
TMS Data Modeler
Documentation

January 2019

Copyright (c) 2019 by tmssoftware.com bvba http://www.tmssoftware.com

E-mail: info@tmssoftware.com

TMS Data Modeler Documentation

(c) 2019 TMS Software I

Table of Contents

Chapter I Introduction 1
... 31 Overview

... 32 What's New

... 123 Copyright Notice

... 134 Supported Databases

... 135 Concepts

Chapter II The User Interface 17
... 181 UI Overview

... 192 Ribbons

... 253 Project Explorer

... 254 Workspace

... 265 Messages Window

Chapter III Basic Operations 27
... 281 Creating a New Project

... 292 Creating Objects in Database Model

... 313 Comparing projects

... 324 Generating Database Creation Scripts

... 325 Project Validation

... 346 General Project Settings

... 347 Version Control

... 368 Reverse Engineering

... 379 Convert Project to Different Database

Chapter IV Editors 40
... 411 Table Editor

... 442 Domains

... 453 Diagrams

... 494 Relationship Editor

... 495 Procedures and Functions

... 506 Generators/Sequences

... 507 Views

Chapter V TMS Aurelius Export 51
... 521 Overview

TMS Data Modeler Documentation

(c) 2019 TMS Software II

... 542 Export Dialog

... 553 Mappings Tab

... 604 General Settings Tab

... 625 Script Tab

... 646 Customization Script

.. 65OnColumnGenerated Event

.. 66OnAssociationGenerated Event

.. 66OnManyValuedAssociationGenerated Event

.. 67OnClassGenerated Event

.. 68OnUnitGeneratedEvent

.. 68Adding OrderBy Attribute to Many-Valued Association

.. 69Adding Version Attribute to Class Fields

.. 70Creating a New Property in a Class

.. 70Creating a New Method Procedure in a Class

.. 71Creating a New Method Function in a Class

.. 71Adding a Unit Name to the Uses Clases

.. 72Changing Cascade of Many-Valued Association

.. 72Adding ForeignKey Attribute to Associations

.. 73Adding DBIndex Attributes From Table Indexes

.. 74Adding Schema Name to Table Attribute

Chapter

I
Introduction

TMS Data Modeler Documentation

2(c) 2019 TMS Software

1 Introduction

TMS Data Modeler is a visual database design system that integrates database
design, modeling, creation and maintenance into a single environment.

The application combines professional features and a clear and simple user
interface to offer the most efficient way to handle your database. It is
developed and optimized for the most used database management systems
(Microsoft SQL Server, Firebird, Oracle etc.) and generates clean scripts to
create or update your projects.

TMS Data Modeler product page: http://www.tmssoftware.com/site/tmsdm.asp
TMS Software site: http://www.tmssoftware.com

Documentation Topics

· Introduction
o Overview

o What's New

o Copyright Notice

o Supported Databases

o Concepts

· The User Interface
o UI Overview

o Ribbons

o Project Explorer

o Workspace

o Messages Window

· Basic Operations
o Creating a New Project

o Creating Objects in Database Model

o Comparing projects

o Generating Database Creation Scripts

o Project Validation

o General Project Settings

o Version Control

o Reverse Engineering

o Convert Project to Different Database

· Editors
o Table Editor

o Domains

o Diagrams

o Relationship Editor

o Procedures and Functions

o Generators/Sequences

o Views

· TMS Aurelius Export
o Overview

o Export Dialog

http://www.tmssoftware.com/site/tmsdm.asp
http://www.tmssoftware.com

TMS Data Modeler Documentation

3(c) 2019 TMS Software

o Mappings Tab

o General Settings Tab

o Script Tab

o Customization Script

Overview1.1

TMS Data Modeler is a visual database design system that integrates database
design, modeling, creation and maintenance into a single environment.

The application combines professional features and a clear and simple user
interface to offer the most efficient way to handle your database. It is
developed and optimized for the most used database management systems
(Microsoft SQL Server, Firebird, Oracle etc.) and generates clean scripts to
create or update your projects.

Features and benefits

· Generic tool that allows comprehensive modeling for databases.
· High performance and easy-to-use, intuitive interface.
· Supports the main database management systems (DBMS) such as SQL

Server and Firebird.
· Stores the database structure in its own file format (DGP).
· Generates scripts to create complete databases or update existing

databases.
· Performs reverse engineering to recover the structure of an existing

database, allowing better visualization and adjustments.
· Controls database versions through history management: you can follow up

changes and generate update scripts.
· Creates entity-relationship diagrams.
· Converts between different DBMS.
· Offers resources for integration with external systems (by reading the DGP

file or by execution through command line).
· Checks consistency, validating all items on the data dictionary.
· Error report allows updates and improvements.
· Creates Delphi source code with exported classes for TMS Aurelius Object-

Relational Mapping Framework.

What's New1.2

Version 3.3.2 (Jan-2019)
· New: PostgreSQL 11 support, avoiding the error "p.proisagg does not exist.

perhaps you meant to reference the column p.prolang"

Version 3.3.1 (Jan-2019)
· Improved: Arguments for OnClassGenerated event now includes references

to Table and Sequence attribute. Used in the example Adding Schema Name
to Table Attribute.

· Fixed: Performing project checking in ElevateDB projects now reports wrong
field size for char/binary fields with size higher than 1024.

TMS Data Modeler Documentation

4(c) 2019 TMS Software

Version 3.3 (Dec-2018)

· New: "Scripting" button in Tools tab in ribbon, opens a full scripting IDE
for low-level and advanced manipulation of the existing data
dictionary.

Version 3.2.6 (Nov-2018)
· Improved: List of tables in the Generate Script dialog is now sorted.
· Fixed: Fields in primary keys were being nullable when using nullable

domains. It broke backward compatibility, fields in primary keys should always
be not null.

· Fixed: PostgreSQL database importer was not correctly retrieving foreign
keys with same name in different tables.

Version 3.2.5 (Nov-2018)
· Improved: There is now a check box "Specific" for the "Not null" field. When

the field has a domain associated to it, this new check box allows explicitly
control if the NOT NULL flag should come from domain or you would want to
ignore the domain setting and use a specific value for the field.

Version 3.2.4 (Nov-2018)
· Fixed: Foreign keys with multiple fields (relationships with composite keys)

not being correctly imported from Oracle databases.

Version 3.2.3 (Oct-2018)
· Fixed: Null/NotNull checkbox was disabled for fields associated with logical

domains.
· Fixed: Project window maximizing automatically in some situations.

Version 3.2.2 (Oct-2018)
· Fixed: SQL Server ALTER TABLE ADD COLUMN statement was not including

constraint name for default values.

Version 3.2.1 (Sep-2018)
· Fixed: Firebird behavior with domains: size, not null and constraint was not

being retrieved from domain.

Version 3.2 (Sep-2018)

· New: Support for Interbase 2017.

· Fixed: Error when importing MySQL 8 databases (Table 'mysql.proc' doesn't
exist)

· Fixed: Firebird/Interbase connection was not working in some situations.

Version 3.1.2 (Jul-2018)

TMS Data Modeler Documentation

5(c) 2019 TMS Software

· Fixed: Data Modeler version information in VCL Subscription Manager showing
incorrect after automatic update.

·Version 3.1.1 (Jul-2018)

· Fixed: SQLite database import was wrongly considering SQLite "TEXT"
datatype as a (char) blob. Now it's considered as regular string (VARCHAR).

· Fixed: Importing SQLite tables with field names starting with number was
raising error.

Version 3.1 (May-2018)

· New: Database metadata objects available in customization script
events. One usage example is adding ForeignKey attribute to associations to
force Aurelius create FK using the existing database foreign key (relationship)
name.

Version 3.0.3 (May-2018)

· Fixed: Connecting to MS SQL Server LocalDB was raising an error "SQL
Server does not exist or access is denied"

· Version 3.0.2 (Mar-2018)

· Fixed: Exporting descriptions with single quotes to Aurelius classes was
generating invalid Pascal code. The single quotes are now duplicated to form
valid Pascal strings.

· Version 3.0.1 (Nov-2017)

· New: OnUnitGenerated event in TMS Aurelius Export customization script.

· Improved: Table list in Mappings Tab of TMS Aurelius Export Dialog is now
sorted in alphabetical order.

· Improved: Added OID type for PostgreSQL databases.

· Fixed: When adding a property in a customization script, if property type
was empty the generated code was adding a colon after property name:
"property Name: ;"

Version 3.0 (Oct-2017)

TMS Data Modeler Documentation

6(c) 2019 TMS Software

· New: Customization scripts in TMS Aurelius export. You can now
customize the source code generated by TMS Aurelius export feature using a
customization script that be be written in the Script Tab of export dialog.
This adds lots of flexibility for you to add specific attributes, fine tune the
generated code, and even add new fields, properties and methods to the
classes.

· New: Option to export TMS Aurelius classes to several different units.
You now have the option to specify the name of the unit in which a class will
be created, allowing you to better organize your classes into several units. If
there is a cyclical reference between units, Data Modeler will warn you in
advance giving you the chance to fix the issues.

· New: Model names in TMS Aurelius export. Now you have an option to
specify the models where an export class will belong to. This will create
[Model] attributes in the class. The model names can also be automatically
set based on the existing diagrams in the project (each diagram is considered
to be a model).

· New: Source code preview in Aurelius export. In the Aurelius export
dialog, you can new preview the source code of the unit(s) that will be
created. It makes it easier to change settings and see how they affect final
source code without needing to generate the actual files in directory.

· New: Modern User Interface. Ribbon user interface was updated to a new
color theme and some ribbon elements were updated. The look and feel is
now closer to Office 2017 style and provides a more modern and refreshing
feeling. Splash screen has also been updated.

· Improved: Documentation has received a significant review. Contains now
more detailed and organized topics, especially on TMS Aurelius export. The
look and feel has also been improved in both CHM and PDF formats. A new
online help is now available for browsing.

· Fixed: Checkboxes for defining specific default and check constraint were
not being enabled correctly.

· Fixed: "Access Violation" error when clicking Exit or double click menu
button.

Version 2.8.1 (Dec-2016)
- Fixed: SQL Server primary key constraint ignoring field order (asc/desc)

Version 2.8 (Dec-2016)
- Improved: Installers for trial and registered versions now signed to minimize
Windows warnings and false antivirus alerts
- Improved: Register entities option checked by default (Aurelius Export)
- Improved: AllButRemove is default option for association cascade type
(Aurelius Export)
- Fixed: Data Modeler not appearing as "installed" in TMS Subscription Manager

Version 2.7 (Nov-2016)

TMS Data Modeler Documentation

7(c) 2019 TMS Software

- New: Support for Firebird 3 database

Version 2.6.1 (Oct-2016)
- Fixed: When generating Aurelius classes, constructor implementation is now
calling inherited constructor.

Version 2.6 (Jun-2016)
- Improved: PostgreSQL support for data types JSON and JSONB

Version 2.5.1 (Nov-2015)
- Fixed: Firebird database importer was failing with DOMAIN_NULL_FLAG error

Version 2.5 (Jan-2016)
- New: Option to explicitly define the type of the field/property when exporting
model to Aurelius classes

Version 2.4.10 (Nov-2015)
- Fixed: Firebird stored procedures now being created with header only to
avoid errors with procedure dependencies
- Fixed: Firebird CREATE DOMAIN statement incorrectly generated when using
CHECK constraints
- Fixed: Visual glitch when displaying comments in stored procedure editor

Version 2.4.9 (Nov-2015)
- Improved: Firebird configuration allows providing the CHARSET for the
connection. Default is UTF8.

Version 2.4.8 (Aug-2015)
- Fixed: PostgreSQL TIMESTAMP fields were wrongly being exported to Aurelius
as Double properties, instead of TDateTime.

Version 2.4.7 (Aug-2015)
- Improved: When exporting memo fields to Aurelius classes, a [DBTypeMemo]
attribute is added for better Aurelius handling of memo types

Version 2.4.6 (Jul-2015)
- Fixed: Text block not displaying text in workflow instance if text was edited
directly in the block (not using editor)
- New: MySQL script for workflow tables

Version 2.4.5 (May-2015)
- Improved: Aurelius Export Tool now supports composite keys in inheritance
relationships

Version 2.4.4 (Apr-2015)
- Improved: CascadeTypeAll included as a cascade option for Associations
when exporting to Aurelius

Version 2.4.3 (Apr-2015)
- Fixed: Import of SQLite databases with field names using different characters
like "&" or "."
- Fixed: Import ot SQLite databases with default value using identifiers

Version 2.4.2 (Nov-2014)

TMS Data Modeler Documentation

8(c) 2019 TMS Software

- New: Aurelius export includes an option register all entities using
RegisterEntity procedure (to avoid linker to remove unused classes)
- New: Firebird connection dialog includes "Vendor Lib" option allowing specify
driver (for example, gds32.dll as alternative to fbclient.dll)

Version 2.4.1 (Oct-2014)
- Fixed: Firebird import now retrieves descriptions using correct character set

Version 2.4 (Sep-2014)
- New: PostgreSQL 9 support
- Fixed: Indexes marked as "Unique Key" not being generate as exclusive
indexes (Indexes marked as "Exclusive" were working correctly) (2.3.3 -
Aug/2014)
- Improved: Aurelius classes exported sorted by name (2.3.2 - Jul/2014)
- Fixed: Aurelius classes exported in wrong order in some complex inheritance
hierarchy (2.3.2 - Jul/2014)
- Fixed: wrong Inheritance attribute value when exporting to Aurelius classes
(2.3.1 - Jun/2014)

Version 2.3 (Feb-2014)
- New: Advanced connection options for ElevateDB databases
- New: Zoom tab in ribbon makes it easier to define diagram zoom, zoom to
100% or zoom to fit all
- New: Export to Aurelius allows defining cascade types for associations
- Improved: Trigger editor now expands to the whole window area making it
easier to write trigger code
- Fixed: Several errors reported by automatic error report (mostly Access
Violations in some specific situations)

Version 2.2 (May-2013)
- New: Diagram navigator allows overview of entire diagram and easy
navigation/zooming using navigation cursor
- Improved: Automatic selection of last used connection when importing
database structure
- Fixed: Timestamp fields correctly imported from Oracle databases
- Fixed: MySQL reverse engineering was not correctly importing multi-column
foreign keys
- Fixed: Oracle reverse engineering was retrieving wrong size for NVarchar2
fields
- Fixed: ElevateDB reverse engineering was retriving foreign keys incorrectly
when composed of more than one field
- Fixed: Import SQLite tables with /*..*/ comments in DDL command
- Fixed: Rare AV when generating Aurelius classes unit

Version 2.1 (Feb-2013)
- New: Support for ElevateDB Unicode Server (in addition to existing support to
ANSI servers)
- Improved: ElevateDB server name configuration can accept both IP address
and host name
- Improved: Support for Windows 8 (2.0.2)
- Improved: Connection settings in NexusDB reverse engineering now displays
available servers automatically (2.0.1)
- Fixed: Incorrect NexusDB reverse engineering when connecting to 3.10 and
3.11 databases using internal server (2.0.1)

TMS Data Modeler Documentation

9(c) 2019 TMS Software

Version 2.0 (Feb-2013)
- New: TMS Aurelius Export: option to define Sequence attribute for each
entity class
- New: "Duplicate table" feature available in diagram toolbar button and popup
menu in table list
- New: Find toolbar button makes easy to find a table in diagram by name
- New: Licensing tool which provides a much better, easier way to register
Data Modeler
- Improved: Better error message when exporting to Aurelius source code fails
due to file system error
- Improved: Id properties exported to TMS Aurelius are now read-write instead
of read-only.
- Note: 1.9.1 version was released at the same time as 2.0 version, including
several other improvements and all bugs fixed since version 1.9.

Version 1.9.1 (Feb-2013)
- New: option to display relationship description/caption in diagram
- New: support for TGuid properties and Guid/Uuid generators in Aurelius export
- Improved: SQLite reverse engineering sets a default size for varchar and
decimal data types, when not specified
- Improved: better detection of Firebird/Interbase database server version
- Improved: Clearer message when updating Data Modeler to avoid confusion
with Windows/Data Modeler restart
- Improved: Firebird now differentiates unique indexes from unique constraints
- Improved: Better error message when trying to use unsupported versions of
MySQL server
- Fixed: issues with SQLite reverse engineering (incorrect SQL parsing)
- Fixed: Access Violation in Aurelius source code generator (automatic report)
- Fixed: When adding new trigger, syntax was incorrect for Firebird database
- Fixed: Uncommon error when importing Firebird databases (RDB$DESCRIPTION
column unknown)
- Fixed: Aurelius source generator now generates Int64 properties for database
fields of type BIGINT and equivalents
- Fixed: Aurelius exporting foreign key fields that were part of primary key was
incorrect when the property name was being changed manually by the user
- Fixed: Multi-line descriptions now handled correctly when exporting to
Aurelius classes
- Fixed: Script viewer window now being presented correctly in multi-monitor
desktops
- Fixed: Wrong Alter Table statement in Firebird databases (add non-nullable
column)
- Fixed: Importing SQLite databases with spaces in table Name
- Fixed: All reproduceable automatic error reports up to release date

Version 1.9 (May-2012)
- New: Support for SQLite 3.7 databases
- New: Option for specifying dynamic properties in class when exporting to TMS
Aurelius
- New: Aurelius export now has an option to singularize table names (convert
plural table names into singular class names)
- Improved: Project check now checks if fields in a relationship have the same
size, besides being of same type
- Improved: Hint for recent files in menu makes it easier to see full file name

TMS Data Modeler Documentation

10(c) 2019 TMS Software

- Improved: Better saving of form position and state (maximized/minimized)
- Fixed: issue with ribbon menu when windows is set to use big-sized fonts
- Fixed: Parent and child fields in relationship could have different data types in
some cases (varchar with different sizes)
- Fixed: duplicated drop constraints in sql server when both default value and
constraint default name were changed
- Fixed: internal issue with having duplicated id's for objects
- Fixed: MySQL drop index and drop foreign key statements had incorrect
syntax
- Fixed: double data types were being imported incorrectly in MySQL
- Fixed: 0000748 [SQL Script] Check creation order of objects in SQL Script
(firebird)
- Fixed: 0001084 [Comparer] Firebird-Merge Function-Stored Procedure-No
input parameters generate a header with an integer type but no variable name
- Fixed: 0001083 [Comparer] Firebird - Using Merge Function - Stored
Procedure scripts Terminator missing
- Fixed: Automatic reports 0001187, 0001162, 0001238

Version 1.8 (Jan-2012)
- 0001145: New: Export classes to TMS Aurelius framework.
- 0001158: [Interface] New window to find a table in diagram using Ctrl+F.
- 0001152: [Interface] New: "Find field..." option to search for fields in field
grid in table editor. Can also use Ctrl+Shift+F.
- 0001151: [Interface] New: "Find in Diagram" popup menu option in table list
makes it easy to find a table in the diagram.
- 0001149: [Reverse engineering] New: Import field descriptions from SQL
Server.
- 0001159: [Interface] Automatically selects a child field when creating a new
relationship if same field name and type as parent.
- 0001146: [Interface] New: New diagram popup menu options "All Keys and
Indexes" in diagram context menu.
- 0001156: [Interface] Diagram popup menu option to create relationship using
selected table
- 0001150: [Interface] Fixed: Dragging a table to a scrolled or zoomed diagram
puts the table at wrong position.
- 0001148: [Interface] Improved: Deleting a field causes grid flickering and
scrolling.
- 0001147: [Interface] Improved: Put close button on tabs.
- Other bug fixes. Tracker items: 0001142, 0001044, 0001087, 0001119,
0001109, 0001160, 0001161

Version 1.7.1 (Feb-2011)
- 0000902: Object comments imported from Firebird databases in reverse
engineering.
- 0000903: Script generation and comparison for object comments (Firebird).
- Other minor bug fixes and small improvements. Tracker items: 0000505,
0000506, 0001031, 0001033, 0001034, 0001042.

Version 1.7 (Dec-2010)
- 0000871: Included support for ElevateDB.
- Bug fixes. Tracker items: 0000945, 0000956.

Version 1.6 (Nov-2010)
- 0000923: Included support for Microsoft SQL Azure.

TMS Data Modeler Documentation

11(c) 2019 TMS Software

- 0000954: [Reverse engineering] Database server version check before
perform reverse engineering.
- 0000933: Fixed: [Interface] Window state not restored when main form is
maximized.
- Other minor bug fixes. Tracker items: 0000886, 0000895, 0000910.

Version 1.5.1 (Oct-2010)
- 0000392: [Interface] Persistence of size and position of windows.
- 0000402: [Interface] New keyboard shortcuts and context options on
interface.
- 0000414: [Project checking] Option to update the version files after saving a
project as a different name.
- 0000489: [Interface] New option "Select all" in diagram context menu.
- 0000680: [Interface] New option "Close all except this" in tabs context menu.
- 0000681: [Interface] New option to set text colour on notes.
- 0000852: [Interface] Improved resizing of controls in table editor.
- 0000857: [Reverse engineering] Issues in reverse engineering from MySQL
databases.
- 0000828: [SQL Script] Issue with expression of check constraints retrieved
from Firebird databases.
- 0000823: [Reverse engineering] Issue importing UTF8 defined fields from
Firebird databases.
- 0000746: [SQL Script] Fixed use of NULL/NOT NULL constraints in SQL script
for computed columns (SQL Server).
- 0000602: [Interface] Fixed not null option in child field created automatically
for a non-identifying relationship.
- 0000601: [Interface] Issues with suggestion of fields in Child Table when
creating a relationship.
- 0000569: [Interface] Issues with editing of check constraint fields.
- 0000482: [Interface] Issues with editing of domain fields.
- Other bug fixes and small improvements. Tracker items: 0000243, 0000559,
0000563, 0000649, 0000656, 0000729, 0000735, 0000785, 0000792, 0000798,
0000802, 0000807, 0000817, 0000841, 0000854.

Version 1.5 (Aug-2010)
- 0000694: [SQL Script] Support for MySQL 5.1 databases.
- 0000734: [Interface] Option for inserting any object in popup menu of the
explorer.

Version 1.4.0.1 (Mar-2010)
- 0000702: [Internal] Error loading project file (reading
TGDAODiagram.DiagramString).

Version 1.4 (Mar-2010)
- 0000693: [SQL Script] Support to Oracle 10g databases.
- 0000650: [Reverse engineering] Allow "Server:Port" syntax in NexusDB server
name connection.
- Other bug fixes and small improvements. Tracker items: 0000696, 0000688,
0000659, 0000658, 0000664, 0000667, 0000668, 0000686, 0000687.

Version 1.3.1 (Aug-2009)
- 0000648: [Interface] Use default tray icon balloon hint for update
notification. Allow update notification for trial versions.

TMS Data Modeler Documentation

12(c) 2019 TMS Software

- 0000647: [Interface] Allow setting font name, size and shape color for
diagram blocks.
- 0000645: [SQL Script] Invalid column name in alter script.
- Other bug fixes and small improvements. Tracker items: 0000644, 0000604.

Version 1.3 (Jul-2009)
- 0000622: [SQL Script] Support for NexusDB database.
- Other bug fixes and small improvements. Tracker items: 0000626, 0000636,
0000623, 0000552, 0000617, 0000608.

Version 1.2 (Jun-2009)
- 0000613: [SQL Script] Support for SQL Server 2008.
- 0000615: [Interface] Allow setting paper size, orientation and measurement
units for diagram printing.
- 0000614: [Reverse engineering] Char size and domain issues with SQL Server
2000 reverse engineering.
- Other bug fixes and small improvements. Tracker items: 0000609, 0000600,
0000606, 0000605, 0000597, 0000598, 0000534, 0000492.

Version 1.1 (May-2009)
- 0000405: [Internal] Support for Absolute Database.
- 0000589: [Interface] Diagram Print Preview feature included.
- Other bug fixes and small improvements. Tracker items: 0000577, 0000580.

Version 1.0 (Apr-2009)
- First official 1.0 release.

Copyright Notice1.3

Licensing Information

Trial version of this product is free for use in non-commercial applications, that
is any software that is not being sold in one or another way or that does not
generate income in any way by the use/distribution of the application.

For registered version of this product, three types of licenses apply:

Single Developer License

Main Copyright

Unless in the parts specifically mentioned below, all files in this distribution are
copyright (c) Wagner Landgraf and licensed under the terms detailed in
Licensing Information section above. The product cannot be distributed in any
other way except through TMS Software web site. Any other way of
distribution must have written authorization of the author.

https://www.tmssoftware.com/site/lic_single.asp

TMS Data Modeler Documentation

13(c) 2019 TMS Software

Supported Databases1.4

The following database systems are supported:

· MySQL
· Oracle
· Microsoft SQL Server
· PostgreSQL
· Firebird
· SQLite
· Microsoft SQL Azure
· NexusDB
· ElevateDB
· Absolute Database

Concepts1.5

All database objects are listed under the appropriate data dictionary object
button on the Project explorer. This chapter lists and gives a brief explanation
about the main objects on a project.

Tables
Tables are the basic elements of a project. They can be imported from an
existing database or be easily created in a TMS Data Modeler project and later
implemented in the database.

All tables in the project are listed under Tables on the Project eEplorer, and
can also be visualized in a diagram.

Double-clicking on a table from the list opens the Table editor, where you can
view and update all of its properties including fields and indexes.

Using TMS Data Modeler you may also create Constraints, which are
restrictions/rules applied to a table, and Triggers, which are procedures
executed every time an update / insert / delete is executed in a given table.

Relationships
Relationships are connections between tables. A relationship is shown in
diagrams as a line between the child and parent table, or around a single table
in the case of a self-relationship. TMS Data Modeler uses a key from the parent
table to manipulate relationships, therefore previous creation of a key, such as
a primary key or other exclusive index, is mandatory. By selecting a field on the
parent key you are able to select all compatible fields on the child table.

The supported relationship types are:

Non-identifying relationship: it's the most usual type of relationship. It
represents a weak connection, a relationship between parent and child table
that does not involve a key field, such as the relationship between tables
"Products" and "Categories", for example.

TMS Data Modeler Documentation

14(c) 2019 TMS Software

Identifying relationship: a relationship where the related fields from the child
table are part of the key which identifies a unique record in this table. It
indicates a strong connection, such as the relationship between tables "Order
details" and "Products", for example. There are no "Order details" without a
related "Product", and the "Product" is part of the key of the "Order details"
table.

All relationships present in the project are listed under Relationships on the
Project explorer, and can also be visualized in a diagram.

Double-clicking on a relationship from the list opens the Relationship editor,
where you can view and update all of its properties and settings.

Diagrams
In TMS Data Modeler a diagram acts as a view from the system or part of the
system, unlike most database tools where diagrams are the main element of
the project, defining all tables and structures.

Several different diagrams can be created, each of them with selected tables
so you can better examine and edit their properties and relationships. Diagrams
show all relationships between the inserted tables automatically, and allows full
edition of the database structure. It is possible to update and remove objects,
create new tables and relationships and so on.

All diagrams created in the project are listed under Diagrams on the Project
explorer. Double-clicking on a diagram opens the Diagrams editor where you
can view and update all of its tables and settings.

Extra objects
Besides the main elements tables and relationships, you may also create and
edit extra objects: generic database objects that do not present a strong
connection with the tables in a TMS Data Modeler project. Note that not all
target DBMS support all project objects, such as procedures, generators and
views.

Procedures
Procedures (or "stored procedures") are functions programmed into the
database, like triggers. Through TMS Data modeler, you can edit and create
procedures as shortcuts to regularly executed actions, and store them for
future use.

All procedures created in the project are listed under Procedures on the Project
explorer. Double-clicking on a procedure opens the Procedures editor, where
you can view and update all of its properties and settings.

Generators
Generators are a resource to generate number sequences. You are able to
specify an initial number and the desired increment, and each time a value is
selected in this Generator, a new number is generated. It is an useful tool to fill
sequential fields, automatically numbering them. Some DBMS such as SQL
Server have automatic auto-increment options (available on the fields editor
when selecting Int(identity) as logic type).

TMS Data Modeler Documentation

15(c) 2019 TMS Software

All Generators created in the project are listed under Generators on the Project
explorer. Double-clicking on a Generator opens the Generators editor, where
you can view and update all of its properties and settings.

Views
Views are a stored queries into databases. By creating a view, you are able to
select frequently used query processes and save them for future use. For
example, you can create a view called AlphabeticalList using the structure:

create view "AlphabeticalList" AS
SELECT Products.*, Categories.CategoryName
FROM Categories INNER JOIN Products ON Categories.CategoryID =
Products.CategoryID
WHERE (((Products.Discontinued)=0))

This will list all products on the database in alphabetical order.

All views created in the project are listed under Views on the Project explorer.
Double-clicking on a view the Views editor, where you can view and update all
of its properties and settings.

Domains
Domains are resources that allow you to define a special type of field and reuse
efficiently these definitions in various fields in the database. Selecting Domains
on the Create Tab on the Home Ribbon, it is possible to create a domain called
"ZIPCODE" for example and define its properties in the Domains editor, such as:
data type text, size 5, default value "00000" and so on.

Afterwards, when creating a zip code field in a table, you are able to select the
domain ZIPCODE and import all of these settings. Specifying all field properties
again becomes unnecessary, which is extremely useful not only to avoid
reworking when creating fields but also for maintenance and consistency. If it
ever becomes necessary to increase the field size, for example, instead of
making this change field by field, table by table, you just need to adjust a
single domain.

The Project Files

TMS Data Modeler works with a model that represents the physical database.
Through this model, scripts can be generated to implement changes in an
existing physical database or to create a physical database from scratch.

Creating a project will generate the following files:

· A single .dgp file is created for each project, containing project settings and

the structure of all data dictionary objects. You may select the file directory
and name when saving your project.

· Conversion maps created by users are saved in the Application Data folder,
inside TMS Software\Data Modeler\Conversions subdirectory. Data Modeler's
default conversion maps are located in the application directory.

· Connections are saved on the file UsrConnections.bin, located in the
Application Data folder inside TMS Software\Data modeler subdirectory.

TMS Data Modeler Documentation

16(c) 2019 TMS Software

· Different project versions are saved by default in the subdirectory \versions

inside the project directory (%projectdir%). This working directory can be
changed on the General settings dialog. To open this dialog, select Settings
on the Project tab on the Tools ribbon, and click on the Version control tab,
as shown below.

Each new version file is saved under the project file name with its extension
corresponding to the version number, e.g. demo.1, demo.2 etc.

Chapter

II
The User Interface

TMS Data Modeler Documentation

18(c) 2019 TMS Software

2 The User Interface

TMS Data Modeler offers a clear and intuitive user interface using Ribbons and
tabs to organize and edit all database information.

UI Overview
Ribbons
Project Explorer
Workspace
Messages Window

UI Overview2.1

TMS Data Modeler Home organizes application options into Ribbons, keeping the
most used tools at hand when visualizing or editing any part of the project.
Contextual tabs are enabled when specific objects are selected, allowing
improved usability.

The Project explorer on the left allows you to visualize your whole project
easily, listing object types that when selected show all items in a clear
structure. To edit or view details of any of the project items, you just have to
double-click.

When selecting an item by double-clicking, the item tab will open in the
Workspace, on the right. The workspace may contain one or more tabs, and
each tab is subdivided into sections to offer a clear and efficient view of the
selected object.

The Message window shows notifications when validating a project, such as
warning and error messages.

TMS Data Modeler Documentation

19(c) 2019 TMS Software

Ribbons2.2

TMS Data Modeler's interface is organized into Ribbons, which group all related
features in one place, improving usability and making those features extremely
accessible.

File Menu
A simple menu offers general project options, while the panel on the right lists
projects that have been recently worked on for selection.

TMS Data Modeler Documentation

20(c) 2019 TMS Software

Menu Option Description

New Offers the options of creating a new blank project or
importing the structure of a new project from an
existing database.

Open Opens an existing project.

Save Saves the current project.

Save As Prompts a new path and file name before saving the
current project.

Close Closes the current project after prompting if changes
should be saved.

Export Exports the current model to TMS Aurelius classes.

Archive version Archives the current version of the project and starts a
subsequent version. Version files are saved by default
in the sub-directory \versions in the project directory.

Options Prompts for general environment settings.

Exit Closes the current project after prompting if changes
should be saved and terminates the application.

Home Ribbon

TMS Data Modeler Documentation

21(c) 2019 TMS Software

"Project" Tab
Option

Description

Generate script Prompts for information to generate a script to create a
database according to the current project.

Check Checks project information, validating all related data
such as table fields and keys. Warnings and other
messages are shown on the Messages window, on the
bottom of the workspace. To enable this window,
select Messages window on the Show/Hide tab.

Merge Compares and allows merging of two different projects
into one, by generating an impact script.

"Create" Tab
Option

Description

Table Creates a new table. After selecting it, a blank table
tab will open on the table editor, where you will define
all of its properties.

Relationship Creates a new relationship. After selecting it, the New
relationship dialog will open, where you will define all of
its properties.

Procedure Creates a new procedure on the Project.

View Creates a new view on the Project.

Object Drops down a menu to create extra objects as available
per DBMS. You will find "Generators" available on
Firebird, for example.

Domains Shows existing domains information and allows editing
and additions.

"Versions" Tab
Option

Description

Compare Compares versions of the current project after
selection, allows generation of an impact script.

Archive Archives the current version of the project and starts a
subsequent version. Version files are saved by default

TMS Data Modeler Documentation

22(c) 2019 TMS Software

in the subdirectory \versions in the project directory.

Manage Allows version management and comparisons.

"Show/Hide" Tab
Option

Description

Message Window Shows or hides the message window, at the bottom of
the workspace. This window lists warning and error
messages when the validation tool is used.

Project Explorer Shows or hides the Project explorer, on the left of the
workspace.

Design Ribbon

The items on this Ribbon are only enabled when a Diagram tab is selected on
the workspace.

"Insert" Tab
Option

Description

Table Creates a new Table. After selecting it, you must drag
and drop the table on the diagram. The Table editor will
open for you to adjust table settings.

Relationship Creates a new identifying relationship. After selecting
it, you must drag the relationship line connecting parent
and child tables. The Add relationship dialog will open
for you to adjust relationship settings.

Note Creates a new note after releasing it on the diagram
tab.

Non-ID Relationship Creates a new non-identifying relationship. After
selecting it, you must drag the relationship line
connecting parent and child tables. The Add
relationship dialog will open for you to adjust
relationship settings.

"Editing" Tab
Option

Description

TMS Data Modeler Documentation

23(c) 2019 TMS Software

Find Show/hide the Find panel at the bottom of diagram,
allowing to search for tables in diagram by table name

Duplicate Allows duplicating the selected table.

"Zoom" Tab
Option

Description

100% Sets the current diagram zoom to 100%.

Fit to All Sets the current diagram zoom to a value that allows a
view of the whole diagram in the current window.

Zoom Combo Allows setting a specific zoom value for the current
diagram.

"View" Tab Option Description

Navigator Show/Hide the Diagram Navigator Panel.

"Font" Tab Option Description

Font Allows for changing font settings for the currently
select table(s).

"Output" Tab
Option

Description

Print Preview Opens a dialog that displays a preview for printing the
diagram.

Print Opens the print dialog for printing the diagram.

"Page Setup" Tab
Option

Description

Orientation Chooses between Landscape/Portrait orientation of
diagram

Size Chooses paper size for diagram printing/paging.

Tools Ribbon

TMS Data Modeler Documentation

24(c) 2019 TMS Software

"Project" Tab
Option

Description

Convert Converts current project into another DBMS.

Settings Shows and allows edits on current project settings.

"Export" Tab
Option

Description

TMS Aurelius Opens a dialog to export existing database schema to
Aurelius classes

"General" Tab
Option

Description

Connections Shows existing database connections and allows
adding, removing or editing them.

Conversion Maps Allows you to create a conversion map with specific
data type equivalences to use when converting a
project from a DBMS to another.

Help Ribbon

"Data Modeler"
Tab Option

Description

Web Site Opens TMS website on the standard web browser.

User Manual Opens the user manual as help file.

Update Checks if a new Data Modeler version is available and if
true, prompts for updating the software.

TMS Data Modeler Documentation

25(c) 2019 TMS Software

About Opens About windows.

Project Explorer2.3

The project explorer is on the left side of the screen, and lists all items of the
project. By clicking any of the data dictionary buttons on the bottom, you will
find all objects, such as Tables, Relationships, Procedures, and Diagrams. You
can hide it or show it by selecting Project explorer on the Show/Hide tab on
the Home Ribbon.

By double-clicking in any of the available objects, its specific editor will open in
the workspace, allowing visualization and editing. If the selected object has
already been opened on the workspace, a single click will focus on its existing
tab. By right-clicking in any point of the project explorer, a context menu will
open with options such as creation of new objects and removal of selected
objects

Workspace2.4

The project workspace is the area on the right that organizes the project
information into tabs. When double-clicking any object from the project
explorer, its specific editor will open on the workspace, on a new tab. After
editing, closing any tab will automatically save changes.

TMS Data Modeler Documentation

26(c) 2019 TMS Software

Here is a sample view of the Table editor open on the Workspace. Other tabs
already open are diagram and relationship editors.

Messages Window2.5

The Message window is a text box at the bottom of the application which
shows notifications about the project. To enable this tool, select Messages
window on the Show/Hide tab on the Home ribbon. To validate a project and
list messages about any problems found, select Check on the Project tab on
the Home ribbon.

Chapter

III
Basic Operations

TMS Data Modeler Documentation

28(c) 2019 TMS Software

3 Basic Operations

The following topics describe the most common used operations in TMS Data
Modeler.

Creating a New Project
Creating Objects in Database Model
Comparing projects
Generating Database Creation Scripts
Project Validation
General Project Settings
Version Control
Reverse Engineering
Convert Project to Different Database

Creating a New Project3.1

To create a new blank project

1. Select New / New project on the File Menu or select New blank project after
clicking on the New icon in the quick access toolbar.

2. On the New Project dialog, select the desired target database and click Ok.

You can also use the shortcut Ctrl+N or click on the icon of the project toolbar
to open the New Project dialog.

To create a new project from existing database

The reverse engineering tool from TMS Data Modeler creates a project from an
existing database, so you can manage, view and edit all current information
easily. Check the desired DBMS step-by-step process to create your project:

Select New / Import from database from the File Menu or select New project
from database after clicking the New icon in quick access toolbar. On the Data
dictionary import dialog, you can either select an existing connection or a new
connection.

If you select Existing connection:

1. Choose the Connection name from the list and click Next.

2. The Data dictionary import dialog will open, showing a progress bar so you
can follow the import process. When it's finished, the message Done will appear
and the Next button will be enabled again. Click to continue. This will enable
the button Finish. After clicking, the process will be complete.

If you select New connection:

1. Choose the Database type from the list and click Next.

TMS Data Modeler Documentation

29(c) 2019 TMS Software

2. Different DBMS will ask you for different information to be filled in on Data
dictionary import dialog. It is necessary to complete this screen before
proceeding.

3. Fill in the connection settings then click on "Test connection". If there are
no connection problems, click Next.

4. The Data dictionary import dialog will show a progress bar so you can follow
the import process. When it's finished, the message Done will appear and the
Next button will be enabled again. Click to continue.

5. The last screen of the Data dictionary import dialog will allow you to save
the current connection settings for future use. Select the checkbox and type
the connection name if you wish to do so. Otherwise, uncheck the option and
click Finish.

Creating Objects in Database Model3.2

Creating a new Table

1. Select Table on the Create tab on the Home ribbon or Right-click on the
Project explorer and select Add table . You may also use the shortcut Ctrl+T to
create a new table.

2. The Table editor will open on the Workspace. You can add or edit all table
data by selecting the different internal tabs: Fields, Indexes, Check
constraints, Triggers and Comments.

To create fields in a table

1. Open the desired table by selecting Tables on the Project explorer and
double clicking on the table's name on the list.

2. The Tables editor opens with the Fields tab selected by default. This tab is
divided into three sections: Fields list, Field properties tab and Description tab.

3. On the Fields list, click on the Add button or right-click on the list
background and select Add field. You may also create a new field by using the
shortcut Ctrl+F.

4. Enter the field data on the Field properties section. To get detailed
information, take a look at the Fields editor topic.

To create a new relationship

1. Select Relationship on the Create tab on the Home ribbon or right-click on
the Project explorer and select New relationship.

2. On the New relationship dialog, select the relationship type by clicking on
one of the buttons:

TMS Data Modeler Documentation

30(c) 2019 TMS Software

Non-identifying relationship: it's the most usual type of relationship. It
represents a weak connection, a relationship between parent and child table
that does not involve a key field, such as the relationship between tables
"Products" and "Categories", for example.

Identifying relationship: a relationship where the related fields from the child
table are part of the key which identifies a unique record in this table. It
indicates a strong connection, such as the relationship between tables "Order
details" and "Products", for example. There are no "Order details" without a
related "Product", and the "Product" is part of the key of the "Order details"
table.

3. Select the Parent table and the Child table from the lists, and click Ok.

4. The Add relationship dialog will open, allowing you to specify all relationship
data:

In the Relationship properties section, you may visualize or set the relationship
name and its description, for future reference. A default relationship name is
created automatically when adding a new relationship to the project, combining
parent and child table names. The relationship name may be edited at any
time.

In the Relationship keys section you may visualize or edit the relationship keys
by selecting them from the available list.

· Parent key: Lists all available keys (primary keys and indexes) from the

parent table.
· Parent table: This column shows all fields on the parent table which are part

of the selected parent key. It is not possible to modify this data.
· Child table: This column lists all fields on the child table that are compatible

with the selected field on the parent table (same type). By default a new
field listed as "field_name(new)" with the same name and type of the parent
key is created and selected. It is possible to select any other available child
field from the list.

In the Relationship options section, you are able to select the relationship
behavior when a record on the parent table is deleted or updated:

· No action: no action is taken when there are changes on the parent table.

This is the default option.
· Cascade: automatically deletes all records on the child table when a parent

record is deleted. Example: Customer/Contact, when deleting a customer, all
of its contacts are also deleted.

· Set null: when a parent record is deleted, all child records related to it get
this field set to null. Example: on the Person/Gender deletion, all people
related to this record would be set to null.

· Set default: similar to "set null" option, but instead of setting the field to null,
it is filled with its default value.

5. The created relationship will be listed under the Relationship branch of the
Data dictionary tree. To edit any of the relationship data, double-click on the
relationship on the Project explorer and the Relationship editor will open.

TMS Data Modeler Documentation

31(c) 2019 TMS Software

You may also create a relationship visually, by using a Diagram. It will open the
same New relationship dialog to allow properties setting.

Comparing projects3.3

To compare two different projects, you may use the Merge projects tool. It will
allow you to visualize their differences and to generate an impact script to
update your database with information on both projects.

1. Select Merge on the Project tab on the Home ribbon.

2. On the Compare projects dialog, select the path and the file of the project
you want to merge with the current one and click next.

3. The Compare projects dialog will now list each project's objects. All selected
objects are organized hierarchically in two synchronized project trees. You are
able to edit the information below:

· Hide unchanged items: when selected, this option hides all items that are

equivalent in both projects. The only items shown are the ones that differ or
are present in only one of the projects. By default, this option is unchecked
and all objects are shown, with the differences highlighted in bold.

· Filter the desired objects: selects which objects are compared on the project
trees. The options are Tables, Indexes, Relationships, Triggers, Domains,
Procedures and Views. By default all objects are checked.

· Action: defines which action will be taken regarding the differences found
after project comparison. By default, the option Generate database script is
selected, and results in the generation of an impact script to update the
database with all the selected differences after clicking Generate.

· Project trees: the objects that differ between the projects are in bold.
§ The middle column allows you to select changes to be included on the

impact script. Selected changes are marked with a fingerpoint icon.
§ By expanding the bold objects you will get to the exact item where the

difference is. For example, if a field exists in one project but does not
exist on the other, the corresponding tables are in bold. When expanding
the table, the item Fields is in bold, and when expanding Fields, only the
different fields remain in bold.

§ When clicking on the bold object, the object creation scripts are
compared side by side highlighting the differences on the text boxes
below.

§ When an object is non-existent in one of the projects, it is signalized on
this project tree with the text '(not exists)' besides the equivalent field
on the other project. In this case, the impact script will generate
commands to add or remove the item, as shown below.

4. By clicking Generate, an impact script will be created and shown to allow
you to update your current database with the merged projects' settings.
Selecting Back will take you to the dialog to select other projects to be
compared. Selecting Close will close the dialog without saving any changes.

TMS Data Modeler Documentation

32(c) 2019 TMS Software

Generating Database Creation Scripts3.4

TMS Data Modeler's database generation tool allows you to plan and design
your database in a single project, creating a script that generates your
database automatically. You may also create impact scripts to update a
database that has already been created before, by comparing versions or
projects.

To generate a database creation script

1. Select Generate script on the Project tab on the Home ribbon or press F9.

2. The Script generation dialog will open with the following information:

· Show the script: selecting this option will allow you to edit any further details
by opening a dialog with the script after clicking Generate.

· Save script to file: selecting this option will allow to choose the file path and
file name and save it for later use without opening it after clicking Generate .

· Workspace: an item tree where you can check the desired items to be
deployed. You may check one or more objects.

3. On the Tables tab, all project tables are listed by name. All tables are
selected by default. You may choose which tables will be created through the
script.

4. After selecting all desired items and tables, click Generate. The tab Process
will appear, listing all steps of the script generation.

Project Validation3.5

TMS Data Modeler offers a tool to validate all project items, checking
consistency and settings of objects.

To validate your project, select Check on the Project tab on the Home ribbon.
All project messages are then shown on the Messages window, which is at the
bottom of the application, under the workspace.

· Error message: refers to an error on the settings of a project object that

will cause problems when generating a database, for example a relationship
between two tables without defined fields/keys.

· Warning message: refers to a possible consistency problem that may cause
problems when generating a database, for example a relationship between
two tables where the selected fields/keys are not compatible.

Right-clicking on any message opens a context menu will allowing you to Go to
the related object, Clear messages or Save messages. You can also go to the
related object by double-clicking on the message.

TMS Data Modeler Documentation

33(c) 2019 TMS Software

Below follows a list with all possible validation messages. Messages about
[object] are regarding extra objects, such as procedures, views and
generators.

Error Messages
Constraint has no name on table [table]
Duplicate constraint name [constraint] on table [table]
Duplicate domain name [domain]
Duplicate field name [field] on table [table]
Duplicate index name [index] on table [table] (all DBMS except Firebird): a
table contains more than one index with the same name. Index names must be
unique on the table.
Duplicate index name [index] (table: [table]) (only on Firebird): the project
contains more than one index with the same name. Index names must be
unique on the database.
Duplicate [object] name [name]
Duplicate relationship name [relationship]
Duplicate table name [table]
Duplicate trigger name [trigger] on table [table]
Empty expression on computed field. Field: [field] on table [table]
Field has no name on table [table]
Identity field cannot have a default value. Field: [field] on table [table]
Increment value cannot be zero on identity fields. Field: [field] on table [table]
Index has no name on table [table]
Index [index] on table [table] has no linked fields
Invalid constraint name [constraint] on table [table]
Invalid field name [field] on table [table]
Invalid index name [index] on table [table]
Invalid [object] name [name]
Invalid relationship name [relationship]
Invalid table name [table]
Invalid trigger name [trigger] on table [table]
Missing child field on relationship [relationship] (link #[N])
Missing parent field on relationship [relationship] (link #[N])
[Object] has no name
Relationship has no name
Relationship [relationship] has no linked fields
Relationship [relationship] is self-referencing and can only accept ON DELETE
NO ACTION and ON UPDATE NO ACTION methods. (only on SQL Server)
Size out of range on field [field] (table [table]). Size must be between [min]
and [max].
Table has no name
Table [table] contains two identity fields
Trigger has no name on table [table]

Warning Messages
Constraint name [constraint] on table [table] is a reserved word
Field name [field] on table [table] is a reserved word
Incompatible data types ([parent field]/[child field]) on relationship
[relationship]
Index name [index] on table [table] is a reserved word
Missing expression on check constraint [constraint] (table [table])
Name too long for constraint [constraint] on table [table]. Maximum size is
[size] characters.

TMS Data Modeler Documentation

34(c) 2019 TMS Software

Name too long for field [field] on table [table]. Maximum size is [size]
characters.
Name too long for index [index] on table [table]. Maximum size is [size]
characters.
Name too long for [object] [name]. Maximum size is [size] characters.
Name too long for relationship [relationship]. Maximum size is [size] characters.
Name too long for table [table]. Maximum size is [size] characters.
Name too long for trigger [trigger] on table [table]. Maximum size is [size]
characters.
[Object] name [name] is a reserved word
Object] [name] has no create implementation
Parent index [index] of relationship [relationship] is not unique
Relationship name [relationship] is a reserved word
Size was not specified on field [field] (table [table])
Table name [table] is a reserved word
Table [table] has no fields
Table [table] has no primary key
Trigger name [trigger] on table [table] is a reserved word
Trigger [trigger] on table [table] has no implementation

Open.bmp Related Topics

General Project Settings3.6

To edit general project settings

1. Select Settings on the Project tab on the Tools ribbon

2. The Settings window will open

To edit general settings click on the tab Information. You are able to edit the
Project name, Author and Description.

To select the working directory for your project versions, click on the tab
Version control. The working directory where project versions are saved is
shown. You can use the default \versions directory or select a different
directory by clicking on the folder icon.

Version Control3.7

TMS Data Modeler allows you to version control your database model. This
means you can archive (snapshot) your existing model into versions and then
later compare versions to check differences between them and generate SQL
update scripts to "upgrade" the database schema from one version to another.

Creating (archiving) versions

To archive the version you are currently working on and start the next one,
select Archive on the Versions tab in the Home ribbon or click on the File Menu
 button and select Archive version.

TMS Data Modeler Documentation

35(c) 2019 TMS Software

The dialog will allow you to add any relevant information to identify this version
later. By clicking Archive you will automatically close this version and start the
subsequent one.

Version management window

To open the version management window, select Manage on the Versions tab
in the Home ribbon.

The Project versions window will list all saved versions, the last date/time of
the alterations and the complete file name.

Compare versions

To perform a comparison between versions:

1. Select Compare in the Versions tab of the Home ribbon.

2. You will be prompted to select the Base version and the Compare to version.
Any existing version can be chosen.

3. The Compare versions window will list each version's objects. All selected
objects are organized hierarchically in two synchronized project trees. You are
able to edit the information below:

· Hide unchanged items: When selected, this option hides all items that are
identical in both versions, unchanged by update/insert/delete. The only items
shown are the ones that differ. By default, this option is unchecked and all
objects are shown, with the differences highlighted in bold.

· Filter the desired objects: select which objects are compared on the

project trees. The options are Tables, Indexes, Relationships, Triggers,
Domains, Procedures and Views. By default all objects are checked.

· Action: defines which action will be taken regarding the differences found

after version comparison. By default, the option Generate database script is
selected, and results in the generation of an impact script to update the
database with all the selected differences after clicking Generate.

· Project trees: The objects that are differ between the versions are in bold.

o The middle column allows you to select what changes will be included on

the impact script. Selected changes are marked with a icon_checkbox.jpg
checkbox icon.

o By expanding the bold objects you will get to the exact item where the

difference is. For example, if a field exists in one version but does not exist
on the other, the corresponding tables are in bold. When expanding the
table, the item Fields is in bold, and when expanding Fields, only the
different fields remain in bold.

o When clicking on the bold object, the object creation scripts are compared

side by side highlighting the differences on the text boxes below.

TMS Data Modeler Documentation

36(c) 2019 TMS Software

o When an object is non-existent in one of the versions, it is signalized on

this project tree with the text '(not exists)' besides the equivalent field on
the other project. In this case, the impact script will generate commands
to add or remove the item.

4. By selecting Generate, an impact script will be created and shown to allow
you to update your current version with the compared versions' settings.
Selecting Back will take you to the dialog to select other versions to be
compared. Selecting Close will close the dialog without saving any changes.

Reverse Engineering3.8

The reverse engineering tool from TMS Data Modeler creates a project from an
existing database, so you can manage, view and edit all current information
easily.

To create a new project from an existing database, select New / Import from
database from the File Menu or select New project from database after clicking
the New icon in Quick Access Toolbar. In the Data dictionary import dialog, you
can either select an existing connection or a new connection.

If you select existing connection:

1. Choose the Connection name from the list and click Next.

2. The Data dictionary import dialog will open, showing a progress bar so you
can follow the import process. When it's finished, the message Done will appear
and the Next button will be enabled again. Click to continue. This will enable
the button Finish. After clicking, the process will be complete.

If you select New connection:

1. Choose the Database type from the list and click Next.

2. Different RDBMS will ask you for different information to be filled in on Data
dictionary import dialog. It is necessary to complete this screen before
proceeding. Fill in the specific connection settings according to the RDBMS you
have chosen.

3. Click on Test connection to make sure your settings are correct. If there are
no connection problems, click Next.

4. The Data dictionary import dialog will show a progress bar so you can follow
the import process. When it's finished, the message Done will appear and the
Next button will be enabled again. Click to continue.

5. The last screen of the Data dictionary import dialog will allow you to save
the current connection settings for future use. Select the checkbox and type
the connection name if you wish to do so. Otherwise, uncheck the option and
click Finish.

TMS Data Modeler Documentation

37(c) 2019 TMS Software

Convert Project to Different Database3.9

Each Data Modeler project has a specified target database. You can change
the target database which will perform a conversion operation in the project,
changing the table column types from one database to another. To help you in
the process, you can use field mapping concept using conversion maps.

Conversion Maps

Field mapping is the process of selecting equivalences of data type between
different RDBMS. Using these maps, a project can be converted from one
RDBMS to another without data loss. To view all existing field/conversion maps
open the Conversion maps dialog, by selecting Conversion maps in the General
tab of the Tools ribbon.

This dialog enables you to edit or remove existing conversion maps and to
create new ones by clicking on the appropriate button. By default, only
conversion maps created using TMS Data Modeler are displayed. To see all
conversion maps available in your system, select the checkbox Show system
conversion maps at the bottom of the screen.

By clicking Edit, the Data type conversion map dialog will open, allowing you to
visualize and edit all conversion map info:

· Source database.

· Target database.

· Name: Name of this particular conversion map.

TMS Data Modeler Documentation

38(c) 2019 TMS Software

· Conversion map:

o Source type: shows all field types available on the Source database.

o Target type: shows data types supported by the Target database that are

compatible to the corresponding Source type. This information will be used
when converting projects between databases.

o Size/length and Precision: allows setting of some data types, such as

numeric fields, which is then used for this data type in conversions to the
target database. The option Keep (default) uses the same property value
from the source database on the target database.

Database conversion

Before converting your project between databases, make sure you have a field
map for them. Having created the field map, select Convert in the Project tab
of the Tools ribbon. The Convert database dialog will open, enabling you to
select your target database. Only mapped databases will appear on the list.
After selection, click Ok.

TMS Data Modeler Documentation

39(c) 2019 TMS Software

Chapter

IV
Editors

TMS Data Modeler Documentation

41(c) 2019 TMS Software

4 Editors

The following topics present the different TMS Data Modeler editors.

Table Editor
Domains
Diagrams
Relationship Editor
Procedures and Functions
Generators/Sequences
Views

Table Editor4.1

The table editor allows you to view and edit all table settings, such as its
Fields, Indexes, Constraints, Triggers and Comments. Each of these items has
all settings organized inside tabs on the Table editor, to improve visualization.

To access the table editor, double-click on the desired table on the Project
explorer or on a Diagram. When opening a table by double-clicking on a
diagram, the Back to diagram button is enabled, so you can easily return to the
original diagram.

Fields Tab

The fields tab inside the table editor is divided into three sections: Fields list,
Field properties tab and Description tab.

The fields list shows all field names and types. You may add, remove or reorder
all fields using the icons on the top left of the list. Right-clicking on any part of
the list will open a context menu with these same functions, plus a duplicate
field option and the option to copy field to clipboard. Copying to clipboard
offers three options: List of fields, which will create a comma-separated list of
all fields in this table, INSERT command, which will create an insert script to
generate a record with all the fields, and UPDATE command, which will create
an update script.

All required fields are shown in bold. The vertical key icon identifies fields which
are part of the table's primary key. The horizontal key icon/FK text identifies a
foreign key related to a parent table.

Selecting the desired field, all of its properties can be edited in the Field
properties tab:

· Field name.

· Domain: the domain that will be used to define settings such as type and
size of the selected field. All settings automatically loaded from the domain
will be filled and their respective editors will be disabled.

TMS Data Modeler Documentation

42(c) 2019 TMS Software

· Primary key: defines if the selected field is part of the table's primary key.
These keys may be set by selecting the checkbox or through the Indexes tab
where specification and ordering of these fields can be done.

· Logic type: defines the concept type of the selected field, usually
corresponding to the physical type in the database. All data types supported
by the DBMS in use are available for selection. Depending on your choice of
logic type, different options will be enabled in the editor. Selecting any
Identity type, such as Int (identity) on SQL Server, the Identity section will
be enabled, allowing you to set automatic increments on the field.
o Seed: defines the initial number of an auto-increment field.

o Increment: defines the increment value of an auto-increment field.

· Size: this editor will be enabled when applicable, as for alphanumeric types.

· Precision: decimal and numeric types will enable this editor. It defines
precision for these data types.

· Physical type: non-editable. It displays the settings of the physical type
applied in the field when the database is generated, based on specifications
of logic type, size etc. This editor shows the exact definition of this field on
the generated script.

· Not null constraint: it will require a not-null value for the field when
inserting or updating a record, making this a required field.

· Check constraint:
o Check expr.: a formula for validation / condition that must always be true.

For example, the field age could have a check constraint of "Age > 18". It
will not be possible to insert a record in this table that does not satisfy this
condition. This editor is automatically filled and disabled for changes if an
existing domain with a check constraint is selected on the Domain list.

o Specific: is only enabled when an existing domain with a check constraint

is selected on the Domain list. If checked, it allows changes on the
expression only applied to this specific field. It's unchecked by default.

· Constraint name: optional information, enabled when an expression is

entered on the Check expr. editor.

· Default value:
o Default value: the field is automatically filled with a specific value when

inserting a new record in the table. This editor is automatically filled and
disabled for changes if an existing domain with a default value is selected
on the Domain list.

o Specific: is only enabled when an existing domain with a default value is

selected on the Domain list. If checked, it allows changes on the value only
applied to this specific field. It's unchecked by default.

· Constraint name: optional information, enabled when a value is entered on

the Default value editor.

Index Tab

TMS Data Modeler Documentation

43(c) 2019 TMS Software

The indexes tab inside the table editor is divided in three sections: Indexes list,
Index properties and Index fields.

The Indexes list shows all indexes present on a table. You may add or remove
indexes by using the buttons on the top right of the indexes list or by right-
clicking anywhere on its area. A key field is identified by the key symbol.

In the Index properties section you may have two data editors:

· Index name: it is always enabled, allowing you to add or change the index

name.

· Index type: is only enabled when a non-primary index is selected. Valid

options are:
- Non exclusive: Index does not enforce any validation, it's just used for

performance
- Exclusive: Index is exclusive (unique) which means it won't allow

duplicated values for the index fields
- Unique Key: Index is actually an Unique Key constraint. Exclusive and

UniqueKey usually have the same effect, the difference is when index is
"Unique Key", it will be created as unique constraints in table (usually the
database will create an internal exclusive index to enforce the unique key.

The Index fields section, you may add or remove fields from the index. When
clicking Add field to index, all available fields on the table will be shown for your
selection. The fields in the index can be ordered by clicking on the heading of
the column order, allowing Ascending (default) or Descending options.

Check Constraints Tab

The Check constraints tab inside the table editor is divided in two sections:
Constraints list and Constraints properties.

In the Constraints editor you may view all constraints related to the selected
table on the Constraints list. By selecting them, you can edit its name and
expression in the Constraint properties section. You may add or remove
constraints by using the buttons on the top right of the constraints list or by
right-clicking anywhere on its area.

Triggers Tab

The Triggers tab inside the table editor is divided in tree sections: Triggers list,
Trigger properties and Implementation.

In the Triggers list, all triggers related to the selected table are listed. Triggers
are procedures executed every time an update / insert / delete is executed in
a given table. It works as a code programmed in the DBMS language.

In Trigger properties, you may edit the name of this trigger and its description.

In Implementation, the complete command to generate the trigger in the
database is shown for edition. When you create a trigger, it automatically
implements "CREATE TRIGGER <%TriggerName%> ON <%TableName%>". These
macros "<%...%>" are replaced by the trigger's and the table's names, so you

TMS Data Modeler Documentation

44(c) 2019 TMS Software

can rename both trigger and table without having to update this
implementation.

Domains4.2

To create domains

1. Select Domains on the Create tab on the Home ribbon.

2. On the Domains editor dialog, you may create a domain by right-clicking on
the Domains lists or selecting of the Add buttons. This dialog allows creation of
two types of domains, which are indicated at the bottom of the screen as
'Logical domain (not in database)' or 'Physical domain (kept in database):

Physical domain: created as a 'domain' object and kept in the database
(command 'CREATE domain'). A field using this type of domain is generated
through a direct reference to this object.

Logical domain: used only on Data Modeler's project, not created physically in
the database. A field using this type of domain is generated with the properties
defined by this domain.

3. You are able to set all domain data on the General tab:

· Domain name.

· Data type: lists all available data types on the DBMS in use.

· Physical type: non-editable. It displays the settings of the physical type

applied in the domain/field when the database is generated, based on
specifications of logic type, size etc. This editor shows the exact type
definition on the generated script.

· Size: this editor will be enabled when applicable, as for alphanumeric types.

· Precision: decimal and numeric types will enable this editor. It defines

precision for these data types.

· Seed: identity types will enable this editor. It defines the initial number of an

auto-increment field.

· Increment: identity types will enable this editor. It defines the increment

value of an auto-increment field.

· Default value: the field is automatically filled with a specific value when

inserting a new record in the table.

· Constraint: a formula for validation / condition that must always be true.

For example, the field age could have a check constraint of "Age > 18". It will
not be possible to insert a record in this table that does not satisfy this
condition.

TMS Data Modeler Documentation

45(c) 2019 TMS Software

4. On the Information tab, you are able to add any documentation or
description info to better identify the domain later. The Usage tab allows you
to visualize all the domain's related fields on all project tables.

5. By clicking Close, all updates will be saved.

Using Domains

To associate a field with an existing domain, go to the Fields tab on the Table
editor. On the Properties tab, select the desired domain from the list. All
settings automatically loaded from the domain will be filled and editors related
to these settings will be disabled.

You can manage all domain information in the Domain editor. To open the
editor, select Domains on the Create tab on the Home ribbon.

By selecting a domain from the Domain list, you are able to view and edit its
settings on the General tab, automatically adjusting all related fields. You can
also update its description by editing the Information tab, or visualize its
related fields on all project tables on the Usage tab.

Diagrams4.3

To create new diagrams:

1. Right-click on the project explorer and select New diagram or press CTRL+D.

2. A new blank diagram will open in the workspace.

3. The Design ribbon is enabled. You may edit and add objects to the diagrams
on the workspace:

· by selecting the desired option on the Insert tab on the Design ribbon and

dropping the item on the diagram;
· or right-clicking on the existing diagram items or on the workspace.

To insert tables in a diagram:

To insert an existing table, drag and drop the desired table from the Project
explorer to the Workspace.

To add all tables and their relationships, right-click the workspace and select
Add all tables.

To add a new table, select Table on the Insert tab on the Design ribbon and
release it into the Workspace.

You are able to edit the tables' properties by double-clicking on them, which
opens a new Table editor tab on the Workspace.

Creating relationships

TMS Data Modeler Documentation

46(c) 2019 TMS Software

All existing relationships are automatically shown in a diagram when its related
tables are inserted. To create new relationship between two tables the
diagram:

1. Click Relationship or Non-ID Relationship on the Insert tab on the Design
ribbon.

o Non-ID Relationship: This is the most usual type of relationship. It

represents a weak connection, a relationship between parent and child
table that does not involve a key field, such as the relationship between
tables "Products" and "Categories", for example.

o (ID) Relationship: A relationship where the related fields from the child

table are part of the key which identifies a unique record in this table. It
indicates a strong connection, such as the relationship between tables
"Order details" and "Products", for example. There are no "Order details"
without a related "Product", and the "Product" is part of the key of the
"Order details" table.

2. Drag a line from the Parent table to the Child table. Upon release, the Add
relationship dialog will open.

3. On the Add relationship dialog, fill in with the relationship data:

In the Relationship properties section, you may visualize or set the relationship
name and its description, for future reference. A default relationship name is
created automatically when adding a new relationship to the project, combining
parent and child table names. The relationship name may be edited at any
time.

In the Relationship keys section you may visualize or edit the relationship keys
by selecting them from the available list.

· Parent key: Lists all available keys (primary keys and indexes) from the

parent table.

· Parent table: This column shows all fields on the parent table which are part

of the selected parent key. It is not possible to modify this data.

· Child table: This column lists all fields on the child table that are compatible

with the selected field on the parent table (same type). By default a new
field listed as "field_name(new)" with the same name and type of the parent
key is created and selected. It is possible to select any other available child
field from the list.

In the Relationship options section, you are able to select the relationship
behavior when a record on the parent table is deleted or updated:

· No action: no action is taken when there are changes on the parent table.

This is the default option.

TMS Data Modeler Documentation

47(c) 2019 TMS Software

· Cascade: automatically deletes all records on the child table when a parent
record is deleted. Example: Customer/Contact, when deleting a customer, all
of its contacts are also deleted.

· Set null: when a parent record is deleted, all child records related to it get

this field set to null. Example: on the Person/Gender deletion, all people
related to this record would be set to null.

· Set default: similar to "set null" option, but instead of setting the field to

null, it is filled with its default value.

4. The relationship will appear on the diagram, connecting both tables.
Relationship lines allow easy visualization of different properties on the
relationship, such as:

· Identifying relationships are represented by continuous lines, while non-

identifying relationships are represented by dotted lines.

· A crow's foot at the end of the line indicates many records, while single line

ends represent a single record.

· A red line represents a weakly defined relationship, missing specific fields, for

example.

5. The created relationship will be listed under the Relationship branch of the
Data dictionary tree. To edit any of the relationship data, double-click on the
relationship on the Project explorer and the Relationship editor will open.

To add notes to a diagram

1. Select Note on the Insert tab on the Design ribbon and release the note on
the desired point of the Workspace.

2. You may edit the note by right-clicking on it. The context menu will allow
you to Edit text, change color or font and remove the note.

Customizing the diagram

By right-clicking on the diagram's background and objects, context menus allow
you to customize many aspects of its visualization and organization.

Background context menu

· Background color: changes the Diagram background color.
· Relationships:

TMS Data Modeler Documentation

48(c) 2019 TMS Software

o Display names: shows each relationship's name next to the relationship

line/visual connection.
o Linked to fields: moves the relationship line/visual connection so each end

links to the exact related fields on each table. If there are relationships
connecting tables through more than one field, the line then links the first
field of the relationship, both for parent and for child tables.

o Straight lines: moves the relationship line/visual connection so each line will

run straight between the tables, without breaks.
· Add all tables: adds all of the project's tables to the Diagram.

Table context menu

· Edit table: opens the Table editor.
· Color: changes the color on each table's background.
· Display: adjusts the visualization of tables by selecting options on the

context menu:
o All fields: all fields are displayed (default).

o All keys: only fields on the primary key of the table or foreign key fields are

displayed.
o All primary fields: only fields on the primary key of the table are displayed.

o Table name: only the table name is displayed, no field names.

o Show field types: shows or hides field types.

o Recalculate size: automatically adjusts the displayed table size.

· Remove table from diagram: removes a table from the diagram without
deleting it from the project. You can also use the shortcut CTRL+R. By using
DEL, you will delete the table from the project.

· Add related tables to diagram: adds to the diagram all tables related to the
selected table.

Relationship context menu

· Edit relationship: opens the Relationship editor.
· Color: changes the color on each relationship line.

Note context menu

· Edit text: allows text edition.
· Color: changes the color on a note's background.
· Font: adjusts all font options (face, size etc.)

TMS Data Modeler Documentation

49(c) 2019 TMS Software

Relationship Editor4.4

To open the relationship editor, you should double-click on the desired
relationship on the Project explorer. This editor is divided in tree sections:
Relationship properties, Relationship keys and Relationship options.

In the Relationship properties section, you may visualize or set the
relationship name and its description, for future reference. A default
relationship name is created automatically when adding a new relationship to
the project, combining parent and child table names. The relationship name
may be edited at any time.

In the Relationship keys section you may visualize or edit the relationship
keys by selecting them from the available list.

· Parent key: Lists all available keys (primary keys and indexes) from the

parent table.
· Parent table: This column shows all fields on the parent table which are part

of the selected parent key. It is not possible to modify this data.
· Child table: This column lists all fields on the child table that are compatible

with the selected field on the parent table (same type). By default a new
field listed as "field_name(new)" with the same name and type of the parent
key is created and selected. It is possible to select any other available child
field from the list.

In the Relationship options section, you are able to select the relationship
behavior when a record on the parent table is deleted or updated:

· No action: no action is taken when there are changes on the parent table.

This is the default option.
· Cascade: automatically deletes all records on the child table when a parent

record is deleted. Example: Customer/Contact, when deleting a customer, all
of its contacts are also deleted.

· Set null: when a parent record is deleted, all child records related to it get
this field set to null. Example: on the Person/Gender deletion, all people
related to this record would be set to null.

· Set default: similar to "set null" option, but instead of setting the field to
null, it is filled with its default value.

When opening a relationship by double-clicking on a diagram, the Back to
diagram button is enabled, so you can easily return to the original diagram.

Procedures and Functions4.5

To open the procedure editor, you should double-click on the desired
procedure/function on the Project explorer.

Procedures (or "stored procedures"), like triggers, are functions programmed
into the database. Through TMS Data modeler, you can edit and create
procedures as shortcuts to regularly executed actions, and store them for
future use. In this editor, you are able to set:

TMS Data Modeler Documentation

50(c) 2019 TMS Software

· Object name: procedure name

· Description.

· Create implementation code: full command to create the stored procedure in

the database. When you create a procedure, it automatically implements
"CREATE PROCEDURE <%ObjectName%>". This macro "<%...%>" is replaced
by the procedure's name, so you can rename it without having to update this
implementation.

Generators/Sequences4.6

Generators/Sequences are supported by some databases like Firebird, Oracle,
SQLite, etc.. To open the generator editor, you should double-click on the
desired generator on the Project explorer.

Generators are a resource to generate number sequences. You can specify an
initial number and the desired increment, and each time a value is selected in
this Generator, a new number is generated. To create a new generator, select
Object / Generator on the Create tab on the Home ribbon.

All Generators created in the project are listed under Generators section in the
Project explorer. By double-clicking on the desired Generator, the Generators
editor will open showing:

· Sequence name.

· Start with: initial value of the sequence generator (specified when creating

the object).

Views4.7

Views are queries stored into databases. By creating a view, you are able to
select frequently used query processes and save them for future use. To open
the views editor, you should double-click on the desired view on the Project
explorer.

In this editor, you are able to edit the information below:

· Object name: view name.

· Description.

· Create implementation code: full command to create the view in the

database. When you create a view automatically implements "CREATE VIEW
<%ObjectName%> AS". This macro "<%...%>" is replaced by the view's
name, so you can rename it without having to update this implementation.

Chapter

V
TMS Aurelius

Export

TMS Data Modeler Documentation

52(c) 2019 TMS Software

5 TMS Aurelius Export

TMS Data Modeler has an option for integration with TMS Aurelius framework
by generating classes based on the database structure.

Overview
Export Dialog
Mappings Tab
General Settings Tab
Script Tab
Customization Script

Overview5.1

TMS Aurelius is a Delphi framework for Object-Relational Mapping (ORM),
allowing you to save/load data to database using classes instead of directly
using SQL Statements. For it to work, you must create (or use) your Delphi
classes and then add attributes to it allowing the framework to know to which
table and field each object and property will be saved.

TMS Data Modeler saves you time in the process of creating such classes, by
generating the classes automatically based on tables and fields defined in the
database. To export the current schema to classes, use the File Menu, option
"Export | Delphi (TMS Aurelius)", or the "TMS Aurelius" button in Tools ribbon.

Each table in Data Modeler will become a class. Each table column will become
a class field/property. Foreign keys will become associations (properties of an
object type). So for example, this Orders table:

http://www.tmssoftware.com/site/aurelius.asp
http://www.tmssoftware.com/site/aurelius.asp

TMS Data Modeler Documentation

53(c) 2019 TMS Software

will become this class and mappings:

TMS Data Modeler Documentation

54(c) 2019 TMS Software

 [Entity]
 [Table('Orders')]
 [Id('FOrderID', TIdGenerator.IdentityOrSequence)]
 TOrder = class
 private
 [Column('OrderID', [TColumnProp.Required,
TColumnProp.NoInsert, TColumnProp.NoUpdate])]
 FOrderID: integer;
 [Column('OrderDate', [])]
 FOrderDate: Nullable<TDateTime>;
 [Column('ShippedDate', [])]
 FShippedDate: Nullable<TDateTime>;
 [Association]
 [JoinColumn('CustomerID', [], 'CustomerID')]
 FCustomer: Proxy<TCustomer>;
 [Association]
 [JoinColumn('EmployeeID', [], 'EmployeeID')]
 FEmployee: Proxy<TEmployee>;
 [ManyValuedAssociation([], [TCascadeType.SaveUpdate,
TCascadeType.Merge], 'FOrderID')]
 FOrderDetailsList: Proxy<TList<TOrderDetails>>;
 function GetCustomer: TCustomer;
 procedure SetCustomerID(const Value: TCustomers);
 function GetEmployee: TEmployee;
 procedure SetEmployee(const Value: TEmployee);
 function GetOrderDetailsList: TList<TOrderDetails>;
 public
 constructor Create;
 destructor Destroy; override;
 property OrderID: integer read FOrderID;
 property OrderDate: Nullable<TDateTime> read FOrderDate
write FOrderDate;
 property ShippedDate: Nullable<TDateTime> read FShippedDate
write FShippedDate;
 property Customer: TCustomer read GetCustomer write
SetCustomer;
 property Employee: TEmployee read GetEmployee write
SetEmployee;
 property OrderDetailsList: TList<TOrderDetails> read
GetOrderDetailsList;
 end;

Export Dialog5.2

In the TMS Aurelius Export Dialog you have several settings to configure how
the export will be performed.

The main option - and the only one you need to specify explicitly - is the
output directory. This is where your units will be generated.

TMS Data Modeler Documentation

55(c) 2019 TMS Software

For all the other settings, you have a specific tab with several options you can
configure:

Mappings Tab
General Settings Tab
Script Tab

Finally, in the Preview Tab you have can see all the source code with unit
names that will be generated in the output directory. This tab is useful to
browse and check the source code before you actually generate it (and
eventually replace existing files).

Mappings Tab5.3

When exporting to TMS Aurelius, you are presented with a dialog with several
options for configuring how the classes will be generated. Clicking "Ok" will
update the export options in the project and generate the source files. The
"Save without generating" button allows you to update the options in the
project but with no generating source code - to avoid error messages, if any.
Note that you must later save the Data Modeler project to effectively save the
options to project file.

The Mappings tab contains a list of all classes, properties, associations and
many-valued associations that will be generated by Data Modeler. It allows you
to fine tune your exporting, by checking each individual class/property and
overriding some default values. This tab is pre-filled with default values and all
tables are selected for exporting - you don't need to change any settings here
if you don't need to, it will export all tables with default settings.

TMS Data Modeler Documentation

56(c) 2019 TMS Software

The first list displayed at the left of Mappings tab is a list of available
tables/classes that will be generated. When you select an item, the right part
of the window is updated to reflect the settings for the currently selected
table. By default all tables are selected (meaning all classes will be generated).
You can uncheck an item to avoid that class to be generated.

You can right click the list of selected tables for options to select all, unselect
all, and other operations in the list.

You can also perform a search in the list by pressing Ctrl+Shift+F. This will
open a search box at the bottom of the list:

For each selected table in the list at the left, you have the following options
you can configure:

TMS Data Modeler Documentation

57(c) 2019 TMS Software

Field Description

Class Name Defines the name of class to be generated.

If Default is checked it will use the default naming rule
for the class.

Unit Name Specifies the name of the unit file where this class will
be included. If empty (default) the class will be included
in the main default unit, specified in the General
Settings tab. You can then specify a different unit
name here.

TMS Data Modeler will automatically add needed uses
clause in the unit (for example, if your class uses other
classes defined in other units). However, you have to
pay attention to cyclical references - for example, if
class A references class B and class B references A,
and you put each of those classes in different units,
the resulting code will not compile. TMS Data Modeler
will automatically inform you that you have cyclical
references, but it's up to you to solve them by filling
the correct unit names in this field. By default all
classes are generated in a single unit, which will never
cause cyclical references errors.

Fields Tab

Lists all fields/properties that will be generated for the selected class. You can
uncheck items if you don't want them to be exported. Required fields cannot be
unchecked. For each selected field you can configure the following options:

Field Description

Property Name Defines the name of the property to be generated.
Class field names will have the same name of the
property but will be prefixed with "F".

If Default is checked it will use the default naming rule
for properties.

Property Type Defines the type of the property to be generated
("Integer", "Nullable<double>", etc.). The default value
is automatically defined from the table column type.

If Default is checked it will use the default type (based
on column type). If unchecked, you must type the full
name you want. It can be any type name, including
Nullables.

Associations Tab

TMS Data Modeler Documentation

58(c) 2019 TMS Software

Lists all properties that will be generated as associations. You can uncheck
items if you don't want them to be exported. For each selected association you
can configure the following options:

Field Description

Association
Property Name

Defines the name of property to be generated for the
association.

If Default is checked, the default naming rule specified
in General Settings tab will be used.

Fetch Mode Specifies how the association will be fetched (lazy,
eager or default). If Default is selected, it will use the
value specified in the General Settings tab.

Cascade Specifies the cascade type to be used in association.
Options are "Default", "None" (no cascade) and "All but
Remove" (all cascade options like save, update, merge,
except remove cascade).

Map this 1:1
relationship as

Visible for identity relationships. Specifies how the 1:1
association will be exported, if as association or treat
as inheritance. If Default is selected, it will use the
value specified in the General Settings tab.

Many-Valued Associations Tab

Lists all properties that will be generated as many-valued associations
(collections). You can check items if you want them to be exported. By default
collections are unchecked. For each many-valued association that can be
generated you can configure the following options:

Field Description

List Property Name Defines the name of collection property to be generated
for the many-valued association.

If Default is checked, the default naming rule specified
in General Settings tab will be used.

Fetch Mode Specifies how the association will be fetched (lazy,
eager or default). If default is specified, it will use the
value specified in the General Settings tab.

Advanced Tab

Lists several other settings for the table/class being exported.

Field Description

Sequence/Generato
r for ID

Specifies the name of the sequence to be generated as
the Sequence attribute (Sequence['Sequence_Name']).

TMS Data Modeler Documentation

59(c) 2019 TMS Software

Not specifying a value here might cause Data Modeler
to raise an error when exporting, depending on the
value of "Check for missing sequences" option in General
Settings tab. If you don't want to specify a sequence
and also don't want any error to be raised regardless of
"Check for Missing Sequences" option, choose "(none)".

Dynamic Props
Container Name

Specifies the name for the property that will be a
container for dynamic properties. If empty, then by
default no dynamic property container will be created in
the class. If Default is checked, it will use the default
name specified in the "Defaults" section in main tab.

Models (Comma
Separated)

The Aurelius models where this class will belong to. This
relates to multimodel design in Aurelius. For each model
specified here, an attribute

[Model('ModelName')]

will be added to the class. If you want to specify more
than one model, just separate the model names with
commas. For example, "Default,Finance,Sales" will
generate the following attributes:

[Model('Default')]
[Model('Finance')]
[Model('Sales')]

You can have this field to be automatically filled by
right clicking the list of classes at the left and choosing
"Model Names" menu option.

You will have the following options:

· Update From Diagrams: For each diagram containing
the specified class, a model will be added with the
same name of the diagram.

· Update From Diagrams (include Default): Same as
"Update from Diagrams", but "Default" model will also
be added.

· Clear All: Remove the models from all classes.

TMS Data Modeler Documentation

60(c) 2019 TMS Software

Note that the operations above will be performed for all
tables checked in the list, not for the currently
selected only.

General Settings Tab5.4

The General Settings tab contains some settings that apply for the exporting
process as a whole, different from the Mapping tab that configures each class
specifically. Here you will also configure some default behavior that apply to all
classes.

Naming options

You can define the default rule for naming classes, property/fields, associations
and many-valued associations. Even though you can configure the name of
each specific class, property, etc. in the Mappings tab, using this global
configuration allows you to apply a default naming rule for all of them so you
don't need to manually name them one by one.

Basically you have the "Use name from" fields which specifies what will be used
for the "base name". For example, for class naming, you can use the base name
from Table Caption in the model, or Table Name. From the base name, the
Format Mask will be applied. The "%s" in the format mask will be replaced by
the base name. For example, the defualt Format Mask for class naming is "T%s"
which means the class name will be the base name (usually Table Caption)
prefixed with "T".

Additionally, some naming options allow you to:

· Camel Case: The first character of the base name or any character followed
by underling will become upper case, all the other will become lower case. For
example, if the base name in model is "SOME_NAME", it will become
Some_Name.

· Remove underline: All underlines will be removed. "SOME_NAME" becomes
"SOMENAME". If combined with camel case, it will become "SomeName"

· Singularize: If the base name is in plural, it will become singular. "Customers"
become "Customer", "Orders" become "Order". It also applies specified

TMS Data Modeler Documentation

61(c) 2019 TMS Software

singularization rules for English language (e.g., "People" becomes "Person",
etc.).

Dictionary

Data Modeler can also generate a dictionary with metadata for the classes.
This dictionary can be used in queries in TMS Aurelius.

· Global Var Name: Defines the name of Delphi global variable to be used to
access the dictionary.

· Unit Name: Defines the unit name/file name where the dictionary will be
created. If empty (default), the dictionary will be created in the same
file/unit as the classes (specified in the "Unit Name" field)

Defaults

Defines some default behaviors when translating tables/fields into
classes/properties. You can override this default behaviors individually for each
class/property in the "Mappings" tab.

Field Description

Association Fetch
Mode

The default fetch mode used for associations. Default
value is Lazy.

Association
Cascade Definition

The default cascade definition for associations. Options
are "None" (no cascade) and "All but Remove" (all
cascade options like save, update, merge, except
remove cascade). Default value is None.

Many-Valued
Association Fetch
Mode

The default fetch mode used for many-valued
associations. Default is Lazy.

Map One-to-One
Relationship As

Defines how 1:1 relationships will be converted by
default. A 1:1 relationship can be converted as a
regular association (property) or can be considered an
inheritance between two classes. Default value is
Association.

Ancestor Class Specifies the name of the class to be used as base
class for all entity classes generated by Data Modeler.
Default value is empty, which means no ancestor (all
classes will descend from TObject)

Dynamic Props
Container Name

Specifies the default name for the property that will be
a container for dynamic properties. If empty, then by
default no property will be created in the class.

Check for Missing
Sequences

Defines if Data Modeler must stop exporting (raise an
error) if a sequence is not defined for a class. Options
are:

TMS Data Modeler Documentation

62(c) 2019 TMS Software

· If supported by database: if database supports
sequences/generators, then raise an error if a
sequence is not defined (default)

· Always: always raise an error if a sequence is not
specified

· Never: ignore any sequence check

Options

Defines some other general options for exporting.

Field Description

Generate Dictionary Defines if the dictionary will be generated.

Create Descriptions If checked, an attribute [Description] will be generated
for every class and field in the source code. The
content of such attribute will come from the tables and
fields descriptions in Data Modeler. This attribute is not
used by TMS Aurelius and is useful only for the
developer if he wants to retrieve such metadata at
runtime.

Register Entities When checked, the generated unit will have an
initialization section with a call to RegisterEntity for
each class declared in the script:

initialization
 RegisterEntity(TSomeClass);
 RegisterEntity(TAnotherClass);

This will make sure that when using the generated unit,
classes will not be removed from the final executable
because they were not being used in the application.
This option is useful when using the entity classes from
a TMS XData server, for example.

Don't use
Nullable<T>

By default, non-required columns will be generated as
properties of type Nullable<T>. Check this option if you
don't want to use Nullable, but instead use the primitive
type directly (string, integer, etc.)

Script Tab5.5

In the Script tab you can write the customization script that manipulates the
source code generated by the TMS Aurelius Export feature.

TMS Data Modeler Documentation

63(c) 2019 TMS Software

Just type the customization script in the editor. For more information about
how to write the script itself, please refer to the Customization Script topic. If
you want an initial help, you can click in the Declare Events button to have all
the supported script events to be declared automatically in script.

You can also debug the script if needed, by clicking the Debug button. This will
open a full script IDE window already prepared with the existing customization
script, and you can set breakpoints, add watches, run the script, etc..

The IDE has two scripts available: Launcher and Script. The Launcher is just
the main script used to run the source code generation process that makes the
event handlers to be fired. The customization script is in the Script tab.

Any changes you make to the Script tab will later be updated to the
customization script in the Script Tab, after you close the Debug IDE. You
should never change the Launcher script - it's generated dynamically and any
changes you make to it will be discarded.

TMS Data Modeler Documentation

64(c) 2019 TMS Software

Customization Script5.6

You can fully customize the generated source code using the customization
script, which you can write and debug from the Script Tab in the export dialog.
Form information on how to edit and debug the script, please follow the Script
Tab topic. This topic covers what code you can write from script and provide
some code examples.

Event Handlers

The script is based on the concept of event handlers. When Data Modeler is
creating the meta-information of the code, it can fire many events after each
piece of code being generated. For example, when a database column is
processed and a combination of class field/property is created, the event
OnColumnGenerated is created. To handle such event, just declare a procedure
in the script code with the same name, receiving a single param of type
TColumnGeneratedArgs. From that parameter you can retrieve relevant context
information and change/adapt the generate code for your own need.

Here is a list of the events fired by the source code generator:

Event Description

OnColumnGenerated Fired whenever a table column in processed and
becomes a class field and property of a primitive type,
and Column attribute is added to the class field.

OnAssociationGener
ated

Fired whenever an association is processed, i.e., when
a database foreign key becomes a class field and
property of type Proxy<T> and T, respectively, and
attributes Association and JoinColumn are added to the
class field.

OnManyValuedAsso
ciationGenerated

Fired whenever a many-valued association is processed
and becomes a class field/property of type TList<T>
and ManyValuedAssociation attribute is added.

OnClassGenerated Fired after a class (entity) type has been fully
generated.

OnUnitGenerated Fired after the unit has been fully generated.

Code Samples

Some script samples for common customization tasks:
Adding OrderBy Attribute to Many-Valued Association
Adding Version Attribute to Class Fields
Creating a New Property in a Class
Creating a New Method Procedure in a Class
Creating a New Method Function in a Class
Adding a Unit Name to the Uses Clases
Changing Cascade of Many-Valued Association

TMS Data Modeler Documentation

65(c) 2019 TMS Software

Adding ForeignKey Attribute to Associations
Adding DBIndex Attributes From Table Indexes
Adding Schema Name to Table Attribute

5.6.1 OnColumnGenerated Event

This event is fired whenever a table column is processed and becomes a class
field and property of a primitive type, and Column attribute is added to the
class field. Should be declared as following:

procedure OnColumnGenerated(Args: TColumnGeneratedArgs);
begin
end;

Type TColumnGeneratedArgs and has the following properties:

Property Description

Prop:
TCodeMemberPrope
rty

The public property of type TList<T>.

Field:
TCodeMemberField

The private field of type Proxy<TList<T>>.

CodeUnit:
TCodeUnit

The Pascal unit where this class is declared.

CodeType:
TCodeTypeDeclarati
on

The type declaration of the class containing the
property/field

Getter:
TCodeMemberMetho
d

The private getter method used as the reader of the
public property.

AssociationAttr:
TCodeAttributeDecl
aration

The [Association] custom attribute added to the
private field.

ConstructorMetho
d:
TCodeMemberConst
ructor

The constructor Create method of the class, used to
add the TList<T>.Create statement that instantiates
the list object.

DestructorMethod
:
TCodeMemberDestr
uctor

The destructor Destroy method of the class, used to
add the TList<T>.Destroy statement that destroys the
list object.

DBField:
TGDAOField

Metadata for the table column in database.

TMS Data Modeler Documentation

66(c) 2019 TMS Software

5.6.2 OnAssociationGenerated Event

This event is fired whenever an association is processed. This means a foreign
key in the database becomes a class field of type Proxy<T> and a property of
type T where T is an object, and attributes Association and JoinColumn are
added to the class field. Should be declared as following:

procedure OnAssociationGenerated(Args:
TAssociationGeneratedArgs);
begin
end;

Type TAssociationGeneratedArgs has the following roperties.

Property Description

Prop:
TCodeMemberPrope
rty

The public property of type T.

Field:
TCodeMemberField

The private field of type Proxy<T>.

CodeUnit:
TCodeUnit

The Pascal unit where this class is declared.

CodeType:
TCodeTypeDeclarati
on

The type declaration of the class containing the
property/field

Getter:
TCodeMemberMetho
d

The private getter method used as the reader of the
public property. It might be nil if property is not lazy-
loaded.

Setter:
TCodeMemberMetho
d

The private setter method used as the writer of the
public property. It might be nil if property is not lay-
loaded.

AssociationAttr:
TCodeAttributeDecl
aration

The [Association] custom attribute added to the
private field.

DBRelationship:
TGDAORelationship

Metadata for the database relationship (foreign key) in
database.

5.6.3 OnManyValuedAssociationGenerated Event

This event is fired whenever a many-valued association is processed. This
means a foreign key in the database becomes a class field and property of type
TList<T> and attributes ManyValuedAssociation and ForeignJoinColumn are
added to the class field. Should be declared as following:

TMS Data Modeler Documentation

67(c) 2019 TMS Software

procedure OnManyValuedAssociationGenerated(Args:
TManyValuedAssociationGeneratedArgs);
begin
end;

Args is of type TManyValuedAssociationGeneratedArgs and has the following
properties:

Property Description

Prop:
TCodeMemberPrope
rty

The public property of type TList<T>.

Field:
TCodeMemberField

The private field of type Proxy<TList<T>>.

CodeUnit:
TCodeUnit

The Pascal unit where this class is declared.

CodeType:
TCodeTypeDeclarati
on

The type declaration of the class containing the
property/field

Getter:
TCodeMemberMetho
d

The private getter method used as the reader of the
public property.

AssociationAttr:
TCodeAttributeDecl
aration

The [ManyValuedAssociation] custom attribute added
to the private field.

ConstructorMetho
d:
TCodeMemberConst
ructor

The constructor Create method of the class, used to
add the TList<T>.Create statement that instantiates
the list object.

DestructorMethod
:
TCodeMemberDestr
uctor

The destructor Destroy method of the class, used to
add the TList<T>.Destroy statement that destroys the
list object.

DBRelationship:
TGDAORelationship

Metadata for the database relationship (foreign key) in
database.

5.6.4 OnClassGenerated Event

This event is fired whenever a class (entity) type is fully generated. You can
use this event to do some customization to the class after all its properties are
added. Should be declared as following:

TMS Data Modeler Documentation

68(c) 2019 TMS Software

procedure OnClassGenerated(Args: TClassGeneratedArgs);
begin
end;

Type TClassGeneratedArgs and has the following properties:

Property Description

CodeUnit:
TCodeUnit

The Pascal unit where this class is declared.

CodeType:
TCodeTypeDeclarati
on

The type declaration of the class containing the
property/field

DBTable:
TGDAOTable

Metadata for the table in database.

5.6.5 OnUnitGeneratedEvent

This event is fired whenever an unit is fully generated. You can use this event
to do some customization to the unit after it has been generated, like adding
an unit to the uses clause, add code to initialization section, etc.. Should be
declared as following:

procedure OnUnitGenerated(Args: TUnitGeneratedArgs);
begin
end;

Type TUnitGeneratedArgs and has the following properties:

Property Description

CodeUnit:
TCodeUnit

The Pascal unit that has been generated.

5.6.6 Adding OrderBy Attribute to Many-Valued Association

This example adds the attribute [OrderBy] to the many-valued association. It
identifies the many-valued association by the name of the generated private
field (FEmployeesList) in a specific class (TEmployees):

TMS Data Modeler Documentation

69(c) 2019 TMS Software

procedure OnManyValuedAssociationGenerated(Args:
TManyValuedAssociationGeneratedArgs);
begin
 case Args.CodeType.Name of
 'TEmployees':
 case Args.Field.Name of
 'FEmployeesList':
 Args.Field.AddAttribute('OrderBy').AddRawArgument('''
LAST_NAME,FIRST_NAME''');
 end;
 end;
end;

Suppose the original generated source code was this one:

 [ManyValuedAssociation([TAssociationProp.Lazy],
[TCascadeType.SaveUpdate, TCascadeType.Merge], 'FReportsTo')]
 FEmployeesList: Proxy<TList<TEmployees>>;

With the script above, it will become this:

 [ManyValuedAssociation([TAssociationProp.Lazy],
[TCascadeType.SaveUpdate, TCascadeType.Merge], 'FReportsTo')]
 [OrderBy('LAST_NAME,FIRST_NAME')]
 FEmployeesList: Proxy<TList<TEmployees>>;

5.6.7 Adding Version Attribute to Class Fields

This example adds the attribute [Version] to any class field named "FVersion",
regardless of the class it appears.

procedure OnColumnGenerated(Args: TColumnGeneratedArgs);
begin
 if Args.Field.Name = 'FVersion' then
 Args.Field.AddAttribute('Version');
end;

Suppose the original generated source code was this one:

 [Column('VERSION', [TColumnProp.Required])]
 FVersion: Integer;

With the script above, it will become this:

 [Column('VERSION', [TColumnProp.Required])]
 [Version]
 FVersion: Integer;

TMS Data Modeler Documentation

70(c) 2019 TMS Software

5.6.8 Creating a New Property in a Class

This example creates a private string field FAdditional and public property
Additional (which getter and setter refers to private field) to the class
TEmployees:

procedure OnClassGenerated(Args: TClassGeneratedArgs);
begin
 case Args.CodeType.Name of
 'TEmployees':
 begin
 Args.CodeType.AddField('FAdditional', 'string',
mvPrivate);
 Args.CodeType.AddProperty('Additional', 'string',
 'FAdditional', 'FAdditional', mvPublic);
 end;
 end;
end;

This will create the following private field and public property:

 private
 FAdditional: string;
 public
 property Additional: string read FAdditional write
FAdditional;

5.6.9 Creating a New Method Procedure in a Class

This example creates a public method Increase in class TCategories:

procedure OnClassGenerated(Args: TClassGeneratedArgs);
var
 Proc: TCodeMemberMethod;
begin
 case Args.CodeType.Name of
 'TCategories':
 begin
 Proc := Args.CodeType.AddProcedure('Increase',
mvPublic);
 Proc.AddParameter('Value', 'Integer').Modifier := pmVar;
 Proc.AddParameter('Increment', 'Integer');
 Proc.AddSnippet('Value := Value + Increment;');
 end;
 end;
end;

It will create the following method declaration and implementation:

 procedure Increase(var Value: Integer; Increment: Integer);

TMS Data Modeler Documentation

71(c) 2019 TMS Software

procedure TCategories.Increase(var Value: Integer; Increment:
Integer);
begin
 Value := Value + Increment;
end;

5.6.10 Creating a New Method Function in a Class

This example creates a public method Triple in class TEmployees:

procedure OnClassGenerated(Args: TClassGeneratedArgs);
var
 Func: TCodeMemberMethod;
begin
 case Args.CodeType.Name of
 'TEmployees':
 begin
 Func := Args.CodeType.AddFunction('Triple', 'double',
mvPublic);
 Func.AddParameter('Value', 'double');
 Func.AddSnippet('Result := Value * 3;');
 end;
 end;
end;

It will create the following method declaration and implementation:

 function Triple(Value: double): double;

function TEmployees.Triple(Value: double): double;
begin
 Result := Value * 3;
end;

5.6.11 Adding a Unit Name to the Uses Clases

This example adds a unit name "MyUnit" to the uses causes (interface section)
of the unit "UnitName":

procedure OnUnitGenerated(Args: TUnitGeneratedArgs);
begin
 if Args.CodeUnit.Name = 'UnitName' then
 Args.CodeUnit.InterfaceUnits.Add(TCodeUsedUnit.Create('MyUni
t'));
end;

It will add the following uses clause do the unit:

TMS Data Modeler Documentation

72(c) 2019 TMS Software

unit UnitName;

interface

uses
 SysUtils,
 Generics.Collections,
 Aurelius.Mapping.Attributes,
 Aurelius.Types.Blob,
 Aurelius.Types.DynamicProperties,
 Aurelius.Types.Nullable,
 Aurelius.Types.Proxy,
 MyUnit,
 Aurelius.Criteria.Dictionary;

5.6.12 Changing Cascade of Many-Valued Association

This example changes the cascade parameter of many-valued association
attribute. It identifies the many-valued association by the name of the
generated private field (FEmployeesList) in a specific class (TEmployees):

procedure OnManyValuedAssociationGenerated(Args:
TManyValuedAssociationGeneratedArgs);
begin
 case Args.CodeType.Name of
 'TEmployees':
 case Args.Field.Name of
 'FEmployeesList':
 TCodeSnippetExpression(Args.AssociationAttr.Argumen
ts[1].Value).Value := 'CascadeTypeRemoveOrphan';
 end;
 end;
end;

Suppose the original generated source code was this one:

 [ManyValuedAssociation([TAssociationProp.Lazy],
[TCascadeType.SaveUpdate, TCascadeType.Merge], 'FReportsTo')]
 FEmployeesList: Proxy<TList<TEmployees>>;

With the script above, it will become this:

 [ManyValuedAssociation([TAssociationProp.Lazy],
CascadeTypeRemoveOrphan, 'FReportsTo')]
 FEmployeesList: Proxy<TList<TEmployees>>;

5.6.13 Adding ForeignKey Attribute to Associations

By default Aurelius defines the name of foreign keys automatically. You can
force a name for the foreign key using ForeignKey attribute. Since Data
Modeler already holds the name of all foreign keys (relationships) in the

TMS Data Modeler Documentation

73(c) 2019 TMS Software

database, you can include a ForeignKey attribute to force all foreign keys to
have the existing name in database.

The following example does that:

procedure OnAssociationGenerated(Args:
TAssociationGeneratedArgs);
begin
 Args.Field.AddAttribute('ForeignKey').AddRawArgument(
 '''' + Args.DBRelationship.RelationshipName + '''');

end;

Suppose the original generated source code was this one:

 [Association([TAssociationProp.Lazy,
TAssociationProp.Required], [])]
 [JoinColumn('ProductID', [TColumnProp.Required],
'ProductID')] [ForeignKey('FK_Order_Details_Products')]
 FProduct: Proxy<TProduct>;

With the script above, it will become this:

 [Association([TAssociationProp.Lazy,
TAssociationProp.Required], [])]
 [JoinColumn('ProductID', [TColumnProp.Required],
'ProductID')]
 [ForeignKey('FK_Order_Details_Products')]
 FProduct: Proxy<TProduct>;

5.6.14 Adding DBIndex Attributes From Table Indexes

TMS Data Modeler doesn't generate DBIndex attributes from existing table
indexes. But if you need it, you can do it using the following code snippet:

TMS Data Modeler Documentation

74(c) 2019 TMS Software

procedure OnClassGenerated(Args: TClassGeneratedArgs);
var
 I, J: Integer;
 Idx: TGDAOIndex;
 Fields: string;
 Attr: TCodeAttributeDeclaration;
begin
 for I := 0 to Args.DBTable.Indexes.Count - 1 do
 begin
 Idx := Args.DBTable.Indexes[I];
 Fields := '';
 for J := 0 to Idx.IFields.Count - 1 do
 begin
 if Fields <> '' then Fields := Fields + ',';
 Fields := Fields + Idx.IFields[J].FieldName;
 end;
 Attr := Args.CodeType.AddAttribute('DBIndex');
 Attr.AddRawArgument('''' + Idx.IndexName + '''');
 Attr.AddRawArgument('''' + Fields + '''');
 end;
end;

For example, originally the class would be generated like this:

 [Entity]
 [Table('Categories')]
 [Id('FCategoryID', TIdGenerator.IdentityOrSequence)]
 TCategories = class

With the following script a DBIndex attribute will be added for each table index:

 [Entity]
 [Table('Categories')]
 [Id('FCategoryID', TIdGenerator.IdentityOrSequence)]
 [DBIndex('CategoryName', 'CategoryName')]
 TCategories = class

5.6.15 Adding Schema Name to Table Attribute

Data Modeler doesn't hold schema information for each table, but when
exporting to TMS Aurelius classes you can use customization script to add the
schema name to the table attribute. The following script adds the schema
name dbo to the table category:

procedure OnClassGenerated(Args: TClassGeneratedArgs);
begin
 if Args.DBTable.TableName = 'category' then
 Args.TableAttr.AddRawArgument('''dbo''');
end;

For example, originally the class would be generated like this:

TMS Data Modeler Documentation

75(c) 2019 TMS Software

 [Entity]
 [Table('Category')]
 [Id('FCategoryID', TIdGenerator.IdentityOrSequence)]
 TCategories = class

With the following script the Table attribute will be like this:

 [Entity]
 [Table('Category', 'dbo')]
 [Id('FCategoryID', TIdGenerator.IdentityOrSequence)]
 TCategories = class

	Introduction
	Overview
	What's New
	Copyright Notice
	Supported Databases
	Concepts

	The User Interface
	UI Overview
	Ribbons
	Project Explorer
	Workspace
	Messages Window

	Basic Operations
	Creating a New Project
	Creating Objects in Database Model
	Comparing projects
	Generating Database Creation Scripts
	Project Validation
	General Project Settings
	Version Control
	Reverse Engineering
	Convert Project to Different Database

	Editors
	Table Editor
	Domains
	Diagrams
	Relationship Editor
	Procedures and Functions
	Generators/Sequences
	Views

	TMS Aurelius Export
	Overview
	Export Dialog
	Mappings Tab
	General Settings Tab
	Script Tab
	Customization Script
	OnColumnGenerated Event
	OnAssociationGenerated Event
	OnManyValuedAssociationGenerated Event
	OnClassGenerated Event
	OnUnitGeneratedEvent
	Adding OrderBy Attribute to Many-Valued Association
	Adding Version Attribute to Class Fields
	Creating a New Property in a Class
	Creating a New Method Procedure in a Class
	Creating a New Method Function in a Class
	Adding a Unit Name to the Uses Clases
	Changing Cascade of Many-Valued Association
	Adding ForeignKey Attribute to Associations
	Adding DBIndex Attributes From Table Indexes
	Adding Schema Name to Table Attribute

