

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

1

TMS TAdvRichEditor
DEVELOPERS GUIDE

Aug 2017
Copyright © 2014 - 2017 by tmssoftware.com bvba

Web: http://www.tmssoftware.com
Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

2

Index

Availability ... 3

Online references .. 3

Description .. 4

Organization .. 5

Getting Started .. 6

Properties & Events ... 6

Methods .. 8

Programmatic access to the document ... 13

Using merge fields ... 16

Using accompanying toolbars ... 19

Importing & exporting in rich text ... 23

Importing & exporting in HTML format... 23

Exporting to PDF .. 24

Import or export to mini-HTML ... 25

TAdvRichEditor actions .. 26

TDBAdvRichEditor ... 27

Spell check with TAdvRichEditor ... 28

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

3

Availability

TMS TAdvRichEditor is available as VCL component for Delphi and C++Builder.

TMS TAdvRichEditor is available for Delphi XE,XE2,XE3,XE4,XE5,XE6,XE7,XE8,10 Seattle, 10.1 Berlin,
10.2 Tokyo & C++Builder XE,XE2,XE3,XE4,XE5,XE6,XE7,XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo.

TMS TAdvRichEditor has been designed for and tested with: Windows Vista, Windows 7, Windows 8,
Windows 10.

Online references

TMS software website:
http://www.tmssoftware.com

TMS TAdvRichEditor page:
http://www.tmssoftware.com/site/advricheditor.asp

http://www.tmssoftware.com/
http://www.tmssoftware.com/site/advricheditor.asp

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

4

Description

TAdvRichEditor is a compact light-weight wysiwyg editor for formatted text. TAdvRichEditor can
include formatted text with bullets, hyperlinks, images, indenting, aligned paragraphs. It offers
functions for merging, highlighting text, find & replace, undo/redo, clipboard, printing, auto-
correct, emoticons.
TAdvRichEditor stores its text natively in the .RTE file format. In addition, TAdvRichEditor can
import and export files in following formats: .HTML, .RTF, .TXT.
When used as part of the TMS Component Pack (http://www.tmssoftware.com/site/tmspack.asp),
docking toolbars or ribbon toolbars are included to perform clipboard functions, undo/redo,
formatting, paragraph alignment, inserting bullets, pictures, hyperlinks, special characters. Also
available in combination with the TMS Component Pack is export to PDF and spell check.

http://www.tmssoftware.com/site/tmspack.asp

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

5

Organization

The core component is TAdvRichEditor. This is a standalone component that can be used as-is for
WYSIWYG editing of formatted text. It comes with several toolbars (in the TMS Component Pack)
that can be used to quickly setup a rich editor or its many actions can be used to create a specific
user interface around the TAdvRichEditor according to your needs.

Internally the TAdvRichEditor consists of a simple DOM. This DOM is a generic list of document
elements. Different types of document elements exist such as a text element, image element,
linebreak element, bullet element, … Each document element has several attributes that determine
the appearance in the document. While the TAdvRichEditor provides a large series of methods to
add or remove elements from the DOM, it is also accessible via TAdvRichEditor.Context.Content. It
is recommended though that the API used instead of direct DOM manipulation.

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

6

Getting Started

Drop a TAdvRichEditor on the form. The component with its default settings is ready for use.
Entering of text can be done with default font & alignment. For ease of use, connect a
TAdvRichEditorEditButtonBar and TAdvRichEditorFormatButtonBar that presents most of the built-in
actions as a button bar or use the docking toolbars TAdvRichEditorEditToolBar,
TAdvRichEditorFormatToolBar, TAdvRichEditorEditingToolBar, TAdvRichEditorParagraphToolBar to
apply all kinds of formatting to the text without writing any code or use its ribbon equivalents for a
wywiwyg editor with ribbon UI.

Properties & Events

Properties

Author Sets the author of the document that will be
persisted when saving to .RTE file format.

AutoCorrect Contains the settings for auto-correction.
TAdvRichEditor.AutoCorrect.OldValue is the string
list of words to be replaced by corresponding
values in the string list
TAdvRichEditor.AutoCorrect.NewValue.
Auto correct is enabled via setting
TAdvRichEditor.AutoCorrect.Active = true.
To add pairs of old/new values, use
TAdvRichEditor.AutoCorrect.Add(OldValue,
NewValue);

Color Sets the default background of the TAdvRichEditor

Comments Sets comments for the document that will be
persisted when saving to .RTE file format.

Emoticons Container of emoticon images that are used to
replace common emoticon mnenomics like :), :(,
…

GraphicSelection Sets the appearance of the grips that appear when
selecting graphics in the TAdvRichEditor

GraphicSelection.BorderColor Sets the border color of graphic item grips

GraphicSelection.Color Sets the background color of graphic item grips

GraphicSelection.Style Selects the style between rectangular or circular
for the grips

HighlightColor Sets the background color for highlighted text in
the TAdvRichEditor

HighlightTextColor Sets the text color for highlighted text in the
TAdvRichEditor

LastModifiedBy Sets the name of the person who last modified the
content of the document and this name Is
persisted in the .RTE file

PictureContainer Container of images that can be assigned to

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

7

handle images inserted in the TAdvRichEditor
referenced by name. PictureContainer images are
inserted via TAdvRichEditor.AddNamedPicture() or
TAdvRichEditor.InsertNamedPicture().

ReadOnly When true, the content of the document cannot
be altered but selection is possible

SelectionColor Sets the background color for selection in the
TAdvRichEditor

SelectionTextColor Sets the text color for selection in the
TAdvRichEditor

Tags Sets tags for the document that will be persisted
when saving to .RTE file format.

URLAuto When set to uAuto (default), typing text starting
with file://, http(s)://, ftp://, mailto: will
automatically be displayed as URL in the
TAdvRichEditor.

URLColor Sets the text color for hyperlinks in the
TAdvRichEditor

Version Read-only property returning the version of the
component

Events

OnCaretChanged Event triggered whenever the caret changes in the
TAdvRichEditor

OnCanSelectGraphic Event triggered when a graphic element is clicked
with allow parameter to control whether the
graphic element can be selected or not

OnCanSizeGraphic Event triggered when the mouse is over a corner
of a graphic element to control whether the
graphic element can be sized or not

OnClick Event triggered when the editor is clicked

OnClickHyperlink Event triggered when a hyperlink is clicked in the
editor. The URL for the hyperlink is returned as a
parameter

OnCorrectWord Event triggered when a word is entered. The
event has var parameters AWord: string and Error:
Boolean. When Error is set to true, the last
entered word is displayed with red error
underline. When AWord is modified, this modified
word is entered into the editor instead of the
originally entered word.

OnDrawGraphic Event triggered for drawing custom graphic
elements in the TAdvRichEditor. This event
returns the canvas and rectangle where to draw
the custom graphic and an ID for the graphic
element

OnEnter Event triggered when the TAdvRIchEditor gets
focus

OnEnterWord Event triggered when one or more characters
were entered before a word boundary. The event
returns the word just entered

OnExit Event triggered when the TAdvRIchEditor looses
focus

OnSelectionChanged Event triggered whenever the selection changes in
the TAdvRichEditor

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

8

Methods

HasSelection: boolean; Function returns true when there is a selection in
the TAdvRichEditor

GetWordAndIndexAtCaret(var AValue: string;
var AIndex: integer);

Returns the word at caret position and the index
of the element containing the word

UpdateWordAndIndexAtCaret(AValue: string;
AIndex: integer);

Replaces the word at document element at caret
position at character index AIndex by AValue

XYToElement(X,Y: integer; var el:
TREElement): boolean;

Retrieves the document element at mouse X,Y
coordinates

XYToChar(X,Y: integer; el: TREElement; var
CX,CY: integer): integer;

Converts the X,Y mouse coordinates to character
position in the document text

XYToWord(X,Y: integer; el: TREElement):
string; overload;

Returns the word and document element at mouse
coordinates X,Y

XYToWord(X,Y: integer): string; overload; Returns the word at mouse coordinates X,Y

XYToCaret(X,Y: integer); overload; Sets the caret at mouse X,Y coordinates

XYToCaret(X,Y: single); overload;

IsCaretInBulletList(var AType: TBulletType; var
AIndex, AIndent: integer): boolean;

Returns true when the caret is within a list of
bulleted items and when so, returns the bullet
type, the index of the item in the list and the
indent of the bulleted items

AddText(AValue: string): TTextElement;
overload;

Appends text to the TAdvRichEditor and returns a
text document element containing this added text

AddText(AValue: string; AColor: TColor):
TTextElement; overload;

Appends text with a specific text color to the
TAdvRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AColor: TColor;
BkColor: TColor): TTextElement; overload;

Appends text with a specific text color and
background color to the TAdvRichEditor and
returns a text document element containing this
added text

AddText(AValue: string; AFont: TFont):
TTextElement; overload;

Appends text with a specific font setting to the
TAdvRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AFontSize: integer;
AFontName: string; AFontStyle: TFontStyles):
TTextElement; overload;

Appends text with a specific font setting to the
TAdvRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AAlignment:
TAlignment): TTextElement; overload;

Appends text with a specific alignment to the
TAdvRichEditor and returns a text document
element containing this added text

AddText(AValue: string; AFontSize: integer;
AFontName: string; AFontStyle: TFontStyles;
AAlignment: TAlignment): TTextElement;
overload;

Appends text with a specific font setting and
alignment to the TAdvRichEditor and returns a
text document element containing this added text

AddHyperlink(AValue, AURL: string); Sets a hyperlink for the currently selected text in
the TAdvRichEditor

AddMultiLineText(AValue: string); Appends multiple lines of text as word-wrapped
text in the TAdvRichEditor

AddLineBreak: TREElement; Appends a linebreak to the TAdvRichEditor and
returns a linebreak document element

AddBullet(AType: TBulletType = btCircle); Appends a bullet element to the TAdvRichEditor
and returns a bullet document element. The
bullet types can be:

- btSquare

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

9

- btCircle
- btArrow
- btStar
- btTick

AddImage(Picture: TPicture); overload; Appends an image to the TAdvRichEditor and
returns a graphic document element. Images of
the type BMP,JPEG,GIF,PNG,ICO are supported.

AddImage(Picture: TPicture; AWidth, AHeight:
integer); overload;

Appends an image with a specific width and height
to the TAdvRichEditor and returns a graphic
document element. Images of the type
BMP,JPEG,GIF,PNG,ICO are supported.

AddImage(FileName: string); overload; Appends an image from file to the TAdvRichEditor
and returns a graphic document element

AddImage(FileName: string; AWidth, AHeight:
integer); overload;

Appends an image from file with a specific width
and height to the TAdvRichEditor and returns a
graphic document element

AddGraphic(AWidth, AHeight: integer; AID:
string);

Appends a graphical element with a specific ID to
the TAdvRichEditor and returns a graphic
document element. This graphical element needs
to be drawn via the OnDrawGraphic event

AddNamedPicture(AWidth, AHeight: integer;
AName: string);

Appends an image referenced by the unique name
of the picture in an assigned PictureContainer

InsertText(Index: integer; AValue: string):
TTextElement; overload;

Inserts text in the TAdvRichEditor at document
element Index and returns a text document
element containing this added text

InsertText(AValue: string): TTextElement;
overload;

Inserts text in the TAdvRichEditor at caret
position and returns a text document element
containing this added text

InsertMultiLineText(AValue: string); Inserts text in the TAdvRichEditor at caret
position

InsertImage(FileName: string; AWidth: integer
= 0; AHeight: integer = 0); overload;

Inserts an image with a specific width and height
at caret position in the TAdvRichEditor and
returns an image document element

InsertImage(Picture: TPicture; AWidth: integer
= 0; AHeight: integer = 0); overload;

Inserts an image with a specific width and height
at caret position in the TAdvRichEditor and
returns an image document element

InsertGraphic(ID: string; AWidth, AHeight:
integer);

Inserts a custom graphic element with a specific
width and height at caret position in the
TAdvRichEditor and returns a graphic document
element

InsertNamedPicture(AName: string; AWidth,
AHeight: integer);

Inserts an image referenced by the unique name
of the picture in an assigned PictureContainer at
caret position

InsertChar(ch: char); Inserts a character at caret position

InsertBullet(AType: TBulletType = btCircle); Inserts a bullet element at caret position in the
TAdvRichEditor and returns a bullet document
element

DeleteChar; Deletes the character at caret position

DeleteCaretElement; Deletes the document element where the caret is

DeleteSelection; Deletes the selection in the TAdvRichEditor

DeleteSelected; Deletes the selected element in case an image or
graphical element is selected

SelectedText: string; Returns the selected text

SelectWordAtXY(X,Y: integer): string; Selects the word in the TAdvRichEditorDocument
at mouse coordinates X,Y

SelectWordAtCaret: string; Selects the word in the TAdvRichEditorDocument

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

10

at caret position

WordAtXY(X,Y: integer): string; Returns the word at X,Y mouse coordinates

WordAtCaret: string; Returns the word at caret position

IsEmpty: boolean; Returns true when the document is empty

Merge(NamesAndValues: TStringList); Performs merging of mergefields with merge
values contained in the stringlist

GetMergeFields(AList: TStringList); Retrieves a list of merge fields in the current
document and fills it via the AList TStringList
parameter

Print; Prints the TAdvRichEditor document to the active
printer

UnSelect; Undo any selection in the document

SelectAll; Selects all document elements in TAdvRichEditor

SaveToText(AFileName: string); Saves the document in TAdvRichEditor as plain
text

SetSelectionAttribute(AFont: TFont; AColor:
TColor); overload;

Sets the font and color attribute of the seleted
text

SetSelectionAttribute(AFont: TFont; AColor:
TColor; BkColor: TColor); overload;

Sets the font, text color and background color
attribute of the seleted text

SetSelectionAttribute(AFontName: string;
AFontSize: integer; AFontStyle: TFontStyles;
AColor: TColor); overload;

Sets the font and color attribute of the seleted
text

SetSelectionAttribute(AFontName: string;
AFontSize: integer; AFontStyle: TFontStyles;
AColor, BkColor: TColor); overload;

Sets the font, text color and background color
attribute of the seleted text

SetSelectionAttribute(AAlignment:
TAlignment); overload;

Sets the alignment of the selected text

SetSelectionAttribute(AError: boolean);
overload;

Sets the selected text with red error underlining
or remove error underlining

SetSelectionColor(AColor: TColor); Sets the text color of the selected text

SetSelectionBkColor(AColor: TColor); Sets the background color of the selected text

SetSelectionBold(DoBold: boolean); Sets the selected text bold or remove bold

SetSelectionItalic(DoItalic: boolean); Sets the selected text italic or remove italic

SetSelectionUnderline(DoUnderline: boolean); Sets the selected text underlined or remove
underlined

SetSelectionStrikeOut(DoStrikeOut: boolean); Sets the selected text strikeout or remove
strikeout

SetSelectionError(DoError: boolean); Sets the selected text with red error underlining
or remove error underlining

SetSelectionSubscript(DoSubScript: boolean); Sets the selected text subscript or remove
subscript

SetSelectionSuperscript(DoSuperScript:
boolean);

Sets the selected text superscript or remove
superscript

SetSelectionIndent(AIndent: integer); Sets the indent on the selected text

SetSelectionBullets(AType: TBulletType);
overload;

Sets bullets for the selected text. Each line
separated by a linebreak gets a bullet. AType sets
the bullet type

SetSelectionHyperlink(AURL: string); Sets a hyperlink for the text selected element in
the document

SetSelectionFontName(AName: string); Sets the font face name for the selected text

SetSelectionFontSize(ASize: integer); Sets the font size for the selected text

SetSelectionHighlight; Sets the selected text in highlight text /
background colors

SetSelectionMergeField(AMergeName: string); Defines a mergefield value for the selected text

IsSelectionBold: boolean; Returns true when the selected text font style is

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

11

bold

IsSelectionItalic: boolean; Returns true when the selected text font style is
italic

IsSelectionUnderline: boolean; Returns true when the selected text font style is
underline

IsSelectionStrikeOut: boolean; Returns true when the selected text font style is
strikeout

IsSelectionSubscript: boolean; Returns true when the selected text font style is
subscript

IsSelectionSuperscript: boolean; Returns true when the selected text font style is
superscript

IsSelectionLeft: boolean; Returns true when the selected text alignment is
left aligned

IsSelectionCenter: boolean; Returns true when the selected text alignment is
center aligned

IsSelectionRight: boolean; Returns true when the selected text alignment is
right aligned

GetSelectionTextColor: TColor; Returns the text color for the selected text

GetSelectionBkColor: TColor; Returns the background color for the selected text

GetSelectionIndent: integer; Returns the indent of the selected text

GetSelectionFontName: string; Returns the font face name for the selected text

GetSelectionFontSize: integer; Returns the font size for the selected text

GetSelectionBullet: TBulletType; Returns the bullet type used for the selected text

Clear; Removes all elements from the document

ClearErrors; Removes all error marking on text in the
document

ClearSelection; Clears the selection in the document

SelectText(FromChar, ALength: integer); Selects text in the TAdvRichEditor based on
character position of the text and length in
characters

property Selection: TSelection read FSelection
write FSelection;

Allows to get and set the selection in the
TAdvRichEditor based on document elements for
the selection start and selection end and
character positions within the selections

property Caret: TCaret read FCaret write
FCaret;

Allows to get and set the caret based on
document elements and character position within
the selected document element

property Selected: TREElement read FSelected
write FSelected;

Get or set the selected (graphical) document
element

ScrollToCaret; Vertically scroll the TAdvRIchEditor to make the
caret visible

PlainText: string; Returns the text of the TAdvRichEditor document
as plaintext

LoadFromTextFile(const FileName: string); Loads the document from a plain text file

LoadFromTextFile(const FileName: string;
Encoding: TEncoding);

Loads the document from a plain text file with
optional encoding parameter

LoadFromStream(const AStream: TStream); Load a document in the .RTE file format from
stream

InsertFromStream(const AStream: TStream; f:
double);

Inserts plain text from file at caret position

LoadFromFile(const FileName: string); Load a document from the .RTE file format

SaveToFile(const FileName: string); Save a document to the .RTE file format

SaveToStream(const AStream: TStream); Save a document in the .RTE file format to stream

SaveSelectionToStream(const AStream:
TStream);

Saves the current selected document elements in
.RTE file format to stream

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

12

FindFirst(AText: string; MatchCase: boolean =
false): boolean;

Finds the first occurrence of text from the
document origin

FindNext: boolean; Finds the next occurrence of text from the
position of the last find operation

ReplaceFirst(AText, AReplacement: string;
MatchCase: boolean = false): boolean;

Replaces the first occurrence of text from the
document origin

ReplaceNext: boolean; Replaces the next occurrence of text from the
position of the last find operation

Highlight(AText: string; MatchCase: boolean =
false): boolean;

Highlight the text in the document with or
without case sensitivity in the document

UnHighlight; Undo any previous highlight

CanUnindent: boolean; Returns true when the selection in the document
is indented (and thsu can be unindented)

CanUndo: boolean; Returns true when an Undo operation is possible

CanRedo: boolean; Returns true when a Redo operation is possible

Undo; Performs Undo

Redo; Performs Redo

BeginUpdate; Use to block updates when doing many
programmatic manipulations in the
TAdvRichEditor

EndUpdate; Use to block updates when doing many
programmatic manipulations in the
TAdvRichEditor

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

13

Programmatic access to the document

Text can be inserted in TAdvRichEditor in various ways. To start with call:

AdvRichEditor.AddText(‘Hello world’);

Add text on the next line with:

AdvRichEditor.AddLineBreak;

AdvRichEditor.AddText(‘Text on the second line’);

To add text with a different font than default font, use:

AdvRichEditor.AddLineBreak;

AdvRichEditor1.AddText('Another line with special

font',12,'Courier',[fsBold]);

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

14

To change attributes of text in the TAdvRichEditor, perform a selection based on index of the text
and length. For example, to change the color of “world” on the first line, set a selection from
character 6 for 5 characters (character index starts at zero) and set an attribute for the selection
followed by remove the selection itself:

AdvRichEditor1.SelectText(6,5);

AdvRichEditor1.SetSelectionColor(clRed);

AdvRichEditor1.SetSelectionItalic(True);

AdvRichEditor1.ClearSelection;

To add images to the TAdvRichEditor, use:

AdvRichEditor1.AddImage('.\sample.png');

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

15

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

16

Using merge fields

Via merge fields, specific places in the document can be quickly replaced during a merge operation.
To perform merging, first insert merge fields in the document. Merge fields are pieces of text that
get a merge field name. These pieces of text are displayed between brackets «» and with a gray
background. To set a piece of text as merge field, select the text and call
AdvRichEditor.SetSelectionMergeField(‘MergeFieldName’);

Assume that following merge field names exist in the TAdvRichEditor document:

‘Name’
‘Street’
‘City’
‘Country’

then a merge operation can be done in the following way:

var

 sl: TStringList;

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

17

sl := TStringList.Create;

sl.Add(‘Name=Bill Gates’);

sl.Add(‘Street=Microsoft Way 1’);

sl.Add(‘City=Redmond’);

sl.Add(‘Country=USA’);

AdvRichEditor1.Merge(sl);

sl.Free;

This will replace the merge fields Name, Street, City, Country with the values ‘Bill Gates’,
‘Microsoft Way 1’, ‘Redmond’, ‘USA’ specifically.

It is also possible to replace merge fields by pictures, i.e. insert pictures dynamically during a
merge operation.

To do this, set a merge fieldname just like for text but using following construct for the mergelist:

Assume that in the previous example we want to add a picture of the person in the document, this
would become:

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

18

‘Photo’
‘Name’
‘Street’
‘City’
‘Country’

A merge operation is be done in the following way:

var

 sl: TStringList;

 pic: TPicture;

pic := TPicture.Create;

try

 pic.LoadFromFile(‘billgates.jpg’);

 sl := TStringList.Create;

 try

 sl.AddObject(‘Photo=’,pic);

 sl.Add(‘Name=Bill Gates’);

 sl.Add(‘Street=Microsoft Way 1’);

 sl.Add(‘City=Redmond’);

 sl.Add(‘Country=USA’);

 AdvRichEditor1.Merge(sl);

 finally

 sl.Free;

 end;

finally

 pic.Free;

end;

To undo the merge operation (and have the document ready for a new merge operation), simply call
AdvRichEditor1.UnMerge; after the merge operation.

To retrieve the list of merge fields available in the richeditor content, the method GetMergeFields()
can be use.

Example:

var

 sl: TStringList;

sl := TStringList.Create;

try

 AdvRichEditor1.GetMergeFields(sl);

 // show the list of merge fields here

finally

 sl.Free;

end;

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

19

Using accompanying toolbars

TAdvRichEditor comes with several ready-to-use toolbars that enable to quickly create user-
interfaces for manipulating the formatted text without writing code.

The toolbars come in 3 categories:

- Simple button bars that only rely on standard VCL controls
- A docking toolbar set that builds upon the docking toolbars found in TMS Advanced Toolbars

& Menus (see http://www.tmssoftware.com/site/advtoolbars.asp)
- Ribbon toolbars that also build upon TMS Advanced Toolbars & Menus

The offered toolbars all make internally heavily use of actions to achieve their functionality. Some
functions in the toolbars still need a reference to the TAdvRichEditor instance that is being worked
with and therefore, it is needed to set ToolBar.RichEditor to the instance of this TAdvRichEditor.

Sample for a UI made with docking toolbars:

Sample for a UI made with ribbon:

http://www.tmssoftware.com/site/advtoolbars.asp

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

20

To start using the toolbars, simple drop one of the needed buttonbar on the form or toolbars on
either a TAdvDockPanel or TAdvOfficePage.

TAdvRichEditorEditButtonBar,TAdvRichEditorFormatButtonBar

These are two button bars, built using standard VCL Panels & speedbuttons. The
TAdvRichEditorEditButtonBar gives access to file open/save functions, clipboard functions and
Undo/Redo. The TAdvRichEditorFormatButtonBar offers all control over font, colors, alignment,
indenting, bullets as well as inserting images, hyperlinks and special characters.

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

21

TAdvRichEditorEditToolBar, TAdvRichEditorFormatToolBar, TAdvRichEditorEditingToolbar

These are three toolbars designed to be used in combination with a TAdvDockPanel. The toolbars
are divided in functions for Open/Save/Clipboard/Undo/Redo with the TAdvRichEditorEditToolBar,
changing font characteristics, alignment, bullets, indents, colors and inserting images, hyperlinks,
special characters with the TAdvRichEditorFormatToolbar and finally, Find & Replace, highlight and
Select-All with the TAdvRichEditorEditingToolbar.

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

22

TAdvRichEditorClipboardRibbonToolBar, TAdvRichEditorFormatRibbonToolBar,
TAdvRichEditorParagraphRibbonToolBar, TAdvRichEditorInsertRibbonToolBar,
TAdvRichEditorEditingRibbonToolBar

For use with a ribbon user-interface, the different functions for the TAdvRichEditor were divided in
5 parts:

TAdvRichEditorClipboardRibbonToolBar: clipboard functions
TAdvRichEditorFormatRibbonToolBar: font formatting functions
TAdvRichEditorParagraphRibbonToolBar: alignment, indenting, bullet functions
TAdvRichEditorInsertRibbonToolBar: inserting images, hyperlink, special characters
TAdvRichEditorEditingRibbonToolBar: find & replace, select-all and highlight

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

23

Importing & exporting in rich text

TAdvRichEditor comes with a component to allow to import or export its content in rich text (.RTF)
files.
Performing such export or import is easy. Drop a TAdvRichEditorRTFIO component on the form and
connect the TAdvRichEditor to this non-visual component’s RichEditor property.

Export

Simply call:

AdvRichEditorRTFIO.Save(FileName);

Import

Simply call:

AdvRichEditorRTFIO.Load(FileName);

Importing & exporting in HTML format

TAdvRichEditor comes with a component to allow to export its content in HTML (.HTML) files. It is
also possible to import from files that use a HTML subset (mini HTML) described here:
http://www.tmssoftware.com/site/minihtml.asp

Performing such export or import is easy. Drop a TAdvRichEditorHTMLIO component on the form and
connect the TAdvRichEditor to this non-visual component’s RichEditor property.

Export

Simply call:

AdvRichEditorHTMLIO.Save(FileName);

Notice that for HTML export, the default behaviour is that all images used in the document are
exported as separate linked image files in the same folder where the .HTML file is generated. If it is
preferred that images are generated in a different folder, use the 2nd default parameter ImagePath:

AdvRichEditorHTMLIO.Save(FileName, ImagePath);

Import

This is limited to mini HTML files and import is done via the non-visual component
TAdvRichEditorMiniHTMLIO. In the same way as TAdvRichEditorHTMLIO, assign the TAdvRichEditor
instance via TAdvRichEditorMiniHTMLIO.RichEditor. The component provides the following overloads
to import from HTML:

 procedure Load(HtmlValue: string; const Images: TCustomImageList; const

Pictures: TGDIPPictureContainer = nil); overload;

 procedure Load(FileName: string); overload;

 procedure Load(AStream: TStream); overload;

http://www.tmssoftware.com/site/minihtml.asp

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

24

This way, it can import from a simple HTML formatted string, a file with HTML formatted text or a
stream. In the case of loading from a HTML formatting string, 2 extra parameters Images & Pictures
can be used as containers for referenced images in the HTML formatted string.

Finally, one more helper method is available in TAdvRichEditorMiniHTMLIO:

 procedure Insert(HtmlValue: string);

This inserts the formatted text from a HTML formatted string at caret position in the
TAdvRichEditor.

Exporting to PDF

The TMS Component Pack also contains a component for exporting the TAdvRichEditor content to
PDF file.
Drop a TAdvRichEditorPDFIO component on the form and connect the TAdvRichEditor to this non-
visual component’s RichEditor property.

Then simply call:

AdvRichEditorPDFIO.Save(FileName);

TAdvRichEditorPDFIO comes with settings for header and footer as well as metadata. Header and
footer can as such be optionally generated for the PDF file independently from the TAdvRichEditor
content.

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

25

Import or export to mini-HTML

With the component TAdvRichEditor.MiniHTMLIO, it is possible to read or write the contents of the
TAdvRichEditor in mini-HTML format. Mini-HTML is a subset of HTML and is described at:
http://www.tmssoftware.com/site/minihtml.asp

To use TAdvRichEditorMiniHTML to read or write its contents in HTML, drop TAdvRichEditorMiniHTML
on the form and connect the TAdvRichEditor instance to TAdvRichEditorMiniHTMLIO.RichEditor.

Call TAdvRichEditorMiniHTMLIO.Load(FileName: string) to load the content from a HTML file.

Call TAdvRichEditorMiniHTMLIO.Save(FileName: string) to save the content to a HTML file.

In addition to saving to file, it is also possible to save to a stream or get the content as HTML:

TAdvRichEditorMiniHTMLIO.Save(AStream: TStream) : saves the content in HTML format to stream

TAdvRichEditorMiniHTMLIO.AsString: string : returns the content in HTML format as string

In addition to loading from file, it is also possible to get the content from a stream or a HTML
formatted string:

TAdvRichEditorMiniHTMLIO.Load(AStream: TStream);

Loads the content from a stream containing the HTML formatted text.

TAdvRichEditorMiniHTMLIO.Load(HtmlValue: string; const Images: TCustomImageList; const
Pictures: TPictureContainer = nil);

HTMLValue contains the content as HTML formatted string. Optionally, for passing pictures, an
imagelist or picturecontainer can be used in case the HTML formatted string references pictures in
an imagelist or picturecontainer.

http://www.tmssoftware.com/site/minihtml.asp

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

26

TAdvRichEditor actions

TAdvRichEditor also registered various actions that can be used to quickly hookup visual controls to
perform actions on the TAdvRichEditor.

Currently following actions are registered and available from the action manager in the IDE:

TAdvRichEditorClear Clear document

TAdvRichEditorCut Cut selection to clipboard

TAdvRichEditorCopy Copy selection to clipboard

TAdvRichEditorPaste Paste text or image from clipboard

TAdvRichEditorSelectAll Selects all text in document

TAdvRichEditorAlignRight Align paragraph right

TAdvRichEditorAlignCenter Align paragraph centered

TAdvRichEditorAlignLeft Align paragraph left

TAdvRichEditorBold Toggle bold font style on selection

TAdvRichEditorItalic Toggle italic font style on selection

TAdvRichEditorUnderline Toggle underline font style on selection

TAdvRichEditorStrikeOut Toggle strikeout font style on selection

TAdvRichEditorSubScript Toggle subscript font style on selection

TAdvRichEditorSuperScript Toggle superscript font style on selection

TAdvRichEditorTextColor Sets text color of selected text

TAdvRichEditorFontName Sets font face name of selected text

TAdvRichEditorFontSize Sets font size of selected text

TAdvRichEditorBulletType Sets the bullet type of the selected text

TAdvRichEditorNumberedBulletType Sets numbered bullets on selected text

TAdvRichEditorColor Sets background color on selected text

TAdvRichEditorIndent Indent selected text

TAdvRichEditorUnIndent Unindent selected text

TAdvRichEditorUndo Perform Undo

TAdvRichEditorRedo Perform Redo

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

27

TDBAdvRichEditor

TDBAdvRichEditor is a DB-aware version of TAdvRichEditor. It allows to connect the rich editor
directly to a database that stores the content of the editor in a blob field.
To start using the TDBAdvRichEditor, drop a dataset on the form and connect it via a datasource to
the TDBAdvRichEditor.DataSource property. Set the blob field where the content is stored via
TDBAdvRichEditor.DataField.

In addition to enabling to hookup the content of the rich editor to a dataset, the TDBAdvRichEditor
can also perform merging with another dataset. To do this, drop a merge dataset on the form and
connect it via a datasource to TDBAdvRichEditor.MergeSource. When executing
TDBAdvRichEditor.Merge, the rich editor will now try to find the value for the merge fields in the
dataset.

Example:

When the merge dataset contains the DB fields:

NAME: VARCHAR(25)
PRENAME: VARCHAR(25)
CITY: VARCHAR(25)
PICTURE: BLOB

then, on the position in the text where this DB field values should be inserted, add merge fields
with the name set to the DB fieldname, i.e. use
DBAdvRichEditor.SetSelectionMergeField(DBFieldName) for each of the fields.

When TDBAdvRichEditor.Merge is now called, the field data (text / images) from the current record
in the merge dataset will now be set at these positions in the rich editor.

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

28

Spell check with TAdvRichEditor

Not available in the stand-alone TAdvRichEditor product but as part of the TMS Component Pack, it
comes with a spell check engine and several UI components to perform spell check & auto-correct
either while typing in the TAdvRichEditor or statically on the document.
To use spell check with TAdvRichEditor, simply drop the non-visual component
TAdvRichEditorSpellCheck on the form and connect the TAdvRichEditor instance to
TAdvRichEditorSpellCheck.RichEditor.

With the option TAdvRichEditorSpellCheck.SpellCheckAction, it can be controlled what action is
performed during typing.

SpellCheckAction:

spcNone: while typing, no action is performed
spcMarkError: when a misspelled word is typed, it is marked with red underline
spcAutoCorrect: when a misspelled word is typed, it is automatically replaced by the first matching
word

Other than performing a spell check while typing, it is possible to perform a spell check on the
entire document.

The spell check on the entire document is initiated with
TAdvRichEditorSpellCheck.CheckDocument:

This performs an asynchronous spell check of the document. When the spell check is finished, the
event OnRequestsProcessed is triggered.

In addition to the core spell check engine for TAdvRichEditor, two additional user interface
components are available: TAdvRichEditorSpellCheckDialog and TAdvRichEditorSpellCheckPanel.
These components can be dropped on the form. Connect the spell check engine and TAdvRichEditor
instance to the TAdvRichEditorSpellCheckPanel.SpellCheck and
TAdvRichEditorSpellCheckPanel.RichEditor properties respectively. This allows to automatically
interact with the correction of a spell-checked document without any code needed except the
initialization when the spell check is complete. This is commonly done with:

TMS SOFTWARE
TMS TAdvRichEditor
DEVELOPERS GUIDE

29

procedure TForm1.AdvRichEditorSpellCheck1RequestsProcessed(Sender: TObject;

 Context: TProcessRequestContext);

begin

 AdvRichEditor1.SelectError(esFirst);

 AdvRichEditorSpellCheckPanel1.DoUpdate;

end;

This code selects the first incorrect word in the TAdvRichEditor instance and then instructs the
panel to initialize itself with the suggestions list for this first misspelled word.

Built-in proofing docking toolbar and proofing ribbon toolbar

TAdvRichEditor also comes with ready-to-use docking & ribbon proofing toolbars:

The toolbar features four buttons:

- Perform spell check of the document
- Clear all marked spell check errors
- Configure the spell check engine
- Choose the language

Via the Options property, any of these toolbar buttons can be turned on or turned off.

