
TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

TMS FixInsight
DEVELOPERS GUIDE

February 2020
Copyright © 2020 by tmssoftware.com bvba

Web: http : //www . tmssoftware . com
Email: info@tmssoftware . com

1

http://www.tmssoftware.com/
mailto:info@tmssoftware.com
mailto:info@tmssoftware.com
mailto:info@tmssoftware.com
http://www.tmssoftware.com/
http://www.tmssoftware.com/
http://www.tmssoftware.com/
http://www.tmssoftware.com/
http://www.tmssoftware.com/
http://www.tmssoftware.com/

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Index

Index .. 2
Installation and Uninstallation .. 3
General Usage .. 4

Excluding Units from Analysis .. 6
Suppressing warnings .. 7

Command Line Tool .. 8
Code patterns handled by FixInsight .. 9

Warnings .. 9
Optimizations ... 17
Coding Conventions ... 18

2

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Installation and Uninstallation

FixInsight can be installed by:

1. Download the installer
2. Run the installer and follow the instructions

FixInsight can be uninstalled by:

1. Open Windows Control Panel
2. Select 'Uninstall a Program'
3. Find FixInsight in the list of programs and double click on it
4. Click 'Yes' button in the FixInsight Uninstall window

3

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

General Usage

FixInsight supports RAD Studio 10.3 Rio as well as the older IDE releases
(2006 – 10.2 Tokyo).

FixInsight adds menu items in the RAD Studio 'Project' menu:

In Delphi 2010 and above it also adds menu items in the project manager's context menu:

4

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Click View->Toolbars->FixInsight to view the FixInsight toolbar:

5

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Excluding Units from Analysis

You can exclude specific units from analysis by entering their names in the Settings window,
one entry per line.

You can use file masks. Like “Jwa*.pas” or “C:\Project\ThirdParty*.pas”. Also you can ignore
whole folder content: “C:\Project\FolderToIgnore\”.

Another option is to add "FI:ignore" comment to the very first line of a unit that you want to skip.

Example:

unit Unit1; //FI:ignore

6

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Suppressing warnings

You may use a special comment "FI:<RULENUMBER>" to suppress a particular warning. You
need to place this comment on the line where a warning occurs.

Example:
procedure RestartTimer;

begin
 FTimer.Enabled := False;

 FTimer.Enabled := True; //FI:W508 - this warning will be ignored.
end;

The second option is to use the _FIXINSIGHT_ compiler directive to suppress warnings. It
works just like regular compiler conditional directives. Make sure that your code remains valid
when _FIXINSIGHT_ is declared and the code segment is excluded.

Example:
{$IFNDEF _FIXINSIGHT_}

 procedure RestartTimer; // this code will be ignored
 begin

 FTimer.Enabled := False;
 FTimer.Enabled := True;

 end;
{$ENDIF}

By checking “Hint on useless fi:xxx comment” option in Settings window you can get a list of
lines where no warning produced by fi:xxx comment is present. This usually happens when you
want to ignore a false positive but then you have installed a FixInsight update, where this false
positive is fixed.

7

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Command Line Tool
The FixInsight command line tool (FixInsightCL.exe) may be used in the build process or with

continuous integration.

Parameters:

 --project=XXX.dpr (a project to analyze)
 --defines=XXX;YYY;ZZZ (compiler defines separated by semicolon)

 --output=XXX (write output to a file)
 --searchpath=XXX (unit directories)

 --libpath=XXX (Delphi library path)
 --unitaliases=XXX;YYY;ZZZ

 --unitscopes=XXX;YYY;ZZZ
 --ignore=XXX (units and directories to be ignored)

 --settings=XXX.ficfg (override project settings)
 --silent (produce no output if no issues were found)

 --xml (format output as xml)
 --csv (format output as csv)

--project parameter is mandatory, other parameters are optional.

Setting --libpath and --unitscopes parameters is highly recommended.

 Example:

 FixInsightCL –project=c:\source\example.dpr --libpath="C:\Program Files (x86)\

Embarcadero\Studio\20.0\source" --unitscopes=Winapi;System.Win;Data.Win;System

Some FixInsight rules will not be able to work without --libpath and --unitscopes set.

Values for --unitaliases and --unitscopes can be taken from your project options:

8

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

9

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Code patterns handled by FixInsight
The tool produces a list of warnings when issues are found. It also checks your code for coding

convention compliance.

Warnings

Potential errors and oddities.

W501 Empty EXCEPT block

The empty except block warning means the exception is caught, but not handled correctly,

which in turn means the cause of the exception that occurred in the try block is still there and

affecting the app is executed. Want to produce a chain reaction of errors that are impossible to

trace? An empty except block is a perfect way to achieve this.

try
 Result := GetSomeData;

except
 // nothing

end;

W502 Empty FINALLY block

The finally block allows your app to free memory and finish all running process correctly. The

empty finally block means the app doesn’t care much about releasing handles, freeing memory

and finalizing objects and therefore becomes a fertile ground for mystical elusive bugs.

try
 Result := GetSomeData;

finally
 // nothing

end;

W503 Assignment right hand side is equal to its left hand side

10

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

While such statements do not affect performance or produce errors, they are potentially

dangerous if a different expression was expected on the right hand side. This type of

assignment is commonly seen with copy-pasted code.

RowCount := RowCount;

W504 Missing INHERITED call in destructor

Forgetting to call an inherited destructor means the object may not destroy completely since

ancestor classes’ destructors are not called, resulting in memory and resource leaks at best and

unexpected behaviour at worst.

destructor TDataContainer.Destroy;

begin
 FData.Free;

end;

W505 Empty THEN block

One semicolon renders the entire if clause useless. The DoSomething block always executes.

if Param > 3 then;
begin

 DoSomething;
end;

W506 Empty ELSE block

Similar to the above, the else block executes regardless of the value of Param. The problem

with such errors is that they are extremely difficult to track down. A semicolon is easy to miss.

if Param > 3 then

 DoSomething
else;

begin
 Flag := -1;

 ShowMessage('Wrong param value');
end;

11

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

W507 THEN statement is equal to ELSE statement

Not a big deal if you did this intentionally (such as for debugging purposes). The check for

Param effectively checks nothing and the same code is executed regardless of the check. This

may indicate a logic error – that the two sides of the if/else should be different – or a copy/paste

error.

if Param > 3 then

 DoSomething
else

 DoSomething;

W508 Variable is assigned twice successively

A simple error that is hard to track. Simply put, Value loses its value. Note, that the two lines of

code below may be separated by 200+ lines of statements making detection of this potentially

bug even harder.

Value := GetValue;
Value := 505;

W509 Unreachable code

The last line of this code block never executes. The Exit clause may reside deep in the logic of

this block, so the problem becomes less evident than it is in the below example.

begin

 Value := GetValue;
 Exit;

 ProcessValue(Value);
end;

W510 Values on both sides of the operator are equal

Copy-pasting of code fragments often helps, but sometimes they can become the source of

undetectable issues. Here, both operands are the same resulting in 0 being assigned to Result.

Result := X - X;

12

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

W511 Object 'Foo' created in TRY block

A common mistake by those new to the language. When an object is created inside a try block,

and the application raises an exception before the object instance is assigned to the Foo

variable, such as if the constructor causes an error, Foo remains unassigned and the call to

Free in the finally block will try to free a random pointer. This will cause a second exception.

try

 Foo := TFooObject.Create;
 Foo.CallMethod;

finally
 Foo.Free;

end;

W512 Odd ELSE-IF condition

Why is this here? What does it do? Is the else part really needed? May be you know the

answer, but more likely the values Param is checked against were different sometime in the

past (or in some other code you copied this fragment from). Now they are the same and can

therefore be the source of errors.

if Param = 1 then
 ProcA

else if Param = 1 then
 ProcB;

W513 Format parameter count mismatch

The number of parameters passed to Format does not match the number in the format string.

This will compile but will never work.

Result := Format('%s = %d', [Name]);

W514 Loop iterator could be out of range (missing -1?)

Dynamic arrays in Delphi are indexed from 0 to Length – 1, which seems to be incorrect in this

code example.

var

13

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 I: Integer;

 Arr: array of Char;
begin

 Arr := GetArr;
 for I := 0 to Length(Arr) do

 ProcessChar(Arr[I]);
end;

W515 Suspicious Free call

The call to Free looks suspicious in this context. For example, the code may have been

intended to use ‘with’, but it is missing, or the entire block was copied from another part of code

and then incorrectly modified. Either way, this warning indicates that the wrong object may be

freed. In the below snippet, the THelloObject instance is being freed instead of the StringList

instance.

procedure THelloObject.SaveToFile(const FileName: string);

var
 StringList: TStringList;

begin
 StringList := TStringList.Create;

 try
 StringList.Add('Hello world');

 StringList.SaveToFile(FileName);
 finally

 Free;
 end;

end;

W517 Variable 'Foo' hides a class field, method or property

See that local Foo variable in the GetFoo method? It hides the private class member of the

same name, making that class field inaccessible from within the method. In the example below,

the GetFoo method will always return the value of the local Foo, not the Foo field.

type
 TMyClass = class

 private
 Foo: Integer;

 public

14

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 function GetFoo: Integer;

 end;

function TMyClass.GetFoo: Integer;
var

 Foo: Integer;
begin

 Result := Foo;
end;

W519 Method 'Foo' is empty

Empty methods are fine except they do nothing. Is this bad? Not unless you want the method to

do something. Usually, empty methods are the remnants of past refactoring or changes in the

class structure.

procedure TMyClass.Foo;

begin
 // nothing

end;

W520 Parenthesis might be missing around IN operand

If Value is an integer it is calculated as "(not Value) in [set]", when usually what was meant is

"not (Value in [set])".

procedure TMyClass.Foo;
var

 Value: Integer;
begin

 if not Value in [1,2,3] then
 Bar;

end;

W521 Return value of function 'Foo' might be undefined

The Delphi compiler warns you if a function may not have had its Result initialised, but only if it

is a simple / unmanaged type (eg an integer). However, it doesn't do this if it is a managed type,

like an interface or string.

15

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

function TMyClass.Foo(Param: Boolean): string;

begin
 if Param then

 Result := 'OK'
 else

 DoNotAssignResult;
end;

W522 Destructor without an override directive

This directive must be set, or a call to the Free method will never be successful, because the

Free method calls the destructor.

W523 Interface 'Foo' declared without a GUID

If an interface does not have a GUID, it cannot be used with Supports function or with the 'as'

operator.

W524 Generic interface 'Foo' declared with a GUID

This means that any all generic instantiations of this generic interface will share the same GUID.

Since interfaces must have a unique GUID, and GUIDs are used for casting, this can be an

major error.

IFoo<T> = interface

 ['{E7B8DF46-3B3D-46D3-916A-6A6008DD5B68}']
 procedure DoWork;

end;

W525 Missing INHERITED call in constructor

The same as rule W504, but for constructors.

constructor TDataContainer.Create;
begin

 FData := TList.Create;
end;

16

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

W526 Pointer to a nested method

When a nested method is being called from outside its "parent" method, an incorrect stack

frame often leads to an error that is hard to track down.

procedure TMyClass.DoWork;

 procedure NestedMethod(List: TObjectList);

 var
 I: Integer;

 begin
 for I := 0 to List.Count - 1 do

 Foo(Self, List[I]);
 end;

begin

 SetCallback(@NestedMethod);
end;

W527 Property is referenced directly in its getter or setter

Accessing a property in its getter or setter may lead to infinite recursion.

type

 TTestClass = class
 private

 FProp: Integer;
 procedure SetProp(const Value: Integer);

 function GetProp: Integer;
 published

 property Prop: Integer read GetProp write SetProp;
 end;

// ...

procedure TTestClass.SetProp(const Value: Integer);

begin
 Prop := Value; // cannot assign to Prop here

end;

function TTestClass.GetProp: Integer;
begin

17

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 Result := Prop; // cannot get Prop value here

end;

W528 Loop variable is not used in FOR-loop

A loop variable is not used inside the loop. This may indicate a coding error.

for I := 0 to 9 do
 for J := 0 to 9 do

 Matrix[I, I] := 0; // J is not used

W529 Should be 'raise' instead of 'raise object'?

When we call 'raise E;' we are telling compiler that here is a new exception object that we want

to raise. After Delphi raises the exception object, the original exception object is freed.

procedure TForm56.Button1Click(Sender: TObject);

 procedure TestProc;
 begin

 try
 raise Exception.Create('FIRST EXCEPT');

 except
 on e: Exception do // <-- Object 'e' will be released after executing

 // this block
 begin

 ShowMessage('Except 1: ' + e.Message);
 raise e; // <-- We should be doing this instead: 'raise;'.

 // Don't reference 'E' here!
 end;

 end;
 end;

begin

 try
 TestProc;

 except
 on e: Exception do // <-- Object 'e' is already released in TestProc

 begin
 ShowMessage('Except 2: ' + e.Message);

 end;

18

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 end;

end;

W529 ''Foo'' interface has the same GUID with ''Bar'' (Unit1.pas)

Interface GUIDs should not be duplicated across the project.

 IMyInterface = interface
 ['{E9FFCD4E-E7B6-4B36-B4F3-A235CA926C17}']

 end;

 IAnotherInterface = interface
 ['{E9FFCD4E-E7B6-4B36-B4F3-A235CA926C17}']

 end;

W531 Actual parameter ''Foo'' of FreeAndNil() must be a reference to class instance

The parameter of FreeAndNil() must be a reference to a class instance. Due to its

implementation details, compiler is not able to check its parameter type.

var
 I: Integer;

 MyObject: TObject;
begin

 FreeAndNil(I); // This will compile, but never work
 FreeAndNil(MyObject);

end;

W534 Class instance ''Foo'' passed to ''Bar'' but interface expected

Class instance passed as interface.

type

 ISomeInterface = interface
 ['{AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA}']

 end;

19

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 TSomeClass = class(TInterfacedObject, ISomeInterface)

 end;

procedure DoSomethingWithSomeInterface(const SomeInterface:
ISomeInterface);

begin
 // ...

end;

procedure DoSomethingWithSomeClass;
var

 SomeClass: TSomeClass;
begin

 // ...
 DoSomethingWithSomeInterface(SomeClass); // <= W534

 // After this call SomeClass will be released due to reference counting
 // ...

end;

W535 Enumerated constant(s) missing in case statement: Foo

In the code below, etThree is missing from the case structure and will trigger a warning.

type

 TEnumType = (etOne, etTwo, etThree);

var
 EnumType: TEnumType;

begin
 case EnumType of // <= W535

 etOne: ;
 etTwo: ;

 end;
end;

W536 New class instance ('Foo') passed to 'Bar' as const interface parameter.

type
 ISomeInterface = interface

 ['{AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA}']

20

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

 end;

 TSomeClass = class(TInterfacedObject, ISomeInterface)

 end;

procedure DoSomethingWithSomeInterface(const SomeInterface:
ISomeInterface);

begin
 // ...

end;

procedure DoSomethingWithSomeClass;
begin

 // ...
 // After this call TSomeClass instance will not be released.

 // There is a potential memory leak.
 DoSomethingWithSomeInterface(TSomeClass.Create); // <= W536

 // ...
end;

21

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Optimizations

Little tricks that make your code cleaner and faster.

O801 CONST missing for unmodified string parameter 'Foo'

String parameter is not modified in a method. If you declare this parameter as a 'const' this will

result in better performance. This will eliminate implicit try-finally and reference counting

overhead.

procedure Output(S: string);

begin
 ShowMessage('The message is "' + S + '"');

end;

O802 ResourceString 'Foo' is declared but never used

ResourceString is declared but never used. This means it may be removed without any risk.

O803 Constant 'Foo' is declared but never used

Constant is declared but never used. This means it may be removed without any risk.

O804 Method parameter ''Foo'' is declared but never used

function Output(A, B, C: Integer): Integer;

begin // Parameter C is never used and may be removed.
 Result := A + B;

end;

O805 Inline marked routine ''%s'' comes after its call in the same unit

In order to be properly inlined an inline marked routine has to come before it's called in the

same unit.

22

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

Coding Conventions

Coding convention violations are not technically incorrect but may slow down

development or increase the risk of bugs in the future.

C101 Method 'Foo' is too long (N lines)

A method, function, or procedure that has grown too large.

C102 Too many parameters in 'Foo' (N parameters)

A long list of parameters in a procedure or function make readability and code quality worse.

C103 Too many variables in 'Foo' (N variables)

A long list of variables in a procedure or function make readability and code quality worse.

C104 Class name should start with 'T'

According to Object Pascal Style Guide class declaration should be prefaced by a capital T.

C105 Interface name should start with 'I'

According to Object Pascal Style Guide interface declaration should be prefaced by a capital I.

C106 Pointer type name should start with 'P'

According to Object Pascal Style Guide pointer type declaration should be prefaced by a capital

P.

C107 Class field name should start with 'F'

According to Object Pascal Style Guide class field name should be prefaced by a capital F.

C108 Nested WITH statement

23

http://edn.embarcadero.com/article/10280
http://edn.embarcadero.com/article/10280
http://edn.embarcadero.com/article/10280
http://edn.embarcadero.com/article/10280

TMS SOFTWARE
TMS FixInsight

DEVELOPERS GUIDE

If a class’s interface is changed, the behaviour of code using ‘with’ can change silently and

without any indication. It creates imprecise semantics, and that is always bad.

with Obj1 do
 with Obj2 do

 DoSomething;

C109 Unneeded boolean comparison

Just an unnecessary comparison. Not a big deal, but a simple assignment operator looks more

natural.

Result := A <> True;

C110 Getter or setter name is different from property declaration

Getter and setter method names are typically the name of the property with a 'Get' or 'Set'

prefix.

property Caption: string read GetName write SetName;

C111 Class name should start with 'E'

According to Object Pascal Style Guide class declaration should be prefaced by a capital E.

24

http://edn.embarcadero.com/article/10280

	Installation and Uninstallation
	General Usage
	Command Line Tool
	Code patterns handled by FixInsight
	W501 Empty EXCEPT block
	W502 Empty FINALLY block
	W503 Assignment right hand side is equal to its left hand side
	W504 Missing INHERITED call in destructor
	W505 Empty THEN block
	W506 Empty ELSE block
	W507 THEN statement is equal to ELSE statement
	W508 Variable is assigned twice successively
	W509 Unreachable code
	W510 Values on both sides of the operator are equal
	W511 Object 'Foo' created in TRY block
	W512 Odd ELSE-IF condition
	W513 Format parameter count mismatch
	W514 Loop iterator could be out of range (missing -1?)
	W515 Suspicious Free call
	W517 Variable 'Foo' hides a class field, method or property
	W519 Method 'Foo' is empty
	W520 Parenthesis might be missing around IN operand
	W521 Return value of function 'Foo' might be undefined
	W522 Destructor without an override directive
	W523 Interface 'Foo' declared without a GUID
	W524 Generic interface 'Foo' declared with a GUID
	W525 Missing INHERITED call in constructor
	W526 Pointer to a nested method
	W527 Property is referenced directly in its getter or setter
	W528 Loop variable is not used in FOR-loop
	W529 Should be 'raise' instead of 'raise object'?
	W529 ''Foo'' interface has the same GUID with ''Bar'' (Unit1.pas)
	W531 Actual parameter ''Foo'' of FreeAndNil() must be a reference to class instance
	W534 Class instance ''Foo'' passed to ''Bar'' but interface expected
	W535 Enumerated constant(s) missing in case statement: Foo
	W536 New class instance ('Foo') passed to 'Bar' as const interface parameter.
	O801 CONST missing for unmodified string parameter 'Foo'
	O802 ResourceString 'Foo' is declared but never used
	O803 Constant 'Foo' is declared but never used
	O804 Method parameter ''Foo'' is declared but never used
	O805 Inline marked routine ''%s'' comes after its call in the same unit
	C101 Method 'Foo' is too long (N lines)
	C102 Too many parameters in 'Foo' (N parameters)
	C103 Too many variables in 'Foo' (N variables)
	C104 Class name should start with 'T'
	C105 Interface name should start with 'I'
	C106 Pointer type name should start with 'P'
	C107 Class field name should start with 'F'
	C108 Nested WITH statement
	C109 Unneeded boolean comparison
	C110 Getter or setter name is different from property declaration
	C111 Class name should start with 'E'

