

TTMSFMXLED / TTMSFMXLEDBar

Similar to the TTMSFMXLEDScope, the TTMSFMXLEDBar is a collection of TTMSFMXLEDs that can be
used separately. LEDs are added or removed via the LEDs collection or set with the Count property.

Just like with the scope, the bar is not stylable through the IDE style editor. The color of the LEDs
can be changed per LED. Each LED has a base color which is used to automatically calculate the off
and on color of the LED. With the state property the LED can be set to the on (true) or off (false)
stat. In the active state, the LED uses the OnColor otherwise the OffColor. Note that setting the
BaseColor at design time will automatically cause the LED to calculate a bright color for the on
state and a darker color for the off state. If the automatic calculated OnColor or OffColor is not
wanted, these properties can also be set directly.

The LEDBar has a Value property which automatically sets the state property of the LEDs to on for
all LEDs that fall in range between 0 and the Value property.

- Count: The amount of LEDs displaying in the bar.
- Leds: A collection of LEDs used inside the bar. This way, each LED on the bar can be given a

different color.
o BaseColor: The color used to set the On- and OffColor.
o OnColor: The color used when the LED is in the on state.
o OffColor: The color used when the LED is in the off state.
o State: The property that determines if the LED is on or off.

- Spacing: The spacing between the LEDs.

TTMSFMXSlider

The slider consists of 4 elements that define the default layout: the elementcontainer which
represents the background, the slider button element and the on and off element. When editing the
slider via the IDE style editor, the on and off element are separated from the control to be visually
styleable. After applying the style, the on and off elements are aligned inside the
elementcontainer.

The slider has a State property that is used to switch between on and off. You can use the mouse to
interact with the slider, clicking in the left or right part, or dragging the button, switches the state
of the slider.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

81

TTMSFMXTileList

Architecture

1) Header: The header of the tilelist that contains elements for navigation.
2) Header Arrows: The arrows for page navigation (left and right arrows)
3) Header Bullets: Bullets that indicate the number of pages and the current page index. Can

be uses to navigate through pages.
4) Footer: The footer of the tilelist that contains elements for navigation.
5) Footer Arrows: The arrows for page navigation (left and right arrows)
6) Footer Bullets: Bullets that indicate the number of pages and the current page index.

Bullets can be clicked to navigate through pages.
7) Content: The area where the tiles are displayed and where either page based or horizontal

scrolling occurs.
8) ContentScroll: The scrolling area where the tiles are displayed and where the scrolling

occurs. Depending on the scroll mode, either the tiles scroll by page or simply horizontally.
9) DefaultTile: Holds the default tile appearance and container for optional elements in tiles.
10) DefaultTileBitmap: The default tile bitmap that can be linked in various ways to an image.

This also supports BitmapContainer.
11) DefaultTileCaption / DefaultTileDescription: Default elements in the tile used to display

the caption and description of the tile.
12) DefaultDetailTile: The default tile appearance of the detail view (that appears when

hovering over the main tile).

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

82

13) DefaultDetailTileBitmap: Similar to the DefaultTileBitmap but used for the for the detail
view of the tile.

14) DefaultDetailTileCaption / DefaultDetailTileDescription: Similar to DefaultTileCaption,
DefaultTileDescription but used for the detail view of the tile.

15) DefaultDetailTileAnim: The animation that is used to popup the detail tile over the main
view of the tile.

16) DefaultTileAnim*: Default animations to animate the tiles when reordering / dragging.
17) DefaulTileBadge: The default appearance of the tile badge that can be shown on top of the

tile as an indicator.

Styling

With the FireMonkey design philosophy in mind, we have made the TileList completely styleable.
When editing the custom or default style when right-clicking on the component (See: General
Firemonkey component usage guidelines) the basic TileList layout is defined with several styleable
elements. Elements can be removed, added and modified and updates are reflected in the
component when applying the edited style.

Programmatically, almost every element is accessible with a function. When you want to style an
element programmatically, you can use the appropriate function. Below is an overview of each
element that is styleable at designtime and at runtime:

 function GetHeader: TControl;

 function GetFooter: TControl;

 function GetContent: TControl;

 function GetScrollContent: TControl;

 function GetHeaderBullet: TControl;

 function GetHeaderBulletList: TControl;

 function GetFooterBulletList: TControl;

 function GetFooterBullet: TControl;

 function GetHeaderArrowLeft: TControl;

 function GetHeaderArrowRight: TControl;

 function GetFooterArrowLeft: TControl;

 function GetFooterArrowRight: TControl;

 function GetContentList: TControl;

 function GetContentListAnim: TAnimation;

 function GetContentListScroll: TControl;

 function GetDefaultDetailTile(Source: TFMXObject): TControl;

 function GetDefaultDetailTileCaption(Source: TFMXObject): TControl;

 function GetDefaultDetailTileNotes(Source: TFMXObject): TControl;

 function GetDefaultDetailTileBitmap(Source: TFMXObject): TControl;

 function GetDefaultDetailTileContent(Source: TFMXObject): TControl;

 function GetDefaultTileByName(AStyleName: String): TControl;

 function GetDefaultTile: TControl;

 function GetDefaultTileCaption(Source: TFMXObject): TControl;

 function GetDefaultTileNotes(Source: TFMXObject): TControl;

 function GetDefaultTileBitmap(Source: TFMXObject): TControl;

 function GetDefaultTileBadge: TControl;

 function GetDefaultTileContent(Source: TFMXObject): TControl;

Some functions require a parameter: Source: TFMXObject. The tilelist supports multiple custom
default styles for the tile appearance. This is explained in a different chapter. When the parameter
is nil, the default tile style is returned, else the custom default tile style can be found with the
GetDefaultTileByName function that can be used as a parameter for the other functions.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

83

These are the most important functions that return the element that is available in the default style
or the style of the item when it is cloned. A complete list can be found when typing the name of the
component and search through all the “Get*” functions and for the Tableview Item the functions
that have “Shape” in the name. When an item is created, you will notice that each item has a Shape
function. This shape function returns the cloned default tile from the default style. From each
shape there are equivalents for the caption, bitmap, notes…. Below is an overview of the Shape*
functions that can be uses to get access to the tile shape that has been created.

 function ShapeDetail: TControl;

 function ShapeDetailBitmap: TControl;

 function ShapeDetailCaption: TControl;

 function ShapeDetailNotes: TControl;

 function ShapeDetailContent: TControl;

 function ShapeBitmap: TControl;

 function ShapeCaption: TControl;

 function ShapeBadge: TControl;

 function ShapeNotes: TControl;

 function ShapeContent: TControl;

 function ShapeContentWrapper: TControl;

 function ShapeDetailAnimation: TAnimation;

 function ShapeAnimationX: TAnimation;

 function ShapeAnimationY: TAnimation;

 function ShapeAnimationW: TAnimation;

 function ShapeAnimationH: TAnimation;

Properties / Methods / Events

Below is a list of properties, methods and events in alphabetic order that expose the core
functionality of the component and that need a short introduction before delving into the details of
the component.

TTMSFMXTileList published properties

- BitmapContainer: The bitmapcontainer used in combination with the tiles collection to
show a bitmap inside a tile.

- Columns: Defines the number of columns displayed on one page.
- ColumnWidth: Sets a specific columnwidth for a tile, instead of automatically calculating

the width. When this property is different from 0 the Columns property is ignored.
- Filtering: Sets the type of filtering the tile list uses. The lfStart and lfRandom option

creates a subset of tiles that matches the search string.
- FilterMode: Sets the filtering mode. This selects between filtering and searching in the tile

list, showing / marking the tiles that that match the string.
- HorizontalSpacing: Horizontal spacing between tiles.
- KeyBoardFilter: Allows typing on the keyboard to filter / search in the list.
- KeyBoardMode: Switches the keyboard mode between page navigation and tile navigation.
- LookupTime: The time the lookup remains active in seconds. When the lookuptime has

passed the lookup filter is reset to an empty string.
- MultiSelect: When true, selection of multiple tiles is enabled.
- NavigationMode: Selects between page mode and scroll mode.
- PageHeight: Sets the height of the page which can be used in combination with scroll

navigation mode.
- PageIndex: The current selected page.
- PageWidth: The width of the page which can be used in combination with scroll navigation

mode.
- Reorder: Enables reordering of tiles.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

84

- RowHeight: Sets a specific rowheight for a tile, instead of automatically calculating the
height. When this property is larger than 0 the rows property is ignored.

- Rows: Defines the number of rows available on one page.
- SelectedTileIndex: The last selected tile index.
- Styles: Collection of custom tile styles, cloned from the default tile style.
- TileOptions: Defines which elements are visible in a tile. This can improve overall

performance since the unchecked elements are not cloned and thus not available in the
tile.

- Tiles: The collection of tiles.
- VerticalSpacing: Vertical spacing between tiles.

Tile published properties in Tiles collection

- Badge: The text that is shown in the badge in the left top corner of the tile.
- BitmapName: The name of the bitmap that is used to show the bitmap inside the tile. The

bitmap is only shown when loBitmap is set in TileOptions.
- CanSelect: Sets whether a tile can be selected.
- Caption: The caption of tile.
- ColumnSpan: Stretches the tile over the specified number of columns.
- DataObject: Reference to an object that contains additional information.
- DataString: An extra additional string object.
- DetailBitmapName: The name of the bitmap that is used to show the bitmap inside the

detail tile.
- DetailCaption: The caption of the detail view of the tile.
- DetailNotes: The notes of the detail view of the tile.
- DetailSizePercentage: The percentage of the detail tile that is shown on top of the main

tile. 100% means that the detail view of the tile covers the normal view entirely.
- Empty: Sets a tile as empty and counts it as a tile for calculating the position of the other

tiles. An empty tile appears as a hole within other tiles on the page.
- EnableDetail: Enables showing the detail view of the tile on hovering.
- Notes: The notes of the tile.
- ReadOnly: Enables / Disables interaction with the tile.
- RowSpan: Stretches the tile over the specified number of rows.
- Selected: Set the tile in selected state when the CanSelect property is true.
- Tag: The tag property to identify the tile.
- Transparent: Hides the background of the tile.

Public procedures, functions, properties on TTMSFMXTileList level

- function GetLookupKey: String;

Return the current lookupkey of the tile list when using keyboard mode.

- procedure ApplyFilter(AFilter: String);

Applies a filter on the tile list, showing only the tiles with a caption that matches the filter

- function GetIndexAtPosition(ATile: TTMSFMXTile; X, Y: Single):

Integer;

Returns the index of the tile on X and Y position. This function is used to drag/drop tiles and
uses the ATile parameter to exclude the index of the tile that is dragged.

- procedure ClearFilter;

Clears the filtering.

- procedure ClearAllTiles(AShape: TTMSFMXTileShape);

Clears all selected tile shapes except the shape that is passed through as a parameter.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

85

- procedure SelectAllTilesBetween(AStartTileIndex, AStopTileIndex:

Integer);

Selects tiles between a given start and stop index. Not that it is required that multi
selection is enabled.

- procedure DeSelectAllTiles(ATile: TTMSFMXTile = nil);

Deselects all tiles except the tile that is passed as a parameter.

- procedure SelectTiles(ArrTiles: array of integer);

Deselects all tiles that are passed as an array of tile indexes.

- procedure BeginUpdate; override;

Method to use in combination with EndUpdate to limit the component recalculation and
internal update calls to one single action.

- procedure EndUpdate; override;

Method to use in combination with BeginUpdate to limit the component recalculation and
internal update calls to one single action.

- function FindTileIndexBy(ARow, AColumn: Integer): Integer;

Returns the tile index by a given Row and Column.

- function FindNextTileIndexBy(ARow, AColumn, APageIndex: Integer):

Integer;

Returns the next tile by a Row and Column on a specific page.

- function FindPreviousTileIndexBy(ARow, AColumn, APageIndex: Integer):

Integer;

Returns the previous tile by a Row and Column on a specific page.

- function PageCount: Integer;

Returns the number of pages.

- procedure NextPage;

Navigates to the next page.

- procedure PreviousPage;

Navigates to the previous page.

- procedure GoToPage(APageIndex: Integer);

Navigates to page number APageIndex. First page starts at index 0.

Public procedures, functions, properties on TTMSFMXTile level

- function TileList: TTMSFMXTileList;

Returns the tilelist parent control of the tile.

- function AllowDisplay: Boolean;

Function that returns whether a tile can be displayed or not (in combination with filtering)

- function Shape: TTMSFMXTileShape;

Returns the shape that is created for the tile.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

86

- procedure UpdateTile;

Updates the tile display elements to match the settings in the tile collection item.

- property TilePosition: TTilePosItem;

Returns the tile position inside the page, which contains information about the row and
column and page index.

- procedure ShowDetail;

Shows the detail view of the tile.

- procedure HideDetail;

Hides the detail view of the tile.

- property State: TTMSFMXTileState;

The State of the tile: normal, selected, down, hover.

- function GetBitmapContainer: TTMSFMXBitmapContainer;

Returns the BitmapContainer associated with the TileList when available.

Events published on TTMSFMXTileList level

- OnBulletClick: Event called when a page bullet in the header or footer is clicked.
- OnLoadTile: Event called when loading a tile for the first time. Additional settings for the

tile can be dynamically applied from this event.
- OnUnLoadTile: Event called when unloading a tile when it is not necessary to display it

anymore. (Browsing through the pages).
- OnCustomizeTile: Event called when a tile is created and customized. In this event,

additional settings can be applied to the tile that are critical for a visual update when
resizing, scrolling, etc…

- OnCustomizeTileBadge: Event called when a tile badge is created and customized.
- OnCustomizeBullet: Event called when a page bullet is created and customized.
- OnNextPageClick: Event called when clicking on the right arrow on the header or footer.
- OnPreviousPageClick: Event called when clicking on the left arrow on the header or footer.
- OnTileClick: Event called when clicking on a tile.
- OnTileMouseDown: Event called when the mouse button is down on a tile.
- OnTileMouseUp: Event called when the mouse button is released on a tile.
- OnTileMouseMove: Event called when the mouse is hovering over a tile.
- OnTileMouseEnter: Event called when the mouse is entering a tile.
- OnTileMouseLeave: Event called when the mouse is leaving a tile.
- OnTileShowDetail: Event called when the detail tile is shown.
- OnTileHideDetail: Event called when the detail tile is hiding.
- OnFilter: Event called when filtering the list (keyboard or programmatically).
- OnFilterFinished: Event called when filtering the list has finished (the lookuptime is

exceeded).
- OnTileStateChanged: Event called when the state of a tile has changed (normal, hover,

down, selected states).

Adding and removing tiles

Adding items can be done at designtime and at runtime. Click on the component to view the Tiles
property. This is a default collection editor and can be used to add or remove items.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

87

Items can also be added programatically:

var

 it: TTMSFMXTile;

 i: Integer;

begin

 TMSFMXTileList1.BeginUpdate;

 for I := 0 to 100 do

 begin

 it := TMSFMXTileList1.Tiles.Add;

 it.Caption := 'Item ' + inttostr(I);

 it.Notes := 'Hello World !';

 end;

 TMSFMXTileList1.EndUpdate;

Whenever an item is added, the display list is normally rebuilt. Note that all calls to the
TMSFMXTileList are embedded with BeginUpdate and EndUpdate calls here. With a BeginUpdate and
EndUpdate call this update process to rebuild the display list is blocked and then executed once,
i.e. when EndUpdate is called.
To remove an item programmatically, just call the item’s destructor.

Badges

Each tile has a Badge property that is able to show additional information on top. The style for this
badge can be modified in the default style of the tile list in the stylebook. To show a badge on a tile
set the Badge property to the string of choice.

 TMSFMXTileList1.Margins.Left := 50;

 TMSFMXTileList1.Margins.Top := 50;

 TMSFMXTileList1.Margins.Right := 50;

 TMSFMXTileList1.Margins.Bottom := 50;

 with TMSFMXTileList1.Tiles.Add do

 begin

 Badge := '123';

 end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

88

Tile Styles

When opening the stylebook editor, you will notice the default tile style. This style is applied to all
tiles that are added to the tilelist. Changing this style will be reflected in all the tiles. When you
want to change the style of one or multiple tiles that must differ from the default style there are 2
options that can be used to customize the tile style.

1) Through the OnCustomizeTile event.
Below is a code sample that changes the default background color and caption color of all odd tiles
(by tile index).

procedure TForm1.TMSFMXTileList1CustomizeTile(Sender: TObject;

 ATile: TTMSFMXTile; ATileShape: TControl);

var

 shp: TTMSFMXTileShape;

begin

 shp := ATile.Shape;

 if Assigned(shp) and Odd(ATile.Index) then

 begin

 shp.Fill.Color := claRed;

 (shp.ShapeCaption as TText).Fill.Color := claWhite;

 end;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

89

2) Through custom styles.
The tile list supports multiple custom styles that are cloned from the default style. With this
technique the designing can be done through the stylebook editor instead of programatically. To
create a new custom style, add a style item to the Styles collection of the tilelist.

The StyleName property of this style will automatically be named ‘[custom]defaulttile1’. You can
change this before starting the stylebook editor. When making changes afterwards, the updated
name will not be reflected in the stylebook! A good practice is to first add the number of custom
styles needed in the list and then edit the style of the tilelist.

When right-clicking on the component and selecting “edit custom style…”, a new custom tile style
will be added next to the default tile style. You will notice that the new style is added to the
treeview list on the right. When changing the appearance, the update will not be reflected
immediately. To use this style inside the tilelist for specific tiles, you can select this style in the
tiles collection editor. Clicking on the dropdown control for the property StyleLookup lists all
available custom style to choose from.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

90

In this sample we have changed the background color of the custom tile style to blue and the
caption and notes font color to white. Selecting this custom style or setting it programmatically
after adding a tile in the tiles collection editor will use this style to create the tile shape.

var

 it: TTMSFMXTile;

 i: Integer;

begin

 TMSFMXTileList1.BeginUpdate;

 for I := 0 to 100 do

 begin

 it := TMSFMXTileList1.Tiles.Add;

 it.Caption := 'Item ' + inttostr(I);

 it.Notes := 'Hello World !';

 if Odd(I) then

 it.StyleLookup := '[custom]defaulttile1';

 end;

 TMSFMXTileList1.EndUpdate;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

91

Columns and Rows

The tile list can contain multiple pages each consisting of multiple tiles organized in a grid that is
defined with a columns and rows property. By default the tiles are organized in a 3 x 3 grid.
Changing the grid layout to a 3 x 2 grid for example will give you the result below.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

92

The tiles take an area of 1 cell by default. With the ColumnSpan and RowSpan properties on
TTMSFMXTile level the tiles can be “stretched” over multiple cells. Below is a sample of some tiles
that are reorganized by changing these properties.

var

 it: TTMSFMXTile;

 i: Integer;

begin

 TMSFMXTileList1.BeginUpdate;

 for I := 0 to 8 do

 begin

 it := TMSFMXTileList1.Tiles.Add;

 it.Caption := 'Item ' + inttostr(I);

 it.Notes := 'Hello World !';

 it.ColumnSpan := Random(4);

 it.RowSpan := Random(4);

 end;

 TMSFMXTileList1.EndUpdate;

The Row, Column, ColumnSpan and RowSpan properties are automatically calculated to make sure
no tiles overlap already “occupied” cells. If a tile does not have enough room on the page it
supposed to be placed on, the tile is automatically placed on the next page.

Paging / Scrolling

The tilelist supports two ways of displaying tiles. The tiles can either by organized in a page mode,
displaying and loading only 3 pages (previous, current and next page), or in a scroll mode where all
available tiles are loaded and displayed and a scrollbar is shown to scroll through the pages. To
change between these 2 navigation techniques the property NavigationMode can be used. This
property can be set to either nmPaging (Default) or nmScrolling.

Below is a sample that shows the difference between these 2 navigation modes:

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

93

Navigating through the list with nmPaging mode

Navigating through the list with nmScrolling mode

PageSize

The page dimensions are limited to the width and height of the content inside the tilelist by
default. With the PageWidth and PageHeight properties, these dimensions can be modified. When
the tile dimensions exceed the content list dimensions the vertical / horizontal scrollbars in the
scrollbox will automatically appear when in nmScrolling navigation mode. Below is a sample with a
pageheight that is higher than the side of the tile content list.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

94

ColumnWidth / RowHeight

The tiles can also be distributed along a customized columnwidth / rowheight. These properties are
available on tilelist level and are 0 by default. When 0, the width and height are automatically
calculated based on the PageWidth / PageHeight /Columns and Rows property. Below is a sample
when ColumnWidth is set to 50.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

95

Filtering / Searching / Lookup

The tile list supports filtering, searching and looking up tiles programmatically as well as with the
keyboard. Clicking on the list to set the focus and typing on the keyboard automatically filters the
list based on the typed text. The text that is typed can be retrieved by using the GetLookupKey
function. With the lookuptime property the time is set when the LookupKey is reset.

Depending on the Filtering, FilterMode properties the list either displays a subset of tiles or selects
the tile that matches the lookup string.

Keyboard navigation

The tile list also supports navigation with the keyboard. By default the left, right, up and down
arrow keys navigate through pages as if you are clicking on the page bullets. With the
KeyBoardMode property this navigation can be changed to navigate within a page through the tiles.
The arrow keys then select the next tile. If the tile is placed on the next page, the list will
automatically navigate to the next page.

Reordering tiles

By default reordering tiles is enabled. When a tile is selected, the tile can be dragged on to a new
location. To do this, first select the tile, then click and drag the selected tile to move it to a new
position in the page. The reordering is done automatically when dragging the tile, proposing the
closest new location at mouse coordinates for the tile to be dropped. Below is a screenshot of
reordering in action:

When the tile is released, it will automatically animate to the new position.

Performance

A default TileList has some performance related options already preset to optimal values for the
most typical use of the TileList. The amount of loaded pages is internally hardcoded to 3 (in
nmPaging mode), which will only load and display the items that match the requirements to be
displayed in one of the three pages. When navigating, the next page is loaded while the previous

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

96

page is removed, freeing memory and removing unnessary tiles. More performance related settings
can be found in the TileOptions property. This contains a set of options that can be used to
decrease the time the TileList needs to build up the display tiles list.

As explained in the Architecture chapter, the default tile contains various elements that are cloned
when adding tiles. These setting under TileOptions affect what parts of a tile are cloned or not.
When an element is not checked in the TileOptions, the element is not cloned when the display tile
list is built and that increases the performance.

By default the TileOptions have unchecked loBitmap, loDetail and loDetailBitmap. This means that
these elements will not be cloned and will not be available in the tile. You can further improve
performance by unchecking elements that are not necessary for your application.

MultiSelect

The TileList supports multiple tile selection. Multiple tile selection can be enabled by setting the
MultiSelect property to true. Clicking on a tile selects that tile and when you click on another tile,
the previous tile is deselected. To select multiple tiles, you need to hold the CTRL or SHIFT key on
the keyboard. With the CTRL key you are able to select tiles of choice and with the SHIFT key the
list selects all tiles between the first and the last tile you have clicked.

MultiSelect can be done by keyboard alone, pressing the direction keys and holding the CTRL or
SHIFT key at the same time. Below is a sample of multiple tiles selected in the list by holding the
CTRL key and clicking several tiles.

Programmatically, in multiselect mode, the selected of an tile can be get or set with the tile
Selected: Boolean property. In addition, three helper methods exist: SelectAllTilesBetween,
SelectTiles, DeSelectAllTiles to programmatically select or unselect all Tiles at once.

This sample code snippet programmatically selects items 1,3,5:

 TMSFMXTileList1.MultiSelect := true;

 TMSFMXTileList1.DeSelectAllTiles;

 TMSFMXTileList1.SelectTiles([1, 3, 5]);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

97

LiveBindings

The TTMSFMXTileList supports LiveBindings In the same way as the TTMSFMXTableView. More
information can be found on the LiveBindings chapter at the TTMSFMXTableView component and
demos, or at the TMS TileList LiveBindings Demo.

TTMSFMXHotSpotImage

The TTMSFMXHotSpotImage is a component that displays an image and that can have multiple areas
on the images that are sensitive to mouse hover or mouse clicks. The areas on the images can be
rectangular, circular or just irregular polygon shapes and for each area it can be choosen what color
or what bitmap texture is displayed in the area on mouse hover or mouse click. With the hotspot
editor it is easy to select or mark area’s of the image you want to create a hotspot for. The hotspot
editor is used at design-time but is also available for runtime use.

When dropping a TTMSFMXHotSpotImage on the form in the IDE, double-clicking the image starts the
design-time hotspot editor. With the shape tools in the toolbar you can either create a rectangle,
ellipse or polygon shape. The editor also has the capability of selecting an area with a magic wand
tool. This selection is then converted to a polygon.

Selecting a hotspot enables the detail pane that shows the different states of the hotspot (Click,
Hover, Selected or Blink). Each hotspot state supports a Fill, Stroke or Bitmap appearance. The
bitmap can be loaded directly or through a bitmapcontainer that is assigned to the
TTMSFMXHotSpotImage before starting the editor.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

98

Adding a new hotspot

Adding a hotspot can be done programatically or at designtime.

To add a hotspot programmatically, use the following code:

var

 hotspot: TTMSFMXHotSpot;

begin

 hotspot := TMSFMXHotSpotImage1.HotSpots.Add;

 hotspot.ShapeType := stRectangle;

 hotspot.X1 := 50;

 hotspot.Y1 := 50;

 hotspot.X2 := 100;

 hotspot.Y2 := 200;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

99

The same can be done at designtime. When double-clicking the component the editor starts. This
will show the loaded image. To add a hotspot, select the tool of choice and click-drag and hold to
create a new hotspot with the selected size and position:

When releasing the mouse, the hotspot will automatically be created and selected.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

100

Properties can be changed in the right pane of the editor. Each hotspot can be further manipulated
after creation, by dragging the handles to the position you want.

For each state the hotspot can be in, there is a stroke and fill. Only the color can be modified in the
editor, the other brush related properties are accessible in the object inspector after closing the
editor. Each state also supports displaying an image loaded directly or through a
TTMSFMXBitmapContainer by defining just the image name for the hotspot.

Magic Wand Tool

In the editor, the magic wand tool automatically detects edges to convert to a hotspot of polygon
type. Depending on the accuracy and tolerance the area will expand or contract. After selection of
the magic wand tool the 2 sliders will become available to set these 2 additional parameters.

The magic wand tool is also exposed as method in the TTMSFMXBitmap component and can be used
to automatically scan an area inside the loaded image. The function returns a polygon that contains
a set of points that define the selected area. Below is a sample how to implement a Magic Wand
tool at runtime, on a TTMSFMXBitmap.

var

 Poly: TPolyGon;

procedure TForm1.TMSFMXBitmap1MouseUp(Sender: TObject; Button:

TMouseButton;

 Shift: TShiftState; X, Y: Single);

begin

 poly := TMSFMXBitmap1.MagicWand(X, Y);

 // force the bitmap to repaint with the new created polyon

 TMSFMXBitmap1.Repaint;

end;

procedure TForm1.TMSFMXBitmap1Paint(Sender: TObject; Canvas: TCanvas;

 const ARect: TRectF);

begin

 Canvas.Stroke.Color := claWhite;

 Canvas.DrawPolygon(poly, 1);

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

101

This code will select a part of the clicked image, turn it into a polygon, and paint it in a white
stroked shape (see bottom part of the FireMonkey flame logo).

Saving and loading hotspots

The TTMSFMXHotSpotImage supports saving and loading files that define the layout of a collection of
hotspots. This can be achieved with the LoadFromFile and SaveToFile procedures. Images used
inside the hotspots will also be loaded and hotspots will automatically be created when loading a
file.

Compatibility

The TTMSFMXHotSpotImage component is designed with backwards compatibility in mind. Layouts
which are saved with the VCL hotspotimage component are 100% compatible with the FireMonkey
hotspotimage. With the FireMonkey hotspotimage, the colors of the different states are replaced by
a fill. An additional stroke feature is added, which will load the default values when necessary.

TTMSFMXHotSpotEditorDialog

On the component palette you will also find a non-visual component TTMSFMXHotSpotEditorDialog
next to the TTMSFMXHotSpotImage. This is a component that is able to show the hotspot editor at
runtime. Simply drop the component on the form and select the TTMSFMXHotSpotImage in the
dropdown of the HotSpotImage property in the Object Inspector.

Showing the dialog at runtime is a simple as calling the Execute function:

 TMSFMXHotSpotImageEditorDialog1.Execute;

All changes at runtime will be reflected in the hotspotimage. The method
TTMSFMXHotSpotImage.HotSpots.SaveToFile() could be used to save the runtime edited hotspots to
file for example. Note that at runtime, the TTMSFMXHotSpotImageEditorDialog will work in Win32,
Win64, macOS applications but is not supported for iOS, Android deployment.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

102

TTMSFMXSpeedButton

The TTMSFMXSpeedButton descends from TSpeedButton and adds the capability to display an image.
The speed button can be styled when right-clicking on the component and selecting either “edit
custom style…” or “edit default style…”.

The speed button supports Staypressed functionality in combination with grouping. In other words,
the speed button can act like a radiobutton / checkbox. To use this functionality, select the
speedbuttons you wish to group and set the GroupName to the same string of choice for all selected
components. Set the StaysPressed boolean property to true on all speedbuttons of the same group.

HTML is also supported as TTMSFMXHTMLText is used inside this button. More information can be
found on the TMS Mini HTML Rendering Engine chapter.

TTMSFMXCalendar / TTMSFMXCalendarPicker

The TTMSFMXCalendar is a calendar which is able to display dates from a specific month in a various
predefined date styles, such as weekend, current, normal and selected date styles. The important
difference between the standard FireMonkey calendar and the TTMSFMXCalendar is the capability to
perform multi and/or disjunct selection of dates and to indicate multiple events on specific dates.

Multiselect

The calendar can be used to select multiple dates, either a date range or a distinct selection of
dates. To enable multiselect set Calendar.MultiSelect := true. In the calendar, a single click selects
a day and dragging over the calendar, holding the left mouse button, selects a range of dates. With
the keyboard, the shift and arrow keys can be used to select multiple dates. A combination between
mouse and keyboard is also supported.

If multiselect is enabled, disjunct selection can be enabled with Calendar.DisjunctSelect := True. In
this mode, the ctrl key is used to change the focused date. The date can be selected with the space
key. All functionality with the shift date range selection remains active.

To get the selected dates, the calendar provides a collection of selected dates with
Calendar.SelectedDays. A simple loop accessing the items of the collection returns the Date of that
item giving you a set of selected days. In single selection mode, the Selected Date is returned with
Calendar.SelectedDay.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

103

Programmatic Selection

In single day selection mode a specific date can be set with

 TMSFMXCalendar1.BeginUpdate;

 TMSFMXCalendar1.SelectedDay := Now;

 TMSFMXCalendar1.EndUpdate;

To clear selection in single day mode set

 TMSFMXCalendar1.BeginUpdate;

 TMSFMXCalendar1.SelectedDay := -1;

 TMSFMXCalendar1.EndUpdate;

In multi / distinct selection mode, dates can be added to the SelectedDays array

 TMSFMXCalendar1.BeginUpdate;

 TMSFMXCalendar1.MultiSelect := true;

 TMSFMXCalendar1.SelectedDays.Add.Date := Now;

 TMSFMXCalendar1.SelectedDays.Add.Date := Now + 1;

 TMSFMXCalendar1.SelectedDays.Add.Date := Now + 2;

 TMSFMXCalendar1.EndUpdate;

To clear selection in multi day mode, clear the SelectedDays array.

 TMSFMXCalendar1.BeginUpdate;

 TMSFMXCalendar1.SelectedDays.Clear;

 TMSFMXCalendar1.EndUpdate;

Events

The calendar exposes events for customization / interaction.

OnCurrentDayLabelClick: Event called when clicking on the current day in the footer.
OnCustomizeDay: Event called when adding the date shapes to the calendar, allows you to
change the appearance, text and other important properties of a date shape. The object passed
as a parameter is of type TTMSFMXCalendarDateShape.
OnCustomizeEvent: Event called when adding an event indicator shape to the calendar, allows
you to change the appearance, text and other important properties of an event indicator shapes.
The object passed as a parameter is of type TTMSFMXCalendarDateEventShape.
OnCustomizeWeekDay: Same event purpose as OnCustomizeDay but for the week days.
OnCustomizeWeekNumber: Same event purpose as OnCustomizeDay but for the week number.
OnDaySelect: Event called when selecting a day in the calendar.
OnDisjunctDaySelect: Event called when disjunct selection is performed.
OnEventClick: Event called when clicking on a calendar event.
OnEventShow: Event called when showing a calendar event.
OnEventHide: Event called when hiding a calendar event.
OnHasEvent: Event called per day to specify if that day has an event or not. If specified true, a
default event is created for that day, which can be customized in the OnCustomizeEvent event.
OnMultiDaySelect: Event called when performing multi select.

Layout

Each date displayed in the calendar is styleable (chapter “FireMonkey Styles”), through the
stylebook designer or the calendar events that are published. Each date shape applies the style that
is defined in the default style of the calendar.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

104

Events

The calendar has the capability of displaying multiple events per day which show a popup on
hovering. The calendar events are displayed with a customizeable indicator that can be set to a
square, triangle, diamond or ellipse shape. To add an event to the calendar use

var

 evnt: TTMSFMXCalendarEvent;

begin

 evnt := TMSFMXCalendar1.Events.Add;

 evnt.Date := Now;

 evnt.Text := 'This is a new event!';

 evnt.Kind := ekDiamond;

Calendar Picker

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

105

The calendar picker inherits from the TTMSFMXEdit component and displays a calendar in a
dropdown control. The picker has the capability of displaying multiple selected dates as text with
configurable delimiters.

The picker exposes a Calendar property that has all the properties and capabilities of a default
calendar. To disable editing in the edit box of the picker the property CalendarPicker.ReadOnly :=
True can be used.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

106

TTMSFMXTrackBar

The TTMSFMXTrackBar is a vertically or horizontally oriented trackbar with semi transparent thumb.
The trackbar displays the range from minimum to position with a different fill than the range from
position to maximum.

The TTMSFMXTrackBar allows to set a value between Minimum and Maximum. Tickmarks and value
can be displayed at positions defined by TTMSFMXTrackBar.Step. The TTMSFMXTrackBar can be
configured if and how the thumb should snap to the tickmarks. The formatting of the value is
controlled with TTMSFMXTrackBar.ValueFormat and formatting that can be applied here is the same
as available with the Delphi Format() function.

Snapping margins

The property SnapMargin is used to snap the thumb to the values defined by the step property.
Sample: When the SnapMargin is 10 and the step is 20, the thumb will immediately snap from 0 to
20, from 20 to 40. When the SnapMargin is 1 the thumb can be freely moved between 0 and 20 until
the thumb reaches 19, then the thumb will automatically snap to the value 20.
When the SnapMargin is 0 there will be no snapping and the Thumb can be freely moved between
minimum and maximum.

TTMSFMXButton

The TTMSFMXButton extends the TButton component and adds the ability to show an image and
html formatted text. More information on the html formatted text can be found on the TMS Mini
HTML Rendering Engine chapter.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

107

TTMSFMXColorSelector / TTMSFMXColorPicker

The TTMSFMXColorSelector and TTMSFMXColorPicker are components that are pre-configured,
adding a standard set of colors to select from. Selecting a color is as easy as implementing the
OnColorSelected event and/or programmatically retrieve the selected color with the
TMSFMXColorSelector.SelectedColor or TMSFMXColorPicker.SelectedColor property. The picker
variant displays the selector in a popup.

The TTMSFMXColorSelector and TTMSFMXColorPicker inherit from a base that allows a high level of
customization. Each base supports an item collection that can be displayed in a column and row
structure. Each item can be optionally hidden and/or disabled, stretched over a column and / or
row span and can also be optionally configured as a seperator. The TTMSFMXColorSelector
component overrides and adds a Color property to the base collection item class.

The base selector and picker classes support custom drawing on three levels: the background, the
content and the text. A sample can be found at the TTMSFMXBitmapSelector /
TTMSFMXBitmapPicker chapter.

TTMSFMXBitmapSelector / TTMSFMXBitmapPicker

The TTMSFMXBitmapSelector and TTMSFMXBitmapPicker are component that support displaying a
collection of images to select from either directly in a selector or through a popup in a picker
variant. Selecting a bitmap is as easy as implementing the OnBitmapSelect event and/or
programmatically retrieve the selected Bitmap with the TMSFMXColorSelector.SelectedBitmap /
TMSFMXColorSelector.SelectedItemIndex or TMSFMXColorPicker.SelectedBitmap property. The
picker variant displays the selector in a popup.

The TTMSFMXBitmapSelector and TTMSFMXBitmapPicker inherit from a base that allows a high level
of customization. Each base supports an item collection that can be displayed in a column and row
structure. Each item can be optionally hidden and/or disabled, stretched over a column and / or
row span and can also be optionally configured as a seperator. The TTMSFMXBitmapSelector
component overrides and adds a Bitmap property to the base collection item class.

The base selector and picker classes support custom drawing on three levels: the background, the
content and the text. Below is a sample that demonstrates this.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

108

procedure TForm1.FormCreate(Sender: TObject);

var

 I: Integer;

begin

 TMSFMXBitmapSelector1.BeginUpdate;

 TMSFMXBitmapSelector1.Items.Clear;

 TMSFMXBitmapSelector1.Columns := 3;

 TMSFMXBitmapSelector1.Rows := 1;

 for I := 0 to 2 do

 TMSFMXBitmapSelector1.Items.Add;

 TMSFMXBitmapSelector1.EndUpdate;

end;

procedure TForm1.TMSFMXBitmapSelector1ItemAfterDrawContent(Sender: TObject;

 ACanvas: TCanvas; ARect: TRectF; AItemIndex: Integer);

var

 pt: TPathData;

begin

 case TMSFMXBitmapSelector1.Items[AItemIndex].State of

 isHover: InflateRect(ARect,-4, -4);

 isDown,isSelected:

 begin

 InflateRect(ARect,-4, -4);

 ACanvas.Stroke.Thickness := 2;

 ACanvas.Stroke.Color := claBlack;

 end;

 isNormal: InflateRect(ARect,-8, -8);

 end;

 ARect := RectF(Int(ARect.Left)+ 0.5, Int(ARect.Top) + 0.5,

Int(ARect.Right) +0.5, Int(ARect.Bottom) + 0.5);

 case AItemIndex of

 0:

 begin

 ACanvas.Fill.Color := claBlue;

 ACanvas.FillEllipse(ARect,1);

 ACanvas.DrawEllipse(ARect,1);

 end;

 1:

 begin

 ACanvas.Fill.Color := claGreen;

 ACanvas.FillRect(ARect,0,0,AllCorners,1);

 ACanvas.DrawRect(ARect,0,0,AllCorners,1);

 end;

 2:

 begin

 pt := TPathData.Create;

 pt.MoveTo(PointF(ARect.Left + ARect.Width / 2, ARect.Top));

 pt.LineTo(PointF(ARect.Left + ARect.Width , ARect.Bottom));

 pt.LineTo(PointF(ARect.Left , ARect.Bottom));

 pt.ClosePath;

 ACanvas.Fill.Color := claRed;

 ACanvas.FillPath(pt,1);

 ACanvas.DrawPath(pt,1);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

109

 pt.Free;

 end;

 end;

end;

TTMSFMXFontNamePicker / TTMSFMXFontSizePicker

The TTMSFMXFontNamePicker and TTMSFMXFontSizePicker are components that are pre-configured,
adding a standard set of font names and font sizes to select from. Selecting a font name / font size
is as easy as implementing the OnFontNameSelected / OnFontSizeSelected event and/or
programmatically retrieve the selected font name / Font size with the
TMSFMXFontNamePicker.SelectedFontName or TMSFMXFontSizePicker.SelectedFontSize property.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

110

TTMSFMXWebBrowser / TTMSFMXWebBrowserPopup

The TTMSFMXWebBrowser component is a wrapper around the native webbrowser component on
Windows, iOS, macOS and Android. The TTMSFMXWebBrowser supports navigating to an URL,
navigating forward, back in history, executing javascript, loading a file and displaying a HTML
string. The TTMSFMXWebBrowserPopup can be used to display the TTMSFMXWebBrowser component
modally inside a separate form or dialog depending on the target platform. Please note that only
one instance of the TWebBrowser, TTMSFMXWebBrowser, TTMSFMXWebBrowserPopup or
descendants can be used.

Loading a basic HTML string

TMSFMXWebBrowser1.LoadHTML('<body><h1>This is a <span style="background-

color:red;">HTML string</h1></body>');

Loading a file

In this sample we load a file directly inside the TTMSFMXWebBrowser component The file that we
load is a html page with the following content:

<!DOCTYPE html>
<html>
<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>
</html>

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

111

The code to load the file is

TMSFMXWebBrowser1.LoadFile(ExtractFilePath(ParamStr(0)) + 'test.html');

Executing Javascript

In this sample we load a html file directly inside the TTMSFMXWebBrowser, similar to the previous
sample. The difference is that this file contains javascript to display the current date inside a label.
The javascript function is called “DisplayDate()” and is called through a button click outside the
TTMSFMXWebBrowser component. The html that is used in this sample is displayed below.

<!DOCTYPE html>
<html>
<body>

<h1>My First JavaScript</h1>

<p>Click Date to display current day, date, and time.</p>

<p id="demo"></p>

<script>
function displayDate() {
 document.getElementById("demo").innerHTML = Date();
}
</script>

</body>
</html>

The code used to display the date from a button click:

TMSFMXWebBrowser1.ExecuteJavascript('displayDate();');

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

112

TTMSFMXSignatureCapture

Signature drawing component with import/export capabilities. Draw signature on desktop or mobile
devices and export them to a stream, signature file or image. Compatible with VCL exported
signature files. Optional clear button and text.

TTMSFMXListEditor

Architecture

TTMSFMXListEditor is an edit control to edit a list of values in a flexible way similar to the Microsoft
Outlook or iOS email address input. It consists of a collection of items that can be edited, added,
deleted via the control. Items are displayed in the control as clickable rectangular areas with an
appearance that is controlled by the property TTMSFMXListEditor.ItemAppearance. In addition to
text, each item can optionally also display an image before and/or after the text. The images can
be clicked to perform further actions on.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

113

Appearance

The appearance of the TTMSFMXListEditor is controlled by TTMSFMXListEditor.ItemAppearance. This
property holds settings for normal state of items and for selected state. The settings include:

FillNormal: sets the background color of items in normal state
FontFillNormal: sets the text color of items in normal state
StrokeNormal : sets the color of the item border in normal state
RoundingNormal: sets the rectangle rounding of the item in normal state
FillSelected: sets the background color of items in selected state
FontFillSelected: sets the text color of items in selected state
StrokeSelected : sets the color of the item border in selected state
RoundingSelected: sets the rectangle rounding of the item in Selected state

Further, there is:
HorizontalSpacing : horizontal spacing in pixels between items in the list
VerticalSpacing : vertical spacing in pixels between items in the list
Note that the size of an item is determined by the text width & height (as well as optionally the
width & height of a left and/or right image in the item). This means that to increase the height of
an item for example, the font size shall be increased.

DefaultLeftImage, DefaultLeftImageName:
Sets the image or image name for the (optional) image on the left side of items. When
DefaultLeftImage, DefaultLeftImageName is set, all new items get the image specified by
DefaultLeftImage or DefaultLeftImageName.

DefaultRightImage, DefaultRightImageName:
Sets the image or image name for the (optional) image on the right side of items. When
DefaultRightImage, DefaultRightImageName is set, all new items get the image specified by
DefaultRightImage or DefaultRightImageName.

Note that the image on left side or right side can also be set per item via the item's LeftImage,
LeftImageName and RightImage, RightImageName properties.

Note that in order to use DefaultLeftImageName or DefaultRightImageName, a
TTMSFMXBitmapContainer must be connected to TTMSFMXListEditor.BitmapContainer. This is a
container control that holds multiple images and these images can be accessed via a unique name
identifier.

Items

TTMSFMXListEditor.Items is the collection that holds the items for the list. When the user adds or
removes items, this is automatically reflected in the items collection. An item has following
properties:

LeftImage, LeftImageName : sets the image to appear on the left side of the item
RightImage, RightImageName : sets the image to appear on the right side of the item
Tag : general purpose integer property
Text: holds the text of the item
Value: additional text property per item, available for storing extra information such as a hyperlink
etc...

Adding items can be easily done via TTMSFMXListEditor.Items.Add.Text := 'New item' and deleting
an item programmatically via TTMSFMXListEditor.Items.Delete(Index);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

114

Events

In addition to the standard FireMonkey control events, TTMSFMXListEditor exposes some additional
events relating to the process of editing items in the editor:

OnEditorApplyStyle: event triggered when the inplace editor control is about to be created and
retrieved its style
OnEditorCreate: event triggered when the inplace editor is about to be created and allows to
customize the editor class. The default editor class is TEdit
OnEditorGetSize : event triggered just before the inplace editor will be displayed in the control and
allows to customize the size of the editor in the control
OnEditorGetText: allows to retrieve a text value for the value of the editor. When the inplace
editor derives from TCustomEdit, the .Text property is automatically used but this event allows to
use inplace editors that expose the value via another property than .Text for example.
OnEditorHide : event triggered when the inplace editor will be hidden
OnEditorShow : event triggered when the inplace editor will be displayed
OnEditorUpdate : event triggered when the value of the inplace editor has changed
OnItemCanDelete : event triggered when the user presses the DEL key for a selected item and
allows to query for confirmation before the item is actually deleted
OnItemClick : event triggered when an item is clicked
OnItemDelete : event triggered when an item is deleted
OnItemInsert : event triggered when a new item is inserted via inplace editing
OnItemLeftImageClick : event triggered when the left image for an item is clicked
OnItemRightImageClick :event triggered when the right image for an item is clicked
OnItemUpdate : event triggered when the inplace editing stops and the value needs to be retrieved
to update the item with.

TTMSFMXTaskDialog

A custom dialog component with expandable text, footer and input.
Additionally a progress bar, a list of radiobuttons, custom buttons or commandlinks can be
displayed.

Properties

Bitmap: Set the image to display in the dialog
CollapsControlText: Text displayed when the ExpandedControlText is visible

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

115

CommandLinkBitmap: Set the image to display in a CommandLink
CommonButtons: Select the common dialog buttons to display
Content: HTML formatted text displayed in the dialog
CustomButtons: Set the names of the custom buttons to display
ExpandControlText: Text displayed when the ExpandeControlText is hidden
ExpandedText: HTML formatted text displayed when the ExpandControl is clicked
FooterBitmap: Set the image to display next to the footer text
FooterText: Text displayed in the dialog footer
InputSettings: Settings for input controls. Select which kind of control to display using the
InputType property or select a custom control with the Control property
InstructionText: Text displayed as the dialog instruction
Options: Set if the CustomButtons are displayed as CommandLinks, if the Verify checkbox is
checked and if a ProgressBar is displayed
RadioButtons: Set the list of radiobuttons to display
RadioButtonResult: Retrieve the index of the selected radiobutton
Title: Text displayed as the dialog title
VerificationText: Text to display with the Verify checkbox
VerifyResult: Indicates if the Verify checkbox is checked or unchecked

Methods
Show: Displays the TaskDialog
Show(ResultProc): Displays the TaskDialog and returns the index of the button that was clicked

Sample code to display the TaskDialog and show which button was clicked in a listbox control:

var

 s: string;

begin

 TMSFMXTaskDialog1.Show(

 procedure(ButtonID: Integer)

 begin

 case ButtonID of

 mrOk: s := 'OK';

 mrCancel: s := 'Cancel';

 end;

 ListBox1.Items.Add(s + ' button clicked');

 end

);

end;

Events

OnDialogAnchorClick: Event fired when an anchor element is clicked in the content text
OnDialogButtonClick: Event fired when a button from the CommonButton set or CustomButtons list
is clicked
OnDialogClose: Event fired before the dialog is closed. Indicate if the dialog can be closed with the
CanClose parameter
OnDialogInputGetText: Event fired when getting the text of a custom input control
OnDialogInputSetText: Event fired when setting the text of a custom input control
OnDialogProgress: Event fired when the progress bar is updated
OnDialogRadioClick: Event fired when a radiobutton is clicked
OnValidateInputText: Event fired when the input text is validated. Set if the input text is valid
with the IsValid parameter

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

116

TTMSFMXCheckGroup / TTMSFMXRadioGroup
TTMSFMXCheckGroupPicker / TTMSFMXRadioGroupPicker

Components to display a group of checkbox or radiobutton controls with an optional image in a
specified number of columns.

Properties

AutoSize: If set to true the control is automatically resized based on the number of items and their
content, if set to false the items are automatically positioned and resized based on the size of the
control.
Bitmap/BitmapName: Set the image to display next to the title text
BitmapHeight/BitmapWidth: Set the size of the images displayed next to the items
Bitmaps[Index]: Indexed property to retrieve a specific bitmap for an item
Columns: Set the number of columns to display the items in
GroupCheckBox: Set if a group checkbox is displayed next to the title text
GroupCheckBoxChecked: Set if the GroupCheckBox is checked
GroupCheckBoxType: Set which type of checkbox to display

- ctCheckAll: Check/uncheck all checkboxes (TTMSFMXCheckGroup only)
- ctDefault: Default checkbox behavior
- ctToggleEnabled: Toggle between enabled and disabled items

HTMLText[Index]: Indexed property to retrieve the text for specific item
IsChecked[Index]: Indexed property to retrieve the checked state for a specific item
(TTMSFMXCheckGroup only)
ItemControls[Index]: Indexed property to retrieve a specific radiobutton or checkbox control
ItemIndex: The selected radiobutton index (TTMSFMXRadioGroup only)
Items: The collection of items to display

- Bitmap/BitmapName: Set the image to display next to the item
- Enabled: Set if the item is enabled or disabled
- Text: Set the (HTML formatted) text to display with the item

SelectedValue: Gets or sets the selected radiobutton based on the value (TTMSFMXRadioGroup
only)
Text: HTML formatted title text
Value: Set which checkboxes are checked using a bitmask (TTMSFMXCheckGroup only)

Methods
CheckAll: Sets state to checked for all checkbox items (TTMSFMXCheckGroup only)
UnCheckAll: Sets state to unchecked for all checkbox items (TTMSFMXCheckGroup only)

Events

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

117

OnCheckBoxChange: Event fired when a checkbox checked state is changed (TTMSFMXCheckGroup
only)
OnCheckBoxClick: Event fired when a checkbox is clicked (TTMSFMXCheckGroup only)
OnGroupCheckBoxChange: Event fired when the GroupCheckbox state is changed
OnGroupCheckBoxClick: Event fired when the GroupCheckBox is clicked
OnRadioButtonChange: Event fired when the selected radiobutton is changed (TTMSFMXRadioGroup
only)
OnRadioButtonClick: Event fired when a radiobutton is clicked (TTMSFMXRadioGroup only)

The TTMSFMXCheckGroupPicker/TTMSFMXRadioGroupPicker displays a CheckGroup/RadioGroup in a
dropdown control.
The picker controls are similar in functionality and usage to the TTMSFMXCheckGroup and
TTMSFMXRadioGroup. The selected item text is displayed in the selector area. The
TTMSFMXCheckGroupPicker can display multiple selected items. The selected item(s) can be
retrieved with the SelectedCheckBoxes/SelectedRadioButton property. The CloseOnSelection
property of the TTMSFMXRadioGroupPicker can be set to true to automatically close the dropdown
after a radiobutton has been selected. The OnCheckGroupSelected/OnRadioGroupSelected event is
fired when checkbox or radiobutton state has changed.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

118

TTMSFMXToolBar

The TTMSFMXToolBar is a component to display a group of toolbar buttons / pickers with optional
separators. Each toolbar button is highly configurable and has the ability to show a dropdownbutton
with a dropdowncontrol. There are also built-in font name, font size, bitmap and color pickers.

Set of components

- TTMSFMXToolBar
- TTMSFMXDockPanel
- TTMSFMXToolBarSeparator
- TTMSFMXToolBarButton
- TTMSFMXToolBarFontNamePicker
- TTMSFMXToolBarFontSizePicker
- TTMSFMXToolBarColorPicker

Properties

Appearance: The appearance of the toolbar which includes margins for automatic alignment of the
controls inside the toolbar.
AutoAlign: Automatically aligns the controls inside the toolbar.
AutoSize: Automatically resizes the Toolbar according to the displayed buttons.
CustomOptionsMenu: A custom options menu, displayed when clicking the button at the right side
of the toolbar. The options menu displays a list of controls that are available, and the controls can
be hidden when clicking the appropriate item.
OptionsMenu: Configure the options menu at the right side of the toolbar.
State: The state of the toolbar. By default the state is esNormal, but when developing for mobile
forms, the state can optionally be set to esLarge to allow larger buttons and sharper graphics.

Methods

AddControl(AControl: TControl; AIndex: Integer = -1);
Adds an existing control to the toolbar, optionally at a specified index.

AddControlClass(AControlClass: TControlClass; AIndex: Integer = -1): TControl;
Adds a new control based on the AControlClass parameter, optionally at a specified index.

AddButton(AWidth: Single = -1; AHeight: Single = -1; AResource: String = ''; AResourceLarge:
String = ''; AText: String = ''; AIndex: Integer = -1): TTMSFMXToolBarButton;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

119

Adds a new TTMSFMXToolBarButton with the ability to configure the button size, normal bitmap and
large bitmap resources, text and position within the toolbar.

AddSeparator(AIndex: Integer = -1): TTMSFMXToolBarSeparator;
Adds a new separator to the toolbar.

AddFontNamePicker(AIndex: Integer = -1): TTMSFMXToolBarFontNamePicker;
Adds a new TTMSFMXToolBarFontNamePicker control, which inherits from TTMSFMXToolBarButton.

AddFontSizePicker(AIndex: Integer = -1): TTMSFMXToolBarFontSizePicker;
Adds a new TTMSFMXToolBarFontSizePicker control, which inherits from TTMSFMXToolBarButton.

AddColorPicker(AIndex: Integer = -1): TTMSFMXToolBarColorPicker;
Adds a new TTMSFMXToolBarColorPicker control, which inherits from TTMSFMXToolBarButton.

AddBitmapPicker(AIndex: Integer = -1): TTMSFMXToolBarBitmapPicker;
Adds a new TTMSFMXToolBarBitmapPicker control, which inherits from TTMSFMXToolBarButton.

GetOptionsMenuButtonControl: TTMSFMXToolBarButton;
Returns the right-most options menu button for further customization.

Events

OnOptionsMenuButtonClick: Event called when the menu button at the right side of the Toolbar is
clicked.
OnOptionsMenuCustomize: Event called after the options menu is initialized and further
customizations need to be applied.
OnOptionsMenuItemApplyStyle: Event called when the menu item style is applied.
OnOptionsMenuItemCanShow: Event called when showing
OnOptionsMenuItemClick: Event called when a menu item is clicked.
OnOptionsMenuItemCustomize: Event called when a menu item is initialized and further
customization is necessary.

Adding new components at designtime

When dropping a TTMSFMXToolBar on the form, right-clicking it will give you a context menu with
options to add controls. Adding a Button will create an instance of TTMSFMXToolBarButton and add
it to the TTMSFMXToolBar. By default the AutoSize and AutoAlign is true which will align the button
according to the properties set in the appearance and the width/height of the control.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

120

The TTMSFMXToolBarButton can be further customized through the object inspector. The
TTMSFMXToolBarButton has a few descendants that are listed in the beginning of this chapter, each
inherit all properties from the TTMSFMXToolBarButton and already configure some properties to suit
their purpose. The most important properties, methods and events are listed below.

Adding new components at runtime

For this sample we are taking the previous sample of adding a new TTMSFMXToolBarButton at
designtime. The toolbar has a few helper methods of adding a new or existing control
programmatically.

var

 b: TTMSFMXToolBarButton;

begin

 b := TMSFMXToolBar1.AddButton(100, 30);

 b.Text := 'Hello World !';

We can also add other non-built in type of controls, such as a TEdit.

var

 e: TEdit;

begin

 e := TMSFMXToolBar1.AddControlClass(TEdit) as TEdit;

 e.Text := 'Hello World !';

Toolbar button

Below are the most important properties, methods and events for the TTMSFMXToolBarButton.

Properties

Appearance: The appearance of the button, which includes fill and stroke for all states of the
button including a optional transparent mode and the ability to change the corners and rounding.
AutoOptionsMenuText: The text that is displayed when clicking the options menu button in the
toolbar.
Bitmap: The bitmap for normal state.
BitmapContainer: A container of bitmaps defined by a name property.
BitmapLarge: The bitmap for large state.
BitmapName: The name of the bitmap in normal state used in combination with the
BitmapContainer.
BitmapNameLarge: The name of the bitmap in large state used in combination with the
BitmapContainer.
DropDownControl: A reference to the control displayed inside the dropdown area.
DropDownHeight: The height of the dropdown area where the dropdown control will be displayed.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

121

DropDownKind: The kind of dropdown button configured inside the toolbar button. When setting the
DropDownKind to ddkDropDownButton a separate button is added to the toolbar button which takes
care of displaying the dropdown. When specifying ddkDropDown, the whole toolbar button area will
trigger a dropdown.
DropDownPosition: The position of the dropdown button.
DropDownWidth: The width of the dropdown area where the dropdown control will be displayed.
State: The state of the button, used to show the difference between normal and large states for
desktop and mobile applications.

Methods

GetDropDownButtonControl: TTMSFMXToolBarDropDownButton;
Returns the internally created dropdown control button for further customization.

GetBitmapControl: TTMSFMXBitmap;
Returns the internally created instance of TTMSFMXBitmap used to display a bitmap inside the
toolbar button.

GetTextControl: TTMSFMXHTMLText;
Returns the internally created instance of TTMSFMXHTMLText used to display the text inside the
toolbar button.

DropDown;
Shows the dropdown area.

CloseDropDown;
Closes the dropdown area.

GetPopupControl: TPopup;
A reference to the popup control used to display the dropdown area.

DownState: Boolean
A special state that forces the downstate on the toolbar button.

PopupPlacement: TPlacement
The placement of the dropdown area. By default the dropdown area is shown with the direction set
to bottom.

Normal State vs Large State

The button implements a state property, which is also available on the toolbar and dock panel.
When setting the state property, the buttons are switched to a larger state, and will display a larger
font size, larger size and larger bitmap. The bitmap is the most important because the bitmap will
be loaded from the BitmapLarge properties. When you configure your application to include large
states, you should also include a large state variant for the Bitmap and / or BitmapName properties.

Below is a sample that includes a bitmap for normal and large state.

Normal state

Large state

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

122

TTMSFMXDateTimeEdit

The TTMSFMXDateTimeEdit combines the default TDateEdit and TTimeEdit component in
FireMonkey and exposes properties, such as TimeFormat and DateFormat to easily configure both
controls by displaying them as a single component.

Below is a sample that changes the format for Date and Time and sets the DateTime property

TMSFMXDateTimeEdit1.DateTime := EncodeDate(2014, 12, 10) + EncodeTime(14,

30, 30, 0);

TMSFMXDateTimeEdit1.TimeFormat := 'hh:nn:ss';

TMSFMXDateTimeEdit1.DateFormat := 'dddd mm, yyyy';

TTMSFMXRatingGrid

The TTMSFMXRatingGrid is a control for capturing ratings for different items or for presenting
feature comparison lists.

Features:

- Customizable tickmarks
- Separator items
- Items can be radiogroup for single rate selection or checkgroup for multiple feature

selection
- Items & rating categories can be displayed with different font colors & font styles
- Up to 64 rating categories

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

123

Properties:

BitmapContainer: TTMSFMXBitmapContainer; Container used for the bitmaps displayed in the
control.
Categories: TTMSFMXRatingCategories; List of catogories. Determines the number of displayed
columns.
CategoryFont: TFont; The font used for the category titles.
CategoryFontColor: TAlphaColor; The font color used for the category titles.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

124

CategoryType: TTMSFMXCategoryType; Set to catRating if the items should behave as a radiogroup
for single rate selection. Set to catFeature to make the items behave as a checkgroup for multiple
feature selection.
CategoryOrientation: TTMSFMXCategoryOrientation; Set the orientation of the category titles to
vertical or horizontal.
CheckOffBitmap: TBitmap; The bitmap used for an unselected checkbox.
CheckOffBitmapName: String; The bitmapname for the bitmap from the BitmapContainer used for
an unselected checkbox.
CheckOnBitmap: TBitmap; The bitmap used for a selected checkbox.
CheckOnBitmapName: String; The bitmapname for the bitmap from the BitmapContainer used for a
selected checkbox.
RadioOffBitmap: TBitmap; The bitmap used for an unselected radiobutton.
RadioOffBitmapName: String; The bitmapname for the bitmap from the BitmapContainer used for
an unselected radiobutton.
RadioOnBitmap: TBitmap; The bitmap used for a selected radiobutton.
RadioOnBitmapName: String; The bitmapname for the bitmap from the BitmapContainer used for a
selected radiobutton.
ItemFont: TFont; The font used for the item titles.
ItemFontColor: TAlphaColor: The font color used for the item titles.
Items: TTMSFMXRatingItems; List of items. Determines the number of displayed rows.
Spacing: single; The space between rows and columns.
DisableFocusEffect: Boolean; Determines if a focusborder is displayed around the focused tickmark.

Events:

OnValueChanged(Sender: TObject; ItemIndex, CategoryIndex: Integer; Value: boolean);
Event triggered when a tickmark is selected or unselected.

TTMSFMXPassLock

The TTMSFMXPassLock is a control for capturing passwords on a keypad or circle pattern.

Features:

- Number & pattern passlock control
- Pass lock entry & pass lock learn mode
- Customizable appearance
- Configurable pass code length

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

125

Properties:

Font: TFont; The font used for the keypad circles.
FontColor: TAlphaColor; The default font color.
HotFontColor: TAlphaColor; The font color for a pressed circle.
HotItemFillColor: TAlphaColor; The fill color for a pressed circle.
HotItemStrokeColor: TAlphaColor; The stroke color for a pressed circle.
ItemFillColor: TAlphaColor; The default circle fill color.
ItemStrokeColor: TAlphaColor; The default circle stroke color.
SelectItemFillColor; TAlphaColor; The fill color for a selected circle.
SelectItemStrokeColor; TAlphaColor; The stroke color for a selected circle.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

126

LearnMode: Boolean; When set to true, enables the user to configure a new password. The
OnPasswordLearned event is triggered after the first time a password has been entered. The
OnPasswordConfirmed event is triggered after the second time a password is entered.
When set to false, the control only accepts the password as defined in PassValue. The
OnPasswordMatch or OnPasswordMismatch event is triggered after a correct or incorrect password
has been entered respectively.
LineColor: TAlphaColor; The color of the connecting line (pltPattern mode only).
LineThickness: TAlphaColor; The thickness of the connecting line (pltPattern mode only).
LockType: TAlphaColor; TTMSFMXPassLockType; The type of lock that is displayed. Set to
pltNumber to display a keypad or to pltPattern to display circle pattern.
PassLength: integer; Set the length of the password.
PassValue: string; Set the password value. The control accepts a password when it is equal to
PassValue.
PassEntry: string; The password that has been entered via the control.
ShowEntry: Boolean; When set to true, displays how many numbers have already been entered on
top of the keypad (pltNumber mode only).
Spacing: Single; The space between circles.

Events:

OnValueChanged(Sender: TObject; ItemIndex: Integer);
Event triggered when a circle is pressed.

OnPasswordMatch(Sender: TObject);
Event triggerend when a password is entered that matches the PassValue value (Only when
LearnMode is set to false).

OnPasswordMisMatch(Sender: TObject);
Event triggered when a password is entered that does not match the PassValue value (Only when
LearnMode is set to false).

OnPasswordLearned(Sender: TObject);
Event triggered when a password is entered for the first time (Only when LearnMode is set to true).

OnPasswordConfirmed(Sender: TObject; Result: TTMSFMXPasswordConfirm);
Event triggered when a password is entered for the first time (Only when LearndMode is set to
true). When the second password entry matches the first password entry the Result is pcSuccess and
the password value is set to the PassValue, if not the result is pcFail and the password is discarded.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

127

TTMSFMXTouchKeyboard / TTMSFMXPopupTouchKeyboard

Description

TTMSFMXTouchKeyboard is a compact light-weight virtual keyboard for desktop applications on
macOS and Windows, which includes typical keyboards as QWERTY, QWERTZ, AZERTY, DVORAK,
Cellphone and Numeric. The possibility exists to use the keyboard as a popup.
The keyboard can be fully customized in order and style.

Properties & Events

TTMSFMXTouchKeyboard

AutoCapsDisplay If turned on, the keyboard will show key text in
uppercase when caps is on

BorderRounding Sets the roundings of the keys

HighlightCaps Sets the highlight color for the available capital
keys

HighlightAltGr Sets the highlight color for the available alt keys

BitmapContainer A bitmap container for image storage

KeyboardType Selects one of the predefined keyboard types

Keys Collection of keys in the keyboard

OnKeyClick Event triggered when a key is clicked

OnKeyDown Event triggered when mouse is down on the key

OnDrawKey Event triggered to perform custom key drawing

TTMSFMXPopupTouchKeyboard

AutoCapsDisplay If turned on, the keyboard will show key text in
uppercase when caps is on.

HighlightCaps Sets the highlight color for the available capital
keys

HighlightAltGr Sets the highlight color for the available alt keys

KeyboardType Selects one of the predefined keyboard types

OnClose Event triggered when the popup keyboard closes

OnKeyboardCreated Event triggered after the internal keyboard is
created and before it is shown

TTMSFMXTouchKeyItem

X The actual x position of the key on the keyboard

Y The actual y position of the key on the keyboard

Caption The normal key state caption

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

128

ShiftCaption The key caption while pressing shift

AltGrCaption The key caption while pressing alt

KeyValue The key value in normal state

ShiftKeyValue The key value while pressing shift

AltGrKeyValue The key value while pressing alt

PictureDownState The picture shown when the key is being pressed

PictureNormalState The picture in normal state

SpecialKey If this key is special, for example the ctrl key

BorderColor The border color in normal state

borderColorDown The border color when the key is being pressed

Color The color in normal state

ColorDown The color when the key is being pressed

TextColor The text color

TextColorDown The text color when the key is being pressed

ImageName The name of the image to use from the assigned
bitmapcontainer

ShortCut The keys’ shortcut

Hint The hint that’s shown when hovering over a key

Methods

TTMSFMXTouchKeyboard

SaveKeybdLayout Saves the keyboard to the specified file name

LoadKeybdLayout Loads the keyboard from the specified file name

TTMSFMXPopupTouchKeyboard

ShowKeyboard Shows the keyboard on the cursors position

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

129

TTMSFMXScrollMenu

Description

TTMSFMXScrollMenu is a compact horizontal multi-level menu scroller with a vertical hierarchic
model for multiple layers of the menu.

Properties & Events

TTMSFMXScrollMenu

Items A collection of scroll items

BitmapContainer Reference to bitmap container that can contain
images to be used for the menu items

OnItemAppearance Event triggered when the item appears on
screen and allows appearance customization

OnSelect Event triggered when an item is selected

TTMSFMXScrollItems

AutoSize Makes the item adapt its size to the text it
contains

Appearance Class property holding all attributes for
customizing the appearance of the items

Tag Integer reference property

TTMSFMXItemAppearance

DefaultWidth The size of the item, if autosize is false.

Selected/Disabled/-Fill Fill appearance setting for selected and disabled
state

Selected/Disabled/-Stroke Stroke appearance settings

Selected/Disabled/-Font Font for selected and disabled state

HorizontalTextAlign The horizontal text alignment

VerticalTextAlign The vertical text alignment

Disabled/Selected/-TextColor The color of the text for selected and disabled
state

OnChange Event triggered when the appearance settings
have changed

TTMSFMXScrollItem

BitmapName (When the BitmapContainer is assigned)
The name of the corresponding bitmap in the
BitmapContainer to use for the item

SubItems A collection of the sub items for the item

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

130

State The current state of the item (selected, normal,
disabled)

Tag The numeric representation of the item

Text The caption of the item

Methods

TTMSFMXScrollMenu

AddItem(AText: string): TTMSFMXScrollItem Adds an item with the specified text

TTMSFMXScrollItem

AddSubItem(AText: string): TTMSFMXScrollItem Adds a subitem with the specified text

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

131

TTMSFMXGridFilterPanel

The TTMSFMXGridFilter applies a filter to TTMSFMXGrid, so first drop a TTMSFMXGrid on the form.

Next drop the TTMSFMXGridFilterPanel on the form.

The component gives the hint to assign a TTMSFMXGrid to the panel:

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

132

The component will automatically retrieve column information after assignment of the grid:

If preferred, there’s a possibility to change the full color and text layout properties of the
component. See the full properties list for more explanation.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

133

Runtime

The filter starts with a clean row. All assigned grid columns are available in the column TComboBox.
When a column has been chosen, the filter operation will automatically show the first option for a
quick and simple experience.
The value and case field will change, depending on the selected column field.

Example:

- The column field contains text: The value field became a TEdit

- The column field contains a numeric value: The value field became a TSpinBox

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

134

The result so far:

The grid filter was changed after clicking the “Apply Filter” button. The same can be accieved for
mobile devices.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

135

Properties

ApplyButton Gives access to the apply button

ButtonAddIcon Gives access to the add item icon

ButtonRemoveIcon Gives access to the remove item icon

ClearButton Gives access to the clear button

Fill Can fill the component

Footer Gives access to the components footer

FooterAddClearButton Gives access to the footers clear button

FooterAddFilterButton Gives access to the footers add filter button

FooterRestoreFilterButton Gives acces to the footers restore filter button

FooterFill Can fill the components footer

FooterStroke Can give a stroke to the footers border

Grid Gives access to the assigned grid

Header Gives access to the components header

HeaderTitle Gives access to the header title

HeaderFill Can fill the header

HeaderStroke Can give a stroke to the headers border

ItemFill Can fill the items

ItemStroke Can give a stroke to the items border

LabelFont Gives access to all label fonts

LabelFontColor Gives access to all labels font colors

RestoreButton Gives access to the restore button

Stroke Can give a stroke to the components border

ShowRestoreFilter Gives access to the visibility of the restore filter button

ShowApplyFilter Gives access to the visibility of the apply filter button

TitleFont Gives access to the title font

TitleFontColor Gives access to the title font color

Title Gives access to the title caption

UI Gives access to all text properties

UIType Gives access to the types of UI

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

136

ApplyButton Sets the text for the apply button

ApplyDialogText Sets the confirmation dialog text for the apply button

ColumnLabel Sets the text for the column label

ColumnHint Sets the column label hint text

CaseLabel Sets the text for the case label

CaseHint Sets the case label hint text

ClearButton Sets the text of the “clear filter” button

ClearDialogText Sets the text of the “clear filter” dialog

HintApplyFilter Sets the apply filter hint text

HintClearFilter Sets the clear filter hint text

HintFilterAdd Sets the add filter button hint text

HintFilterRemove Sets the remove filter button hint text

HintRestoreFilter Sets the restore filter button hint text

OperationLabel Sets the text of the operation label

OperationHint Sets the text of the operation hint

OperationEqual Sets the text of the “equal” operation item

OperationNotEqual Sets the text of the “not equal” operation item

OperationContains Sets the text of the “contains” operation item

OperationBeginsWith Sets the text of the “begins with” operation item

OperationEndsWith Sets the text of the “ends with” operation item

OperationSmallerThen Sets the text of the “smaller then” operation item

OperationLargerThen Sets the text of the “larger then” operation item

OperationSmallerOrEqual Sets the text of the “smaller or equal” operation item

OperationLargerOrEqual Sets the text of the “larger or equal” operation item

OperationTrueFalse Sets the text of the “true false” operation item

OperationAnd Sets the text of the “and” action item

OperationOr Sets the text of the “or” action item

RestoreButton Sets the text of the “restore filter” button

RestoreDialogText Sets the text of the “restore filter” dialog

ValueLabel Sets the text of the value label

ValueTextHint Sets the text of the value label hint

Events

UI.OnChange Triggers when changing a ui item

OnAppliedFilter Triggers when the filter was applied

Methods

Init Initiates the grid filter

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

137

TTMSFMXRichEditor

Description

TTMSFMXRichEditor is a compact light-weight WYSIWYG editor for formatted text.
TTMSFMXRichEditor can include formatted text with bullets, hyperlinks, images, indenting, and
aligned paragraphs. It offers functions for merging, highlighting text, find & replace, undo/redo,
clipboard.
TTMSFMXRichEditor stores its text natively in the .RTE file format. It can load text from .TXT and
.RTE files and can export to .TXT, .RTF, .HTML and .RTE files. Rich editing/formatting toolbars are
included to perform clipboard functions, undo/redo, formatting, paragraph alignment, inserting
bullets, pictures, hyperlinks, special characters.

Organization

The core component is TTMSFMXRichEditor. This is a standalone component that can be used as-is
for WYSIWYG editing of formatted text. It comes with a formatting and editing toolbar that can be
used to quickly setup a rich editor or its many predefined toolbar buttons/pickers can be used to
create a specific user interface around the TTMSFMXRichEditor according to your needs.

Internally the TTMSFMXRichEditor consists of a simple DOM. This DOM is a generic list of document
elements. Different types of document elements exist such as a text element, image element,
linebreak element, bullet element, … Each document element has several attributes that determine
the appearance in the document. While the TTMSFMXRichEditor provides a large series of methods
to add or remove elements from the DOM, it is also accessible via

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

138

TTMSFMXRichEditor.Context.Content. It is recommended though that the API used instead of direct
DOM manipulation.

Getting Started

Drop a TTMSFMXRichEditor on the form. The component with its default settings is ready for use.
Entering of text can be done with default font & alignment. For ease of use, connect a
TTMSFMXRichEditorEditToolBar or TTMSFMXRichEditorFormatToolBar, to apply all kinds of
formatting to the text without writing any code or use its ribbon equivalents for a WYSIWYG editor
with toolbar UI.

Properties & Events

Properties

Author Sets the author of the document that will be
persisted when saving to .RTE file format.

Color Sets the default background of the
TTMSFMXRichEditor

Comments Sets comments for the document that will be
persisted when saving to .RTE file format.

FontColor Sets the default font color of the
TTMSFMXRichEditor

GraphicSelection Sets the appearance of the grips that appear when
selecting graphics in the TTMSFMXRichEditor

GraphicSelection.BorderColor Sets the border color of graphic item grips

GraphicSelection.Color Sets the background color of graphic item grips

GraphicSelection.Style Selects the style between rectangular or circular
for the grips

HighlightColor Sets the background color for highlighted text in
the TTMSFMXRichEditor

HighlightTextColor Sets the text color for highlighted text in the
TTMSFMXRichEditor

LastModifiedBy Sets the name of the person who last modified the
content of the document and this name Is
persisted in the .RTE file

ReadOnly When true, the content of the document cannot
be altered but selection is possible

SelectionColor Sets the background color for selection in the
TTMSFMXRichEditor

SelectionTextColor Sets the text color for selection in the
TTMSFMXRichEditor

Tags Sets tags for the document that will be persisted
when saving to .RTE file format.

URLColor Sets the text color for hyperlinks in the
TTMSFMXRichEditor

Version Read-only property returning the version of the
component

Events

OnCaretChanged Event triggered whenever the caret changes in the
TTMSFMXRichEditor

OnClick Event triggered when the editor is clicked

OnClickHyperlink Event triggered when a hyperlink is clicked in the

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

139

editor. The URL for the hyperlink is returned as a
parameter

OnDrawGraphic Event triggered for drawing custom graphic
elements in the TTMSFMXRichEditor. This event
returns the canvas and rectangle where to draw
the custom graphic and an ID for the graphic
element

OnEnter Event triggered when the TTMSFMXRIchEditor gets
focus

OnEnterWord Event triggered when one or more characters
were entered before a word boundary. The event
returns the word just entered

OnExit Event triggered when the TTMSFMXRIchEditor
looses focus

OnSelectionChanged Event triggered whenever the selection changes in
the TTMSFMXRichEditor

Methods

AddBullet(AType: TBulletType = btCircle); Appends a bullet element to the
TTMSFMXRichEditor and returns a bullet document
element. The bullet types can be:

- btSquare
- btCircle
- btArrow
- btStar
- btTick

AddGraphic(AWidth, AHeight: integer; AID:
string);

Appends a graphical element with a specific ID to
the TTMSFMXRichEditor and returns a graphic
document element. This graphical element needs
to be drawn via the OnDrawGraphic event

AddHyperlink(AValue, AURL: string); Sets a hyperlink for the currently selected text in
the TTMSFMXRichEditor

AddImage(FileName: string); overload; Appends an image from file to the
TTMSFMXRichEditor and returns a graphic
document element

AddImage(FileName: string; AWidth, AHeight:
integer); overload;

Appends an image from file with a specific width
and height to the TTMSFMXRichEditor and returns
a graphic document element

AddImage(Picture: TPicture); overload; Appends an image to the TTMSFMXRichEditor and
returns a graphic document element. Images of
the type BMP,JPEG,GIF,PNG,ICO are supported.

AddImage(Picture: TPicture; AWidth, AHeight:
integer); overload;

Appends an image with a specific width and height
to the TTMSFMXRichEditor and returns a graphic
document element. Images of the type
BMP,JPEG,GIF,PNG,ICO are supported.

AddLineBreak: TREElement; Appends a linebreak to the TTMSFMXRichEditor
and returns a linebreak document element

AddMultiLineText(AValue: string); Appends multiple lines of text as word-wrapped
text in the TTMSFMXRichEditor

AddText(AValue: string): TTextElement;
overload;

Appends text to the TTMSFMXRichEditor and
returns a text document element containing this
added text

AddText(AValue: string; AAlignment:
TAlignment): TTextElement; overload;

Appends text with a specific alignment to the
TTMSFMXRichEditor and returns a text document

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

140

element containing this added text

AddText(AValue: string; AColor: TColor):
TTextElement; overload;

Appends text with a specific text color to the
TTMSFMXRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AColor: TColor;
BkColor: TColor): TTextElement; overload;

Appends text with a specific text color and
background color to the TTMSFMXRichEditor and
returns a text document element containing this
added text

AddText(AValue: string; AFont: TFont):
TTextElement; overload;

Appends text with a specific font setting to the
TTMSFMXRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AFontSize: integer;
AFontName: string; AFontStyle: TFontStyles):
TTextElement; overload;

Appends text with a specific font setting to the
TTMSFMXRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AFontSize: integer;
AFontName: string; AFontStyle: TFontStyles;
AAlignment: TAlignment): TTextElement;
overload;

Appends text with a specific font setting and
alignment to the TTMSFMXRichEditor and returns a
text document element containing this added text

BeginUpdate; Use to block updates when doing many
programmatic manipulations in the
TTMSFMXRichEditor

CanRedo: boolean; Returns true when a Redo operation is possible

CanUndo: boolean; Returns true when an Undo operation is possible

CanUnindent: boolean; Returns true when the selection in the document
is indented (and thsu can be unindented)

Clear; Removes all elements from the document

ClearSelection; Clears the selection in the document

DeleteCaretElement; Deletes the document element where the caret is

DeleteChar; Deletes the character at caret position

DeleteSelected; Deletes the selected element in case an image or
graphical element is selected

DeleteSelection; Deletes the selection in the TTMSFMXRichEditor

EndUpdate; Use to block updates when doing many
programmatic manipulations in the
TTMSFMXRichEditor

FindFirst(AText: string; MatchCase: boolean =
false): boolean;

Finds the first occurrence of text from the
document origin

FindNext: boolean; Finds the next occurrence of text from the
position of the last find operation

GetSelectionBkColor: TColor; Returns the background color for the selected text

GetSelectionBullet: TBulletType; Returns the bullet type used for the selected text

GetSelectionFontName: string; Returns the font face name for the selected text

GetSelectionFontSize: integer; Returns the font size for the selected text

GetSelectionIndent: integer; Returns the indent of the selected text

GetSelectionTextColor: TColor; Returns the text color for the selected text

GetWordAndIndexAtCaret(var AValue: string;
var AIndex: integer);

Returns the word at caret position and the index
of the element containing the word

HasSelection: boolean; Function returns true when there is a selection in
the TTMSFMXRichEditor

Highlight(AText: string; MatchCase: boolean =
false): boolean;

Highlight the text in the document with or
without case sensitivity in the document

InsertBullet(AType: TBulletType = btCircle); Inserts a bullet element at caret position in the
TTMSFMXRichEditor and returns a bullet document
element

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

141

InsertChar(ch: char); Inserts a character at caret position

InsertFromStream(const AStream: TStream; f:
double);

Inserts plain text from file at caret position

InsertGraphic(ID: string; AWidth, AHeight:
integer);

Inserts a custom graphic element with a specific
width and height at caret position in the
TTMSFMXRichEditor and returns a graphic
document element

InsertImage(FileName: string; AWidth: integer
= 0; AHeight: integer = 0); overload;

Inserts an image with a specific width and height
at caret position in the TTMSFMXRichEditor and
returns an image document element

InsertImage(Picture: TPicture; AWidth: integer
= 0; AHeight: integer = 0); overload;

Inserts an image with a specific width and height
at caret position in the TTMSFMXRichEditor and
returns an image document element

InsertMultiLineText(AValue: string); Inserts text in the TTMSFMXRichEditor at caret
position

InsertText(AValue: string): TTextElement;
overload;

Inserts text in the TTMSFMXRichEditor at caret
position and returns a text document element
containing this added text

InsertText(Index: integer; AValue: string):
TTextElement; overload;

Inserts text in the TTMSFMXRichEditor at
document element Index and returns a text
document element containing this added text

IsCaretInBulletList(var AType: TBulletType; var
AIndex, AIndent: integer): boolean;

Returns true when the caret is within a list of
bulleted items and when so, returns the bullet
type, the index of the item in the list and the
indent of the bulleted items

IsEmpty: boolean; Returns true when the document is empty

IsSelectionBold: boolean; Returns true when the selected text font style is
bold

IsSelectionCenter: boolean; Returns true when the selected text alignment is
center aligned

IsSelectionItalic: boolean; Returns true when the selected text font style is
italic

IsSelectionLeft: boolean; Returns true when the selected text alignment is
left aligned

IsSelectionRight: boolean; Returns true when the selected text alignment is
right aligned

IsSelectionStrikeOut: boolean; Returns true when the selected text font style is
strikeout

IsSelectionSubscript: boolean; Returns true when the selected text font style is
subscript

IsSelectionSuperscript: boolean; Returns true when the selected text font style is
superscript

IsSelectionUnderline: boolean; Returns true when the selected text font style is
underline

LoadFromFile(const FileName: string); Load a document from the .RTE file format

LoadFromStream(const AStream: TStream); Load a document in the .RTE file format from
stream

LoadFromTextFile(const FileName: string); Loads the document from a plain text file

Merge(NamesAndValues: TStringList); Performs merging of mergefields with merge
values contained in the stringlist

PlainText: string; Returns the text of the TTMSFMXRichEditor
document as plaintext

property Caret: TCaret read FCaret write
FCaret;

Allows to get and set the caret based on
document elements and character position within
the selected document element

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

142

property Selected: TREElement read FSelected
write FSelected;

Get or set the selected (graphical) document
element

property Selection: TSelection read FSelection
write FSelection;

Allows to get and set the selection in the
TTMSFMXRichEditor based on document elements
for the selection start and selection end and
character positions within the selections

Redo; Performs Redo

ReplaceFirst(AText, AReplacement: string;
MatchCase: boolean = false): boolean;

Replaces the first occurrence of text from the
document origin

ReplaceNext: boolean; Replaces the next occurrence of text from the
position of the last find operation

SaveSelectionToStream(const AStream:
TStream);

Saves the current selected document elements in
.RTE file format to stream

SaveToFile(const FileName: string); Save a document to the .RTE file format

SaveToStream(const AStream: TStream); Save a document in the .RTE file format to stream

SaveToText(AFileName: string); Saves the document in TTMSFMXRichEditor as
plain text

ScrollToCaret; Vertically scroll the TTMSFMXRIchEditor to make
the caret visible

SelectAll; Selects all document elements in
TTMSFMXRichEditor

SelectedText: string; Returns the selected text

SelectText(FromChar, ALength: integer); Selects text in the TTMSFMXRichEditor based on
character position of the text and length in
characters

SelectWordAtCaret: string; Selects the word in the TTMSFMXRichEditor
document at caret position

SelectWordAtXY(X,Y: integer): string; Selects the word in the TTMSFMXRichEditor
document at mouse coordinates X,Y

SetSelectionAttribute(AAlignment:
TAlignment); overload;

Sets the alignment of the selected text

SetSelectionAttribute(AError: boolean);
overload;

Sets the selected text with red error underlining
or remove error underlining

SetSelectionAttribute(AFont: TFont; AColor:
TColor); overload;

Sets the font and color attribute of the seleted
text

SetSelectionAttribute(AFont: TFont; AColor:
TColor; BkColor: TColor); overload;

Sets the font, text color and background color
attribute of the seleted text

SetSelectionAttribute(AFontName: string;
AFontSize: integer; AFontStyle: TFontStyles;
AColor: TColor); overload;

Sets the font and color attribute of the seleted
text

SetSelectionAttribute(AFontName: string;
AFontSize: integer; AFontStyle: TFontStyles;
AColor, BkColor: TColor); overload;

Sets the font, text color and background color
attribute of the seleted text

SetSelectionBkColor(AColor: TColor); Sets the background color of the selected text

SetSelectionBold(DoBold: boolean); Sets the selected text bold or remove bold

SetSelectionBullets(AType: TBulletType);
overload;

Sets bullets for the selected text. Each line
separated by a linebreak gets a bullet. AType sets
the bullet type

SetSelectionColor(AColor: TColor); Sets the text color of the selected text

SetSelectionError(DoError: boolean); Sets the selected text with red error underlining
or remove error underlining

SetSelectionFontName(AName: string); Sets the font face name for the selected text

SetSelectionFontSize(ASize: integer); Sets the font size for the selected text

SetSelectionHighlight; Sets the selected text in highlight text /

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

143

background colors

SetSelectionHyperlink(AURL: string); Sets a hyperlink for the text selected element in
the document

SetSelectionIndent(AIndent: integer); Sets the indent on the selected text

SetSelectionItalic(DoItalic: boolean); Sets the selected text italic or remove italic

SetSelectionMergeField(AMergeName: string); Defines a mergefield value for the selected text

SetSelectionStrikeOut(DoStrikeOut: boolean); Sets the selected text strikeout or remove
strikeout

SetSelectionSubscript(DoSubScript: boolean); Sets the selected text subscript or remove
subscript

SetSelectionSuperscript(DoSuperScript:
boolean);

Sets the selected text superscript or remove
superscript

SetSelectionUnderline(DoUnderline: boolean); Sets the selected text underlined or remove
underlined

Undo; Performs Undo

UnHighlight; Undo any previous highlight

UnSelect; Undo any selection in the document

UpdateWordAndIndexAtCaret(AValue: string;
AIndex: integer);

Replaces the word at document element at caret
position at character index AIndex by AValue

WordAtCaret: string; Returns the word at caret position

WordAtXY(X,Y: integer): string; Returns the word at X,Y mouse coordinates

XYToCaret(X,Y: integer); overload; Sets the caret at mouse X,Y coordinates

XYToCaret(X,Y: single); overload;

XYToChar(X,Y: integer; el: TREElement; var
CX,CY: integer): integer;

Converts the X,Y mouse coordinates to character
position in the document text

XYToElement(X,Y: integer; var el:
TREElement): boolean;

Retrieves the document element at mouse X,Y
coordinates

XYToWord(X,Y: integer): string; overload; Returns the word at mouse coordinates X,Y

XYToWord(X,Y: integer; el: TREElement):
string; overload;

Returns the word and document element at mouse
coordinates X,Y

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

144

Programmatic access to the document

Text can be inserted in TTMSFMXRichEditor in various ways. To start with call:

TMSFMXRichEditor1.AddText(‘Hello world’);

Add text on the next line with:

TMSFMXRichEditor1.AddLineBreak;

TMSFMXRichEditor1.AddText(‘Text on the second line’);

To add text with a different font than default font, use:

TMSFMXRichEditor1.AddLineBreak;

TMSFMXRichEditor1.AddText('Another line with special

font',12,'Courier',[TFontStyle.fsBold]);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

145

To change attributes of text in the TTMSFMXRichEditor, perform a selection based on index of the
text and length. For example, to change the color of “world” on the first line, set a selection from
character 6 for 5 characters (character index starts at zero) and set an attribute for the selection
followed by remove the selection itself:

TMSFMXRichEditor1.SelectText(6,5);

TMSFMXRichEditor1.SetSelectionColor(claRed);

TMSFMXRichEditor1.SetSelectionItalic(True);

TMSFMXRichEditor1.ClearSelection;

To add images to the TTMSFMXRichEditor, use:

TMSFMXRichEditor1.AddImage('.\sample.png');

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

146

Using merge fields

Via merge fields, specific places in the document can be quickly replaced during a merge operation.
To perform merging, first insert merge fields in the document. Merge fields are pieces of text that
get a merge field name. These pieces of text are displayed between brackets «» and with a gray
background. To set a piece of text as merge field, select the text and call

TMSFMXRichEditor1.SetSelectionMergeField(‘MergeFieldName’);

Assume that following merge field names exist in the TTMSFMXRichEditor document:

‘Name’
‘Street’
‘City’
‘Country’

then a merge operation can be done in the following way:

var

 sl: TStringList;

sl := TStringList.Create;

sl.Add(‘Name=Bill Gates’);

sl.Add(‘Street=Microsoft Way 1’);

sl.Add(‘City=Redmond’);

sl.Add(‘Country=USA’);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

147

TMSFMXRichEditor1.Merge(sl);

sl.Free;

This will replace the merge fields Name, Street, City, Country with the values ‘Bill Gates’,
‘Microsoft Way 1’, ‘Redmond’, ‘USA’ specifically.

It is also possible to replace merge fields by pictures, i.e. insert pictures dynamically during a
merge operation.

To do this, set a merge fieldname just like for text but using following construct for the mergelist:

Assume that in the previous example we want to add a picture of the person in the document, this
would become:

‘Photo’
‘Name’
‘Street’
‘City’
‘Country’

A merge operation is done the following way:

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

148

var

 sl: TStringList;

 pic: TBitmap;

pic := TBitmap.Create;

pic.LoadFromFile(‘billgates.jpg’);

sl := TStringList.Create;

sl.AddObject(‘Photo=’,pic);

sl.Add(‘Name=Bill Gates’);

sl.Add(‘Street=Microsoft Way 1’);

sl.Add(‘City=Redmond’);

sl.Add(‘Country=USA’);

TMSFMXRichEditor1.Merge(sl);

sl.Free;

pic.Free;

To undo the merge operation (and have the document ready for a new merge operation), simply call
TMSFMXRichEditor1.UnMerge; after the merge operation.

Using accompanying toolbars

TTMSFMXRichEditor comes with 2 ready-to-use toolbars that enable to quickly create user-interfaces
for manipulating the formatted text without writing code. To start using the toolbars, simple drop
one of the toolbars on either a TTMSFMXDockPanel or directly on the form.

TTMSFMXRichEditorEditToolBar, TTMSFMXRichEditorFormatToolBar

These are 2 toolbars designed to be used in combination with a TTMSFMXDockPanel. The toolbars
are divided in functions for Open/Save/Clipboard/Undo/Redo with the
TTMSFMXRichEditorEditToolBar, changing font characteristics, alignment, bullets, indents, colors
and inserting images, hyperlinks, special characters with the TTMSFMXRichEditorFormatToolbar.

Importing & exporting in rich text

TTMSFMXRichEditor comes with a component to allow to import or export its content in rich text
(.RTF) files.
Performing such export or import is easy. Drop a TTMSFMXRichEditorRTFIO component on the form
and connect the TTMSFMXRichEditor to this non-visual component’s RichEditor property.

Export

Simply call:

TMSFMXRichEditorRTFIO.Save(FileName);

Import

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

149

Simply call:

TMSFMXRichEditorRTFIO.Load(FileName);

Importing & exporting in HTML format

TTMSFMXRichEditor comes with a component to allow to export its content in HTML (.HTML) files. It
is also possible to import from files that use a HTML subset (mini HTML) described here:
http://www.tmssoftware.com/site/minihtml.asp

Performing such export or import is easy. Drop a TTMSFMXRichEditorHTMLIO component on the form
and connect the TTMSFMXRichEditor to this non-visual component’s RichEditor property.

Export

Simply call:

TMSFMXRichEditorHTMLIO.Save(FileName);

Notice that for HTML export, the default behaviour is that all images used in the document are
exported as separate linked image files in the same folder where the .HTML file is generated. If it is
preferred that images are generated in a different folder, use the 2nd default parameter ImagePath:

TMSFMXRichEditorHTMLIO.Save(FileName, ImagePath);

Import

This is limited to mini HTML files and import is done via the non-visual component
TTMSFMXRichEditorMiniHTMLIO. In the same way as TTMSFMXRichEditorHTMLIO, assign the
TTMSFMXRichEditor instance via TTMSFMXRichEditorMiniHTMLIO.RichEditor. The component provides
the following overloads to import from HTML:

procedure Load(HtmlValue: string; Pictures: TTMSFMXBitmapContainer);

overload;

procedure Load(FileName: string; Encoding: TEncoding = nil); overload;

procedure Load(AStream: TStream; Encoding: TEncoding = nil); overload;

This way, it can import from a simple HTML formatted string, a file with HTML formatted text or a
stream. In the case of loading from a HTML formatting string, 1 extra parameter Pictures can be
used as a container for referenced images in the HTML formatted string.

Finally, one more helper method is available in TTMSFMXRichEditorMiniHTMLIO:

procedure Insert(AHtmlValue: string);

This inserts the formatted text from a HTML formatted string at caret position in the
TTMSFMXRichEditor.

http://www.tmssoftware.com/site/minihtml.asp

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

150

Import or export to mini-HTML

With the component TTMSFMXRichEditorMiniHTMLIO, it is possible to read or write the contents of
the TTMSFMXRichEditor in mini-HTML format. Mini-HTML is a subset of HTML and is described at:
http://www.tmssoftware.com/site/minihtml.asp

To use TTMSFMXRichEditor to read or write its contents in HTML, drop TTMSFMXRichEditorMiniHTML
on the form and connect the TTMSFMXRichEditor instance to
TTMSFMXRichEditorMiniHTMLIO.RichEditor.

Call TTMSFMXRichEditorMiniHTMLIO.Load(AFileName: string; AEncoding: TEncoding = nil) to load the
content from a HTML file.

Call TTMSFMXRichEditorMiniHTMLIO.Save(AFileName: string) to save the content to a HTML file.

In addition to saving to file, it is also possible to save to a stream or get the content as HTML:

TTMSFMXRichEditorMiniHTMLIO.Save(AStream: TStream; AEncoding: TEncoding = nil) : saves the
content in HTML format to stream

TTMSFMXRichEditorMiniHTMLIO.AsString: string : returns the content in HTML format as string

In addition to loading from file, it is also possible to get the content from a stream or a HTML
formatted string:

TTMSFMXRichEditorMiniHTMLIO.Load(AStream: TStream);

Loads the content from a stream containing the HTML formatted text.

TTMSFMXRichEditorMiniHTMLIO.LoadFromString(AHtmlValue: string; APictures:
TTMSFMXBitmapContainer = nil);

HTMLValue contains the content as HTML formatted string. Optionally, for passing pictures, a
TTMSFMXBitmapContainer can be used in case the HTML formatted string references pictures in a
TTMSFMXBitmapContainer.

http://www.tmssoftware.com/site/minihtml.asp

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

151

TTMSFMXTabSet / TTMSFMXPageControl

Properties

ActivePageIndex/ActiveTabIndex Property to get or set the active page/tab.

BitmapContainer Property to assign a TTMSFMXBitmapContainer
instance in order to retrieve bitmaps via a
name.

ButtonAppearance Appearance of the scroll, insert and close
buttons in the menu.

ButtonAppearance → DisabledFill The fill appearance of a button in disabled
state.

ButtonAppearance → DisabledStroke The stroke appearance of a button in disabled
state.

ButtonAppearance → DownFill The fill appearance of a button in down state.

ButtonAppearance → DownStroke The stroke appearance of a button in down
state.

ButtonAppearance → Fill The fill appearance of a button in normal state.

ButtonAppearance → HoverFill The fill appearance of a button in hover state.

ButtonAppearance → HoverStroke The stroke appearance of a button in hover
state.

ButtonAppearance → InsertIcon The icon of the insert button when the insert
button is shown in the menu or as an additional
tab.

ButtonAppearance → ScrollNextIcon The icon of the scroll to next tab button in the
menu.

ButtonAppearance → ScrollPreviousIcon The icon of the scroll to previous tab button in
the menu.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

152

ButtonAppearance → Size The size of the buttons in the menu.

ButtonAppearance → Stroke The stroke appearance of a button in normal
state.

ButtonAppearance → TabListIcon The icon of the tablist button in the menu.

ButtonAppearnce → CloseIcon The icon of the close button when the close
button is shown in the menu.

Fill The background fill appearance of the
tabset/pagecontrol.

Interaction Various properties to control interaction with
the tabset/pagecontrol.

Interaction → AutoOpenURL When true, automatically opens executes the
URL when HTML text is added to a tab.

Interaction → CloseTabWithKeyboard When true, deletes or hides the tab, depending
on the Options.CloseAction.

Interaction → Editing When true, allows editing a tab.

Interaction → InsertTabWithKeyboard When true, allows inserting a tab with the
keyboard.

Interaction → Reorder When true, allows tab reorder.

Interaction → SelectTabOnFocus When true, automatically selects the focused
tab.

Interaction → SelectTabOnInsert When true, automatically selects the inserted
tab.

Interaction → SelectTabOnScroll When true, automatically selects the tab when
navigating to the next or previous tab.

Layout Properties to change the layout of the
tabset/pagecontrol.

Layout → Multiline Displays the tabs on multiple lines instead of a
single scrollable line.

Layout → Position Displays the tabs at the left, top, right or
bottom position.

Options Additional options to configure the look and feel
of the tabset/pagecontrol.

Options → CloseAction Specifies the way the tab should be removed.
When the CloseAction is set to ttcaFree, the Tab
is destroyed while ttcaHide removes the tab
from the displayed tabs and adds it to the
hidden tab list. When the Options.TabListButton
is true, the button will be visible when the
hidden tab list count is greater than 0.

Options → CloseMode Displays a close button on each tab, or a
separate button in the menu.

Options → InsertMode Displays an insert button as an additional tab, or
a separate button in the menu.

Options → TabListButton Displays a button in the menu that holds a list of
invisible tabs. Tabs that are hidden via the
Visible property set to False, or when deleting
via the CloseAction set to ttcaHide will be
shown in this list.

Stroke The stroke of the background of the
TabSet/PageControl.

TabAppearance The global tab appearance applied to each tab
with UseDefaultAppearance set to True.

TabAppearance → ActiveFill The fill applied on an active tab, when the
UseDefaultAppearance is set to true.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

153

TabAppearance → ActiveStroke The stroke applied on an active tab, when the
UseDefaultAppearance is set to True.

TabAppearance → ActiveTextColor The text color of an active tab, used when the
UseDefaultAppearance is set to True.

TabAppearance → BadgeFill The fill of the badge, used when the
UseDefaultAppearance is set to True.

TabAppearance → BadgeFont The font of the badge.

TabAppearance → BadgeStroke The stroke of the badge, used when the
UseDefaultAppearance is set to True.

TabAppearance → CloseDownFill The fill of the tab close button in down state,
used when the UseDefaultAppearance is set to
True.

TabAppearance → CloseDownStroke The stroke of the tab close button in down
state, used when the UseDefaultAppearance is
set to True.

TabAppearance → CloseFill The fill of the tab close button in normal state,
used when the UseDefaultAppearance is set to
True.

TabAppearance → CloseHoverFill The fill of the tab close button in hover state,
used when the UseDefaultAppearance is set to
True.

TabAppearance → CloseHoverStroke The stroke of the tab close button in hover
state, used when the UseDefaultAppearance is
set to True.

TabAppearance → CloseSize The size of the tab close button.

TabAppearance → CloseStroke The stroke of the tab close button in normal
state, used when the UseDefaultAppearance is
set to True.

TabAppearance → DisabledFill The fill of the tab in disabled state, used when
the UseDefaultAppearance is set to True.

TabAppearance → DisabledStroke The stroke of the tab in disable state, used
when the UseDefaultAppearance is set to True.

TabAppearance → DisabledTextColor The text color of the tab in disabled state, used
when the UseDefaultAppearance is set to True.

TabAppearance → DownFill The fill of the tab in down state, used when the
UseDefaultAppearance is set to True.

TabAppearance → DownStroke The stroke of the tab in down state, used when
the UseDefaultAppearance is set to True.

TabAppearance → DownTextColor The text color of the tab in disabled state, used
when the UseDefaultAppearance is set to True.

TabAppearance → Fill The fill of the tab in normal state, used when
the UseDefaultAppearance is set to True.

TabAppearance → FocusedBorderColor The border color of the rectangle drawn on a
focused tab.

TabAppearance → Font The font of a tab.

TabAppearance → HoverFill The fill of the tab in hover state, used when the
UseDefaultAppearance is set to True.

TabAppearance → HoverStroke The stroke of the tab in hover state, used when
the UseDefaultAppearance is set to True.

TabAppearance → HoverTextColor The text color of a tab in hover state, used
when the UseDefaultAppearance is set to True.

TabAppearance → InsertSize The size of the insert tab button.

TabAppearance → ProgressCircularSize The size of the circular progress indicator.

TabAppearance → ProgressFill The fill of the progress indicator, used when the

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

154

UseDefaultAppearance is set to True.

TabAppearance → ProgressStroke The stroke of the progress indicator, used when
the UseDefaultAppearance is set to True.

TabAppearance → Shape The default shape of the tab, used when the
UseDefaultAppearance is set to True.

TabAppearance → ShapeOverlap The tab shape overlapping.

TabAppearance → ShapeRounding The tab shape rounding.

TabAppearance → ShapeSlope The tab shape slope.

TabAppearance → ShowFocus Shows or hides rectangle drawing on a focused
tab.

TabAppearance → Stroke The stroke of a tab in normal state, used when
the UseDefaultAppearance is set to True.

TabAppearance → TextAlign The alignment of the text of a tab, used when
the UseDefaultAppearance is set to True.

TabAppearance → TextColor The color of the text of a tab in normal state,
used when the UseDefaultAppearance is set to
True.

TabAppearance → Trimming The trimming of the text of a tab, used when
the UseDefaultAppearance is set to True.

TabAppearance → WordWrapping The wordwrapping of the text of a tab, used
when the UseDefaultAppearance is set to True.

Tabs → BadgeColor The color of the badge, used when
UseDefaultAppearance is set to False.

Tabs / Pages A collection used to add / remove new or
existing tabs / pages.

Tabs[Index] → ActiveColor The color of a tab in active state, used when
UseDefaultAppearance is set to False.

Tabs[Index] → ActiveTextColor The color of the text of a tab in active state,
used when UseDefaultAppearance is set to
False.

Tabs[Index] → Badge The badge of the tab, shown in the upper right
corner.

Tabs[Index] → BadgeTextColor The text color of the badge, used when
UseDefaultAppearance is set to False.

Tabs[Index] → Bitmaps The bitmap of the badge, multiple bitmaps can
be added with a different scale to support
different DPI settings.

Tabs[Index] → BitmapSize The size of the bitmap.

Tabs[Index] → BitmapVisible Shows or hides the bitmap.

Tabs[Index] → CloseButton Shows or hides the close button, when
Options.CloseMode is set to tcmTab.

Tabs[Index] → Color The color of a tab in normal state, used when
UseDefaultAppearance is set to False.

Tabs[Index] → DisabledBitmaps The bitmap of the badge in disabled state,
multiple bitmaps can be added with a different
scale to support different DPI settings.

Tabs[Index] → DisabledColor The color of a tab in disabled state, used when
UseDefaultAppearance is set to False.

Tabs[Index] → DownColor The color of a tab in down state, used when
UseDefaultAppearance is set to False.

Tabs[Index] → DownTextColor The color of the text of a tab in down state,
used when UseDefaultAppearance is set to
False.

Tabs[Index] → Enabled Enables or disables the tab.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

155

Tabs[Index] → Hint Shows a hint on the tab, when ShowHint
property is true on TabSet or PageControl level.
(Please note that hints are only supported
starting from 10 Seattle in FMX)

Tabs[Index] → HoverColor The color of a tab in hover state, used when
UseDefaultAppearance is set to False.

Tabs[Index] → HoverTextColor The color of the text of a tab in hover state,
used when UseDefaultAppearance is set to
False.

Tabs[Index] → Progress The progress value of a circular or rectangular
progress indicator.

Tabs[Index] → ProgressColor The color of the progress indicator.

Tabs[Index] → ProgressKind The kind of the progress indicator, rectangular
or circular.

Tabs[Index] → ProgressMax The maximum value of a circular or rectangular
progress indicator.

Tabs[Index] → ProgressMode The mode of the progress indicator, normal or
marquee.

Tabs[Index] → Shape The shape of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index] → Text The text of a tab.

Tabs[Index] → TextAlign The alignment of the text of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index] → TextColor The color of the text of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index] → TextVisible Shows or hides the text.

Tabs[Index] → Trimming Applies trimming on the text, if the text is to
long to fit inside the tab area.

Tabs[Index] → UseDefaultAppearance When UseDefaultAppearance is set to True,
applies the properties of the TabAppearance
property on TabSet or PageControl level. When
UseDefaultAppearance is set to False, applies
the properties of the tab itself.

Tabs[Index] → Visible Shows or hides the tab.

Tabs[Index] → Width Sets the width of a tab in case the TabSize.Mode
is set to tsmFixedSize or
tsmFixedSizeAutoShrink.

Tabs[Index] → WordWrapping Applies wordwrapping to the text in case the
size of the text exceeds the tab size.

TabSize Options to specify the size of the tabs.

TabSize → Height The height of the tabs.

TabSize → Margins The margins applied around the tabs.

TabSize → Mode The size mode of the tabs.

TabSize → Spacing The spacing between the tabs.

TabSize → Width The width of the tabs in tsmFixedSize or
tsmFixedSizeAutoShrink mode.

Methods

AddTab / AddPage Adds a new tab / page

CancelEditing Cancels editing if editing is active.

CloseInplaceEditor Closes the inplace editor if editing is active and
applies updates the tab text value or cancels

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

156

the changes.

FindNextTab Returns the next tab based on the tab index.

FindPreviousTab Returns the previous tab based on the tab
index.

FocusNextTab Focuses the next tab based on the tab index.

FocusPreviousTab Focuses the previous tab based on the tab
index.

FocusTab Focuses a specify tab.

InsertTab / InsertPage Inserts a new tab / page.

IsEditing Returns a boolean if editing is active.

IsTabEnabled Returns a boolean if a tab is enabled.

IsTabVisible Returns a boolean if a tab is visible.

MoveTab / MovePage Moves a tab to a new index.

RemoveTab / RemovePage Removes an existing tab / page.

ScrollToTab Scrolls to a specific tab.

SelectNextTab Selects the next tab.

SelectPreviousTab Selects the previous tab.

SelectTab Selects a specific tab.

StopEditing Stops editing and applies the changes to the
tab.

XYToCloseButton Returns the menu close button at a specific X/Y
coordinate.

XYToCloseTab Returns the tab close indicator at a specific X/Y
coordinate.

XYToInsertButton Returns the menu insert button at a specific X/Y
coordinate.

XYToScrollNextButton Returns the menu scroll next button at a
specific X/Y coordinate.

XYToScrollPreviousButton Returns the menu scroll previous button at a
specific X/Y coordinate.

XYToTab Returns the tab at a specific X/Y coordinate.

XYToTabListButton Returns the menu tab list button at a specific
X/Y coordinate.

Events

OnAchorTabClick Event called when an anchor is clicked at a
specific tab.

OnAfterDrawMenuButton Event called after the menu button is drawn.

OnAfterDrawTabBackground Event called after the background of the tab is
drawn.

OnAfterDrawTabBadge Event called after the badge of the tab is
drawn.

OnAfterDrawTabBitmap Event called after the bitmap of a tab is drawn.

OnAfterDrawTabCloseButton Event called after the close button of a tab is
drawn.

OnAfterDrawTabProgress Event called after the progress of a tab is
drawn.

OnAfterDrawTabText Event called after the text of a tab is drawn.

OnBeforeChangeTab Event called before the active tab will change.

OnBeforeCloseTab Event called before a tab will be closed.

OnBeforeDrawMenuButton Event called before the menu button is drawn.

OnBeforeDrawTabBadge Event called before the badge of a tab is drawn.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

157

OnBeforeDrawTabBitmap Event called before the bitmap of a tab is
drawn.

OnBeforeDrawTabCloseButton Event called before the close button of a tab is
drawn.

OnBeforeDrawTabProgress Event called before the progress indication of a
tab is drawn.

OnBeforeDrawTabText Event called before the text of a tab is drawn.

OnBeforeInsertTab Event called before a new tab is inserted.

OnBeforeOpenInplaceEditor Event called before the inplace editor is
opened.

OnBeforeReorderTab Event called before the tab is reordered.

OnBeforeUpdateTab Event called before the tab is updated with the
new value after editing.

OnChangeTab Event called after the active tab has changed.

OnCloseInplaceEditor Event called after the inplace editor is closed.

OnCloseTab Event called after the tab is closed.

OnCustomizeInplaceEditor Event called to customize the inplace editor.

OnGetInplaceEditor Event called to get a custom inplace editor
class.

OnGetInplaceEditorRect Event called to get the inplace editor rectangle.

OnInsertTab Event called after a new tab is inserted.

OnOpenInplaceEditor Event called after the inplace editor is opened.

OnReorderTab Event called after a tab is reordered.

OnUpdateTab Event called after a tab is updated via editing.

Adding new tabs

By default the TabSet is initialized with three tabs. Adding new tabs can be done by using The tabs
collection directly or by using the helper methods as demonstrated below.

TMSFMXTabSet1.Tabs.Clear;

TMSFMXTabSet1.AddTab('New Tab');

Removing tabs

To remove an existing tab, you can use the tabs collection directly or use the RemoveTab helper
method as demonstrated below.

TMSFMXTabSet1.RemoveTab(0);

Before

After

Moving tabs

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

158

To move a tab to a different location, changing the index of the tab collection item is sufficient, or
you can also use the MoveTab method as demonstrated below. You might notice here that the
ActiveTabIndex is set to the new index. The MoveTab automatically changes the ActiveTabIndex.

TMSFMXTabSet1.MoveTab(0, 1);

Before

After

Modes

The TabSet supports different modes to display tabs. The mode can be change with the
TabSize.Mode property. Below is a description of each mode.

- tsmAutoSize
Automatically resizes / stretches all tabs to fit in the available size of the TabSet. No
scrolling capabilities as each tab will be displayed.

- tsmAutoTabSize
Calculates the necessary tab size based on the text, bitmap, progress indicator and close
button. Scrolling is available if the amount of tabs that need to be display exceed the
available size of the TabSet.

- tsmFixedSize
Sets a fixed width on the tab. Scrolling is available if the amount of tabs that need to be
displayed exceed the available size of the TabSet. The default width is 100.

- tsmFixedSizeAutoShrink

Sets a fixed width on the tab. When the amount of tabs is going to exceed the available size
of the TabSet, the tabs are automatically resized to fit the available size of the TabSet. No
scrolling capabilities as each tab will be displayed.

Position

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

159

The TabSet supports 4 positions, changing the position is done with the Layout.Position property.
Each tab can handle rotation for non-HTML formatted text. HTML formatted text is shown
horizontally in case the tab is rotated 90 degrees. The rotation angle is fixed depending on the tab
position. The default position is tlpTop. Alternative values to control the position are tlpLeft,
tlpRight and tlpBottom as shown in the configuration below

Appearance

Each tab has different states (normal, hover, down active and disabled). Each state is represented
with a fill and a stroke under TabAppearance. When the UseDefaultAppearance property is set to
False, the properties under each tab are applied to allow changing the appearance of a single tab.
Each tab has a color for the background and text for each state. By default the
UseDefaultAppearance property is set to False. Below is a sample to indicate the difference
between the states and the purpose of the UseDefaultAppearance property.

var

 I: Integer;

begin

 TMSFMXTabSet1.TabAppearance.Fill.Color := gcLightcoral;

 TMSFMXTabSet1.TabAppearance.ActiveFill.Color := gcCrimson;

 TMSFMXTabSet1.TabAppearance.TextColor := gcWhitesmoke;

 TMSFMXTabSet1.TabAppearance.ActiveTextColor := gcWhite;

 for I := 0 to TMSFMXTabSet1.Tabs.Count - 1 do

 begin

 TMSFMXTabSet1.Tabs[I].Color := gcSteelBlue;

 TMSFMXTabSet1.Tabs[I].ActiveColor := gcLightsteelblue;

 TMSFMXTabSet1.Tabs[I].TextColor := gcWhite;

 TMSFMXTabSet1.Tabs[I].ActiveTextColor := gcDarkblue;

 end;

end;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

160

In the above code, you notice that the tabs are responsible for the actual appearance. Note that the
UseDefaultAppearance is set to False by design, which allows to further customize the appearance
of each tab separately. If we would set the UseDefaultAppearance property to True, the appearance
would change and take on the properties from the global TabAppearance as demonstrated in the
following sample.
var

 I: Integer;

begin

 TMSFMXTabSet1.TabAppearance.Fill.Color := gcLightcoral;

 TMSFMXTabSet1.TabAppearance.ActiveFill.Color := gcCrimson;

 TMSFMXTabSet1.TabAppearance.TextColor := gcWhitesmoke;

 TMSFMXTabSet1.TabAppearance.ActiveTextColor := gcWhite;

 for I := 0 to TMSFMXTabSet1.Tabs.Count - 1 do

 begin

 TMSFMXTabSet1.Tabs[I].Color := gcSteelBlue;

 TMSFMXTabSet1.Tabs[I].ActiveColor := gcLightsteelblue;

 TMSFMXTabSet1.Tabs[I].TextColor := gcWhite;

 TMSFMXTabSet1.Tabs[I].ActiveTextColor := gcDarkblue;

 TMSFMXTabSet1.Tabs[I].UseDefaultAppearance := True;

 end;

end;

Interaction

The TabSet supports interaction in various ways, through the mouse and keyboard. By default,
clicking on a tab will set the active tab and show an optional focus indication. The home, end and
arrow keys can be used to navigate through the different tabs. When
Interaction.CloseTabWithKeyboard and Interaction.InsertTabWithKeyboard is true, the TabSet
destroys or hides (depending on Options.CloseAction) the tab with the Delete key and inserts a new
tab with the insert key. Pressing the F2 or Return key on the keyboard will start editing when
Interaction.Editing is true.

When the mode is set to tsmFixedSize, tsmAutoTabSize and the amount of tabs exceed the available
size of the TabSet, scroll buttons appear to allow scrolling through the tabs. By default, the scroll
buttons will change the active tab but when Interaction.SelectTabScroll is set to False, the scroll
buttons will only navigate through the tabs by changing the focused tab. To make the focused tab
active, the Space or Return key can be used.

Inserting tabs via the tab insert button

New tabs can be inserted programmatically, but also via user interaction. When setting the
Options.InsertMode to timTab a new special insert tab appears.

Clicking on this tab will insert a new tab and via the OnBeforeInsertTab the index can be set at
which position the tab needs to be inserted. By default this is always at the last position.
Optionally, the insert tab button can be changed to a menu button via the timMenu option. This

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

161

button has the same purpose but it stays visible inside the menu instead of as an additional special
tab.

Closing tabs via the tab close button

Tabs can be removed / closed programmatically via the free action or setting the visible property to
false, but can also be closed via a tab or menu close button. Setting the Options.CloseMode to
tcmTab will show an additional close button at each tab. Clicking the close button will destroy or
hide the tab depending on the Options.CloseAction. In case the Options.CloseAction is ttcaFree the
tab will be destroyed. In case the Options.CloseAction is ttcaHide, the tab visible propery will be
set to False and the tab will be displayed in the separate invisible tab list, available when the
Options.TabListButton is set to true.

Reorder

Reordering can be enabled by setting the Interaction.Reorder property to true. When pressing the
finger/left-mouse button on a tab and dragging left or right, up or down depending on the position,
the tab will detach from its current position and will navigate the to where the finger/left-mouse
button is currently located. When releasing the finger/left-mouse button the new tab position is
detected and the tab will move to the new location. Events can determine if a tab can be moved or
moved to (OnBeforeReorderTab & OnReorderTab).

TMSFMXTabSet1.Interaction.Reorder := True;

Editing

Editing can be enabled by setting the Interaction.Editing property to true. When selecting a tab,
pressing the F2 or clicking on the text area will start editing and show the default inplace editor
(TEdit). The event OnBeforeOpenInplaceEditor is called to determine if a tab can be edited. The
editor class itself can be changed to support custom inplace editors (demonstrated in a separate
sample) and the editor class is retrieved via the OnGetInplaceEditor event. Before the editing is
shown, but after the event that is called to determine if a tab can be edited the editor is further
customized via the optional OnCustomizeInplaceEditor event. By default, the text rectangle is used
as coördinates for the inplace editor, but this can also be customized via the
OnGetInplaceEditorRect. After the inplace editor is configured and approved, the
OnAfterOpenInplaceEditor is called. In this event, the Parent of the inplace editor is already set.

TMSFMXTabSet1.Interaction.Editing := True;

After editing is done, pressing the Return or F2 will apply changes in the inplace editor. The
OnCloseInplaceEditor event is called which will contain parameters to control the text that is being
applied to the tab. After optionally changing the value, the OnBeforeUpdateTab and OnUpdateTab
event are called. The OnBeforeUpdateTab can be used to specify if a tab can be updated.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

162

When pressing the Escape key, The OnCloseInplaceEditor is called with different parameters and the
changes are cancelled.
Custom inplace editor

As mentioned, the TabSet supports editing via a custom inplace editor. In this sample, we create,
customize and use a TComboBox as inplace editor. The code below demonstrates this behavior.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFMXTabSet1.Interaction.Editing := True;
 TMSFMXTabSet1.TabSize.Mode := tsmFixedSize;
 TMSFMXTabSet1.TabSize.Width := 120;
 TMSFMXTabSet1.Width := 400;
end;

procedure TForm1.TMSFMXTabSet1CustomizeInplaceEditor(Sender: TObject;
 ATabIndex: Integer; AInplaceEditor: TControl);
var
 cbo: TComboBox;
begin
 cbo := (AInplaceEditor as TComboBox);
 cbo.Items.Add('Audi');
 cbo.Items.Add('BMW');
 cbo.Items.Add('Mercedes');
 cbo.ItemIndex := cbo.Items.IndexOf(TMSFMXTabSet1.Tabs[0].Text);
end;

procedure TForm1.TMSFMXTabSet1GetInplaceEditor(Sender: TObject;
 ATabIndex: Integer; var AInplaceEditorClass: TTMSFMXTabSetInplaceEditorClass);
begin
 AInplaceEditorClass := TComboBox;
end;

Progress indication

Each tab has the ability to show progress, in the form of a rectangular or circular progress indicator.
The Progress and ProgressMax properties determine the visual representation. By default, the
ProgressMax property is 100.

TMSFMXTabSet1.Tabs[0].ProgressKind := tpkRectangular;
TMSFMXTabSet1.Tabs[0].Progress := 50;

TMSFMXTabSet1.Tabs[0].ProgressKind := tpkCircular;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

163

TMSFMXTabSet1.Tabs[0].Progress := 50;

Optionally, the progress indicator can also be configured in marquee mode with the ProgressMode
property. The progress indicator will, independent of the ProgressKind property setting,
continuously indicate a busy operation. The ProgressColor property is used to further customize the
appearance of the progress indicator for each tab separately.

Badges

Each tab can show a badge, which is placed in the upper right corner relative to its position. To
show a badge, enter a value for the Badge property at a specific tab.

TMSFMXTabSet1.Tabs[0].Badge := ‘Hello’;

Custom drawing

Each element in the TabSet can be customized via the TabAppearance or ButtonAppearance
properties. When the UseDefaultAppearance property on tab level is set to False, further
customizations can be applied using the color and text color properties for each state. Even if these
customizations are not sufficient, the TabSet exposes a set of events for custom drawing. Below is a
sample that demonstrates this.

In this sample we took the badge sample from the previous chapter, we draw a rectangle instead of
a rounded rectangle, and change the font name and color.

TMSFMXTabSet1.Tabs[0].Badge := ‘Hello’;

procedure TForm1.TMSFMXTabSet1BeforeDrawTabBadge(Sender: TObject;
 AGraphics: TTMSFMXGraphics; ATabIndex: Integer; ARect: TRectF; AText: string;
 var ADefaultDraw: Boolean);
begin
 ADefaultDraw := False;
 AGraphics.DrawRectangle(ARect);
 AGraphics.Font.Color := gcWhite;
 AGraphics.Font.Name := 'Comic Sans MS';
 AGraphics.DrawText(ARect, AText, False, gtaCenter);
end;

The next sample is customization of the close button. The close button is custom drawn, but it
might be useful to show a close button icon instead. Implementing the
OnBeforeDrawTabCloseButton will help you with this.

procedure TForm1.FormCreate(Sender: TObject);

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

164

begin
 TMSFMXTabSet1.Options.CloseMode := tcmTab;
 TMSFMXTabSet1.TabAppearance.CloseSize := 20;
end;

procedure TForm1.TMSFMXTabSet1BeforeDrawTabCloseButton(Sender: TObject;
 AGraphics: TTMSFMXGraphics; ATabIndex: Integer; ARect: TRectF;
 AState: TTMSFMXTabSetButtonState; var ADefaultDraw: Boolean);
begin
 ADefaultDraw := False;
 AGraphics.DrawBitmap(ARect, TMSFMXBitmapContainer1.FindBitmap('close'));
end;

Note that in this sample, the close bitmap is actually the same bitmap for each state, but when a
separate bitmap for each state is preferrable then this can be handled easily via the AState
parameter.

PageControl

The PageControl inherits from the TabSet and adds the ability to show pages that act as a container
for other controls. There is a separate Pages property that inherits from the Tabs collection and
exposes PageControl specific event handlers. Except for the page containers there is no difference
in properties and appearance, so all the above code is also valid for the PageControl.

Performance

The TabSet/PageControl is optimized for handling a large amount of tabs/pages. When the amount
of tabs/pages are less than or equal to 10 then you can safely use the code above as-is. If the
amount of tabs/pages exceed this number it is recommended to wrap the code with a
BeginUpdate/EndUpdate code block. This block bundles all recalculate and repaint instructions in to
one call and makes sure that adding 1000 tabs do not result in a time and resource consuming task.

TMSFMXTabSet1.BeginUpdate;
for I := 1 to 1000 do
 TMSFMXTabSet1.Tabs.Add;
TMSFMXTabSet1.EndUpdate;

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

165

Styling

The TMS FMX UI Pack supports FireMonkey Styles. Simply put a StyleBook on the form and load one
of the default or premium FireMonkey Styles. After assigning the StyleBook to the form, the
AdaptToStyle property of the selected component will then automatically adapt to the style loaded
in the StyleBook. Below is a sample of styles that are applied to the TMS FMX UI Pack components.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

166

TMS Mini HTML rendering engine

Another core technology used among many components is a small fast & lightweight HTML rendering
engine. This engine implements a subset of the HTML standard to display formatted text. It supports
following tags :

B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

I : Italic tag
<I> : start italic text
</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag
<S> : start strike-through text
</S> : end strike-through text

Example : This is a <S>test</S>

A : anchor tag
 : text after tag is an anchor. The 'value' after the href identifier is the anchor. This
can be an URL (with ftp,http,mailto,file identifier) or any text.
If the value is an URL, the shellexecute function is called, otherwise, the anchor value can be found
in the OnAnchorClick event : end of anchor

Examples : This is a test
This is a test
This is a test

FONT : font specifier tag
 : specifies font of
text after tag.
with

• face : name of the font

• size : HTML style size if smaller than 5, otherwise pointsize of the font

• color : font color with either hexidecimal color specification or color constant name, ie
claRed,claYellow,claWhite ... etc

• bgcolor : background color with either hexidecimal color specification or color constant
name : ends font setting

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

167

Examples : This is a test
This is a test

P : paragraph
<P align="alignvalue" [bgcolor="colorvalue"] [bgcolorto="colorvalue"]> : starts a new paragraph, with
left, right or center alignment. The paragraph background color is set by the optional bgcolor
parameter. If bgcolor and bgcolorto are specified,
a gradient is displayed ranging from begin to end color.
</P> : end of paragraph

Example : <P align="right">This is a test</P>
Example : <P align="center">This is a test</P>
Example : <P align="left" bgcolor="#ff0000">This has a red background</P>
Example : <P align="right" bgcolor="claYellow">This has a yellow background</P>
Example : <P align="right" bgcolor="claYellow" bgcolorto="clared">This has a gradient
background</P>*

HR : horizontal line
<HR> : inserts linebreak with horizontal line

BR : linebreak

 : inserts a linebreak

BODY : body color / background specifier
<BODY bgcolor="colorvalue" [bgcolorto="colorvalue"] [dir="v|h"] background="imagefile specifier"> :
sets the background color of the HTML text or the background bitmap file

Example : <BODY bgcolor="claYellow"> : sets background color to yellow
<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp
<BODY bgcolor="claYellow" bgcolorto="claWhite" dir="v"> : sets a vertical gradient from yellow to
white

IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels

Example :
This will be <IND x="75">indented 75 pixels.

IMG : image tag
<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"] [alt="specifier:name"]
> : inserts an image at the location

specifier can be: name of image in a BitmapContainer

Optionally, an alignment tag can be included. If no alignment is included, the text alignment with
respect to the image is bottom. Other possibilities are: align="top" and align="middle"

The width & height to render the image can be specified as well. If the image is embedded in
anchor tags, a different image can be displayed when the mouse is in the image area through the
Alt attribute.

Examples :
This is an image

SUB : subscript tag

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

168

<SUB> : start subscript text
</SUB> : end subscript text

Example : This is ⁹/₁₆ looks like 9/16

SUP : superscript tag
<SUP> : start superscript text
</SUP> : end superscript text

UL : list tag
 : start unordered list tag
 : end unordered list

Example :
List item 1
List item 2

 Sub list item A
 Sub list item B

List item 3

LI : list item
<LI [type="specifier"] [color="color"] [name="imagename"]>: new list item specifier can be "square",
"circle" or "image" bullet. Color sets the color of the square or circle bullet. Imagename sets the
PictureContainer image name for image to use as bullet

SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

Z : hidden text
<Z> : start hidden text
</Z> : end hidden text

Special characters
Following standard HTML special characters are supported :
< : less than : <
> : greater than : >
& : &
" : "
 : non breaking space
™ : trademark symbol
€ : euro symbol
§ : section symbol
© : copyright symbol
¶ : paragraph symbol

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

169

Samples

TMS TableView Overview Demo

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

170

TMS TableView LiveBindings Demo 1 & 2

These demos are LiveBindings samples, specifically designed in combination with the TMSTableView.
The demos load a ClientDataSet with a biolife.xml sample data file. The ClientDataSet is then
connected, in combination with a DataSource, to a BindScope, which is needed to bind data to the
ListBindings component.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

171

The demos makes use of a TTMSFMXBindDBTableViewLink that is created and registered specifically
for the TableView component. When opening the editor of the BindingsList you will see various
bindings to different elements that are placed on the right side of the TableView. All these
elements have a binding to a specific field and will update when navigating through the list or with
the BindNavigator component.

Selecting the TMSFMXBindDBTableViewLink1 component will display its properties in the object
inspector.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

172

As with the TrackBar sample in the LiveBindings chapter this link has a SourceComponent and a
ControlComponent. The difference between this link and the link in the TrackBar sample is, that the
TMSFMXBindDBTableViewLink component is able to bind multiple fields to multiple elements in the
TableView.

In these samples you will notice that there is binding to the Caption, Description and the Bitmap in
the TableView. To bind data to these elements, an expression must be added per element to the
ColumnExpressions collection. Double-clicking on the ColumnExpressions property opens the
expressions editor.

For the caption and the Description, the binding has been added to a string field in the DataBase.
To return the value for the current record, the AsString function must be used in the Source
expression. To bind the graphic, the source expression is Self. To know exactly which expression you
must use, you can click on Eval Source which will tell you the type of the data.

When starting the application, the list will load the data and display the caption, description and
bitmap. When clicking on the list, the navigation in the dataset is automatically handled. This is due
to the initialization of the TTMSFMXBindDBTableViewLink that has already taken care of this
functionality and has stored the correct values in the PosSource and PosControl expressions.

PosSource:

PosControl:

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

173

TMS Instrumentation WorkShop Demo

TMS PageSlider Demo

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

174

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

175

TMS TileList Demo

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

176

TMS TileList LiveBindings Demo

This demo is a LiveBindings sample, specifically designed in combination with the TMSTileList. The
demo loads a ClientDataSet with a biolife.xml sample data file. The ClientDataSet is then
connected, in combination with a DataSource, to a BindScope, which is needed to bind data to the
ListBindings component.

More information for LiveBindings and samples can be found at the TMS TableView LiveBindings
samples and / or LiveBindings chapter.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

177

TMS HotSpotImage Demo

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

178

General FireMonkey component usage guidlines

With the new FireMonkey framework, the methodology to create and use components has
dramatically changed. A component now exists of 2 parts.

Visual part

The visual part is stored in a .style file, which is compiled to a .res file through an .rc file. The .rc
file is included in the package and must be recompiled whenever a change is made to the .style file.
For each component in this set you will find a .style file. In this file, the default layout of the
component is stored.

You will notice different elements, basic elements such as an arc, ellipse, rectangle …
The elements combine and define the layout of a control. The basic elements are called shapes, and
are already available by default. In several components you will find custom shapes registered and
useable in a new application, and used in the component by default.

Each shape or element can have a StyleName, which is used in the non-visual part of the control for
interaction. This name is key in the relationship or “style-contract” between style resource and
component code.

Non-visual part

The non-visual part of the component interacts with the shapes defined in the .style file. This is a
normal .pas unit file as was used for VCL component, yet little to no painting is done in code. As
explained above, the visual part is already defined by the style.

The component defined in this unit needs to inherit from the TStyledControl class, which can be
styled at designtime. This is the base class for all styleable controls, just like the TCustomControl
class was the base class for most controls in the VCL framework.

Naming convention

It is always good practice to handle a consistent naming convention, therefore all .rc, .pas files and
.style files should start with the FireMonkey unit scope name “FMX.”, such as the units: FMX.Types,
FMX.Dialogs, FMX.Objects …

Inside the style file each element can have a StyleName, which can be used in the non-visual part to
address the resource. Make sure each element has a unique StyleName to avoid mistakes when
interacting with the component. All combinations of elements must be encapsulated within a
rectangle element that is invisible by default (through the Fill.Kind and Stroke.Kind = bkNone), and
has the StyleName of the component.

If you have a component named TFMXMyFirstControl, the the StyleName of the rectangle
encapsulating all other elements must be set to FMXMyFirstControlStyle. The “T” is removed and
“Style” is added.

Styling

Each component inherits from TTMSFMXBaseControl which implements a basic Fill and Stroke, and
handles the style resource files that define the default layout of the component. To change the
visuals of the component you no longer have corresponding properties in the object inspector.
Right-clicking on the component provides two extra menu items that can be used to edit the style of
the component.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

179

Clicking either of these items will automatically drop a StyleBook component on the form when
there is not yet one available. A StyleBook holds custom and default styles. When the default style
is changed, dropping a new component of the same class will automatically get this changed style as
defined in the default style.

- Edit Custom Style: Clicking on this item starts the IDE style editor and copies the default
style of the component. The name of the style is set to the component name on the form
and appended with ‘Style1’. After changing properties through the editor, the style is then
applied to the component. You will notice that the StyleLookUp property is set to the name
of the custom style in the stylebook.

- Edit Default Style: Clicking on this item starts the IDE style editor and uses the default style
of the component. As with the Edit Custom Style option, the name of that style is set. The
difference between these 2 options is that the default style has a generic name and is
applied to all new instances of the component that are dropped on the form. The
StyleLoopup property is not set.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

180

The IDE style editor can be started with these 2 options, or by double-clicking on the StyleBook
editor icon on the form. In this example we have a TTMSFMXSlider component that will be altered
with a custom style. Notice the TMSFMXSlider1Style1 name that is used for this style. When applying
this style, you will also notice the StyleLookup property is set to TMSFMXSlider1Style1.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

181

Each component exists of different styleable elements. Simple click on an element in the editor to
change the appearance.

You can also add new elements from the Tool palette.

After applying the Style, the component will have the new custom style.

Dropping a new TTMSFMXSlider component on the form will not adopt this custom style and will
have the default style applied. Editing the default style is done in the same way, yet the name of
the style differs and each new instance of the TTMSFMXSlider adopts the edited default style.

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

182

General component properties that do not directly define a visual appearance of the component are
still displayed in the Object Inspector. Note though that some properties will affect what is
available in the style editor! For example, if a component provides a collection of visible items
displayed in the control and it is desirable that the visual appearance of each item can be
customized, style elements (shapes) will be dynamically added or removed and be available in the
IDE style editor.
In other cases, it is desirable that the appearance for a given type of items in a control is identical.
This can be represented as a single style element in the style editor. The component will then
internally copy the settings of the style element and apply it to each item displayed in the control.

Components

Most of the components in the FireMonkey framework can be scaled and rotated without loss of
functionality and quality. As our base control implementation inherits from a base class which
supports these features, all of the controls inside the TMS Instrumentation WorkShop set support
scaling and rotation.

Scaling: With the Scale property you can specify how large the component must be. The default
value of the X and Y property of the Scale is 1. This means that the default component layout is set
at one, if you have a component which has 100 pixels width and height dimensions, setting the scale
X and Y properties to 1.5 will automatically increase the width and height to 150 pixels. Below are
some examples at designtime, which shows the capability of this property.

Scale 1.5 Scale X 1.5 Y 1

Scale 0.5 Scale X 0.5 Y 2

Rotation: The rotation property rotates the component around the center by default, which can be
changed with the rotationcenter property. Rotating the component does not limit interaction
capabilities and functionality.

45°

TMS SOFTWARE
TMS FMX UI Pack
DEVELOPERS GUIDE

183

Cross-platform deployment of applications with TMS FMX UI Pack components

The FireMonkey framework supports deployment to Windows, macOS, iOS and Android. Likewise,
the TMS FMX UI Pack components can be used in applications targeted for these 4 platforms. If you
have created a FireMonkey HD project, you can specify in the Project Manager under Target
platforms Win32, Win64 or macOS platforms. Depending on the chosen platform, the compiler will
generate a binary for debug or deployment for Windows 32bit, Windows 64bit or macOS. The app
will be automatically compiled with the installed TMS FMX UI Pack components.

For iOS and Android, the FireMonkey HD project cannot be used. For this platform, create a new
FireMonkey Mobile project. The TMS FMX UI Pack components supports both FireMonkey Mobile and
FireMonkey HD projects and installs the components on the tool palette for both targets. As such,
when choosing a FireMonkey iOS project, the TMS FMX UI Pack components will also appear in the
IDE component palette.

	Availability
	Description
	Windows support
	List of available controls
	Shapes
	Components

	TMSFMXNavBar
	TTMSFMXEdit / TTMSFMXEditBtn
	TTMSFMXIPEdit
	TTMSFMXLabelEdit
	TTMSFMXGraphicCheckLabel
	TTMSFMXPageSlider
	Properties / Events

	TTMSFMXTableView
	Architecture
	Styling
	Properties / Methods / Events
	Item storage and buffering
	Adding and removing items
	Sorting
	Categories
	Lookup
	Filtering / Searching
	Editing / Deleting
	DetailView
	Layout
	User interface interaction with the TableView
	MultiSelect
	Additional Item Elements
	Performance
	Binding Controls
	LiveBindings
	HTML support

	TTMSFMXPopup
	TTMSFMXCircularGauge
	TTMSFMXLinearGauge
	TTMSFMXJogMeter
	TTMSFMX7SegLED
	TTMSFMXCompass
	TTMSFMXClock
	TTMSFMXRotarySwitch / TTMSFMXKnobSwitch
	TTMSFMXMatrixLabel
	TTMSFMXScope
	TTMSFMXSpinner
	TTMSFMXLEDMeter / TTMSFMXLEDScope
	TTMSFMXLED / TTMSFMXLEDBar
	TTMSFMXSlider
	TTMSFMXTileList
	Architecture
	Styling
	Properties / Methods / Events
	Adding and removing tiles
	Badges
	Tile Styles
	Columns and Rows
	Paging / Scrolling
	PageSize
	ColumnWidth / RowHeight
	Filtering / Searching / Lookup
	Keyboard navigation
	Reordering tiles
	Performance
	MultiSelect
	LiveBindings

	TTMSFMXHotSpotImage
	Adding a new hotspot
	Magic Wand Tool
	Saving and loading hotspots
	Compatibility
	TTMSFMXHotSpotEditorDialog

	TTMSFMXSpeedButton
	TTMSFMXCalendar / TTMSFMXCalendarPicker
	TTMSFMXTrackBar
	TTMSFMXButton
	TTMSFMXColorSelector / TTMSFMXColorPicker
	TTMSFMXBitmapSelector / TTMSFMXBitmapPicker
	TTMSFMXFontNamePicker / TTMSFMXFontSizePicker
	TTMSFMXWebBrowser / TTMSFMXWebBrowserPopup
	TTMSFMXSignatureCapture
	TTMSFMXListEditor
	Architecture
	Appearance
	Items
	Events

	TTMSFMXTaskDialog
	TTMSFMXCheckGroup / TTMSFMXRadioGroup TTMSFMXCheckGroupPicker / TTMSFMXRadioGroupPicker
	TTMSFMXToolBar
	Set of components
	Adding new components at designtime
	Adding new components at runtime
	Toolbar button

	TTMSFMXDateTimeEdit
	TTMSFMXRatingGrid
	TTMSFMXPassLock
	TTMSFMXTouchKeyboard / TTMSFMXPopupTouchKeyboard
	Description
	Properties & Events
	Methods

	TTMSFMXScrollMenu
	Description
	Properties & Events
	Methods

	TTMSFMXGridFilterPanel
	TTMSFMXRichEditor
	Description
	Organization
	Getting Started
	Properties & Events
	Methods
	Programmatic access to the document
	Using merge fields
	Using accompanying toolbars
	Importing & exporting in rich text
	Importing & exporting in HTML format
	Import or export to mini-HTML

	TTMSFMXTabSet / TTMSFMXPageControl
	Adding new tabs
	Removing tabs
	Moving tabs
	Modes
	Position
	Appearance
	Interaction
	Reorder
	Editing
	Progress indication
	Badges
	Custom drawing
	PageControl
	Performance

	TMS Mini HTML rendering engine
	Samples
	TMS TableView Overview Demo
	TMS TableView LiveBindings Demo 1 & 2
	TMS Instrumentation WorkShop Demo
	TMS PageSlider Demo
	TMS TileList Demo
	TMS TileList LiveBindings Demo
	TMS HotSpotImage Demo

	General FireMonkey component usage guidlines
	Visual part
	Styling
	Components
	Cross-platform deployment of applications with TMS FMX UI Pack components

