
 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

1 

 

 

 
 
 
 
 
 

 

 
TMS ASP.NET COMPONENT PACK  

V2.6 
 

AdvWebGrid  
DEVELOPERS GUIDE 

 

 
 
 
 
 
 
 
 
 
 
 
 

April 2010 
Copyright  © 2003-2010 by tmssoftware.com bvba 

Web: http://www.tmssoftware.com 
Email : info@tmssoftware.com 

http://www.tmssoftware.com/
mailto:info@tmssoftware.com


 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

2 

 
 

Table of contents 

 
AdvWebGrid ..................................................................................................... 3 
AdvWebGrid organisation..................................................................................... 3 
Settings of AdvWebGrid visual elements .................................................................. 4 
Controller ....................................................................................................... 4 
Header ........................................................................................................... 7 
Columns data display and column types ................................................................... 8 
Column types ................................................................................................... 8 
Inplace editors ................................................................................................. 9 
Dynamic edits and text ..................................................................................... 10 
Column widths  ............................................................................................... 12 
Footer .......................................................................................................... 12 
Cell and row selection ...................................................................................... 14 
Row coloring .................................................................................................. 15 
Sort control ................................................................................................... 16 
Built-in scroll support ....................................................................................... 17 
Detailrows ..................................................................................................... 17 
Using internal cell methods in AdvWebGrid............................................................. 19 
Advanced AdvWebGrid techniques ....................................................................... 20 
Using the ClientEvents ...................................................................................... 20 
 
 
 
 
 
 
 
 
 
 
 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

3 

AdvWebGrid availability 
 
  
AdvWebGrid is part of the TMS ASP.NET Component Pack 
 
The TMS ASP.NET Component Pack is available for: 
 
Microsoft™Visual Studio.NET 2003 
Microsoft™Visual Studio.NET 2005 
Microsoft™Visual Studio.NET 2005 with Microsoft Ajax 
Microsoft™Visual Studio.NET 2008 with Microsoft Ajax 
Microsoft™Visual Studio.NET 2010 with Microsoft Ajax 
 
 
Current version of AdvWebGrid has been designed for and tested with IE6, IE7, IE8, Firefox 3.0,  
Firefox 3.5, Chrome 4.0 
Some features, such as gradient support, are available only in IE6, IE7, IE8 
 
 

AdvWebGrid use 
 
The TMS AdvWebGrid component is designed to be used in all kinds of grid type data presentation 
and editing in a browser. Data presented in the grid can be database driven as well as directly web 
application driven. It is from the web application running on the server that this grid presentation 
layer is generated along with JavaScript code that is executed in the browser on the client side. 
AdvWebGrid has built-in support for paged output, making the amount of data that is transferred 
from the server to the client customizable. AdvWebGrid can make use of cached script libraries or 
not. The property CachedScript controls this. It is set to false by default for easy deployment. To 
minimize server load and bandwidth, set CachedScript to true and make sure the files 
tms_advwebgrid.js and tms_griddatepicker.js are in the project folder. 
 
 
 

AdvWebGrid organisation 
 
 
The grid components consist of 4 parts:  
 
1 : Controller  
 
This is the part of the grid from where paging is controlled and presentation of page selection is 
done. Various options are available to customize the appearance of this control 
 
2 : Header 
 
A one or two row header can be used. In its most simple form, the header indicates what data is 
displayed in each column. It can be used to trigger a column sort, to start a filter, to resize a 
column or to indicate logically grouped columns by spanning multiple columns.  
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

4 

 
3 : Columns  
 
The actual data of the grid is displayed in columns. The appearance and type of each column can be 
defined. 
 
4 : Footer  
 
A footer can be used to display just text information, static column totals or dynamic column totals. 
 
 

 
 
 
 
 

Settings of AdvWebGrid visual elements 
 
Controller 

 
The controller part of the grid can perform the automatic paging of grid data. A page is equivalent 
to RowCount rows. For the DB-driven grid, the total number of pages will be the total number of 
rows in the dataset divided by RowCount. For the non DB driven grid, the total number of rows is 
set with the property TotalRows. The page controller then provides selected methods such as 
Previous page / Next page or direct page number hyperlinks to select the desired page. The look of 
the page controller is set through the grid‟s Controller property with following subproperties: 
 
Controller properties: 
 
Alignment: sets the alignment of the text displayed in the controller. 
BackColor: this sets the background color of the controller. Specify Color Empty if default browser 
background color should be used. Also specifies the start color of a gradient color in the controller. 
When Color Empty is set, no gradient is used. Note that gradients are only supported in IE6. 
BackColorTo: specifies the end color of a gradient color in the controller. 
Borders: Sets the border appearance of the controller 
Caption: this is the text displayed along with the automatic displayed page control elements. 
GradientOrientation: sets the gradient direction to either horizontal or vertical 
Height: specifies the height of the controller. When height is zero, height of the controller 
automatically adapts to height of elements inside the controller. 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

5 

HintFirst: sets the hint that should appear over the button to go to the first page 
HintLast: sets the hint that should appear over the button to go to the last page 
HintNext: sets the hint that should appear over the button to go to the next page 
HintPrev: sets the hint that should appear over the button to go to the previous page 
ImgFirst: specifies the image to be used for jumping to the first page. This can be a GIF, JPEG, PNG 
or BMP file. Note that the images are used when PagerType is set to Image 
ImgLast: specifies the image to be used for jumping to the last page.  
ImgNext: specifies the image to be used for jumping to the next page.  
ImgPrev: specifies the image to be used for jumping to the previous page.  
IndicatorFormat: This specifies how the viewed page is indicated in the controller. Text and 
number specifiers can be used. The numeric data displayed depends on the IndicatorType and can 
be either record number or page number.  
 
Examples:  
 
Setting IndicatorType tot PageNr and IndicatorFormat to ‘(Page {0} of {1})’ will display in the 
controller: ‘(Page 1 of 12)’ if on the first page for a 12 page grid.  
 
Setting IndicatorType to RecordNr and IndicatorFormat to ‘- This is record number {0}’ will display 
in the controller ‘- This is record number 1’ for the first record. 
 
 
 

 
Sample controller with prev / next hyperlinks and page indication 

 
 

 
IndicatorType: Indicator type can be either RecordNr, to indicate current record index vs total 
number of records in the dataset or grid, or PageNr to indicate the current page. The IndicatorType 
None displays no indicator. 
MaxPages: sets the maximum number of pages to display in the controller. The controller will 
display a range of pages limited to MaxPages around the currently selected page. 
Pager: this selects the type of paging. Currently, following paging types are defined: 
PageList: paging is done through clicks on page number 
PrevNext: paging is done through previous / next links 
PrevNextFirstLast: paging is done through previous / next page links  as well as first and last page 
links. 
DropDownList: paging is done trough selecting a page number from a dropdown-list 
 
PagerType: this selects the visual presentation of the paging which can be: 
Link: page numbers or previous / next actions are done through hyperlinks 
Button: page numbers or previous / next actions are done through buttons 
Image: previous, next, first and last actions are done through images specified in properties 
ImgPrev, ImgNext, ImgFirst, ImgLast. Note that PagerType Image cannot be combined with Pager 
PageList currently.  
 
Position: sets the position of the controller w.r.t. the grid. This can be: 
Top: controller is on top of the grid 
None: controller is not displayed 
Bottom: controller is displayed under the grid 
Both: controller is displayed on top and under the grid 
 
RowCountSelect : when true, a dropdown list is displayed in the controller with which the number 
of rows to display can be selected. The possible rowcount values are set through the 
RowCountValues property 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

6 

 
RowCountValues: list of possible rowcount values that can be selected from a dropdown list in the 
controller. 
TextFirst: sets the text for the button or hyperlink that will be used to go to the first page. By 
default this is „First‟ 
TextLast: sets the text for the button or hyperlink that will be used to go to the last page. By 
default this is „Last‟ 
TextNext: sets the text for the button or hyperlink that will be used to go to the next page. By 
default this is „Next‟ 
TextPrev: sets the text for the button or hyperlink that will be used to go to the previous page. By 
default this is „Prev‟ 
 
 
Events associated with the controller: 
 
Although the controller handles the paging automatically, events are triggered to indicate to the 
application what paging action the user has taken. These events are:  
 
GotoPage: event triggered when user selects to go to a given page when the controller pager is set 
to PageList 
 
FirstPage: event triggered when user selects to go to the first page when the controller pager is set 
to PrevNext or PrevNextFirstLast 
 
LastPage: event triggered when user selects to go to the last page when the controller pager is set 
to PrevNext or PrevNextFirstLast 
 
NextPage: event triggered when user selects to go to the next page when the controller pager is set 
to PrevNext or PrevNextFirstLast 
 
PrevPage: event triggered when user selects to go to the previous page when the controller pager is 
set to PrevNext or PrevNextFirstLast 
 
 
Other related paging properties: 
 
A few other public and published properties are provided here that affect the controller‟s paging or 
are affected by it. 
 
StartPage: this provides a programmatic access to set or get the displayed page 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

7 

Header 
 
Enabling the column headers is done by the property HeaderVisible. All other column header related 
settings are done through the Columns property. The Columns property is a collection of Column 
objects that control the appearance of each column in the grid.  
 

 
Example of what is possible in the header 

 
When the global property HeaderVisible is true, following properties in each Column determine 
what the appearance of the headers will be in the browser : 
 
ColumnHeaderCheck: when true, a checkbox is displayed in the header. Using a checkbox in a 
column header only makes sense if the column type is CheckBox (see later) . If a checkbox is 
present in the column header, checking this checkbox will check all checkboxes in the column. 
Unchecking this checkbox will uncheck all checkboxes in that column. 
 
ColumnHeaderClick: when true, text in the column header is displayed as a hyperlink and clicking 
this link triggers the event OnColumnHeaderClick. Most commonly, with a databound grid, a SQL 
statement for sorting the grid can be modified in this event handler. In the non data-aware grid, 
server side sorting is automatically performed 
 
ColumnHeaderNode : when true, a node in the header will expand or collaps all nodes in the 
column. 
 
HeaderAlignment: sets the alignment of the column header text  
HeaderColor: sets the background color for the column header. Also specifies the start color of a 
gradient color in the columnheader. When Color Empty is set, no gradient is used. Note that 
gradients are only supported in IE6. 
HeaderColorTo: specifies the end color of a gradient color in the columnheader. 
HeaderFont: sets the font for the column header 
HeaderGradientOrientation: sets the direction for the gradient to either vertical or horizontal 
HeaderVAlignment: sets the vertical alignment for the title 
 
SubTitle: sets the text of the second columnheader row. The second columnheader row is 
generated as soon as at least on SubTitle is a non empty text. 
 
SubTitleSpan: sets the number of cells this subtitle spans. Note that if SubTitleSpan is set to a value 
2 or more, the SubTitle properties in the consecutive columns are ignored.  
Title: sets the text of the first columnheader row 
TitleRowSpan: Set this to true if the title and subtitle cell must be displayed as merged 
TitleSpan: sets the number of cells this title spans. Note that if TitleSpan is set to a value 2 or 
more, the Title properties in the consecutive columns are ignored. 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

8 

 
Example: 
 
For the sample header image above, the following Title, TitleSpan, SubTitle and SubTitleSpan 
properties were set for each column: 
 
Column 0: 
Title = “”, TitleSpan = 0, SubTitle = “Browse”, SubTitleSpan = 3 
 
Column 1:  
Title = “”, TitleSpan = 0, SubTitle = “Browse”, SubTitleSpan = 0 
 
Column 2:  
Title = “”, TitleSpan = 0, SubTitle = “Browse”, SubTitleSpan = 0 
 
Column 3:  
Title = “Personal Details”, TitleSpan = 2, SubTitle = “First name”, SubTitleSpan = 0 
 
Column 4:  
Title = “”, TitleSpan = 0, SubTitle = “Last name”, SubTitleSpan = 0 
 
Column 5:  
Title = “<FONT color=‟#FF0000‟>Web </FONT><I>pages</I>”, TitleSpan = 0, SubTitle = “”, 
SubTitleSpan = 0 
 
 
 
 
Column data display and column types 
 
AdvWebGrid allows other than displaying information from a dataset or cell contents, display of 
various grid control elements. This can range from simple text cells, hyperlinks to row numbers, DB 
edit / post / cancel buttons and much more…  
 

 
Example of column types 

 
The above example already shows various of these types such as from left to right: DB buttons, DB 
state indicator, row number link, numeric edit control, text, datepicker, popup memo field, 
graphic. 
 
Column types: 
To explain the various capabilities and how these can be set, it should be noted that a grid cell can 
be set to 4 different main types : 
 

- always static cell : this cell can not be edited and just displays fixed data  
- an action cell : this cell allow a fixed action, such a handling a button click 
- editable cell : when the grid is in editing mode, a cell editor is displayed otherwise the cell 

displays data. Note that setting the grid in editing mode, sets one full row in editing mode 
at a time. As a result of this, a connection to the server is only done once per row when 
editing starts and once when editing ends. All cells of a row are thus updated at the end of 
editing in a single action. 

- dynamic cell : this type of cells is either always in editing mode or displays a client side 
calculated value.  



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

9 

 
The settings for these cell types are done per column through the property Column.Type which 
currently has following capabilities:  
 
Normal: column contains normal text cells. It is the Editor property that determines whether this 
column can be edited and if so, what type editor is used.  
NoWrap : column contains normal text cells. The column‟s width does not adapt to the length of 
the text in the cells. Text that is longer than the column‟s width is shown with hidden overflow. 
Color : column contains a rectangle in the color as set in the cell value, for example 
AdvWebGrid[0,0] = “#ff0000” will show a red cell. 
Checkbox: column contains row select checkboxes 
Button: column contains a button. Button caption is set with the ButtonText property 
RowIndicator: column contains a glyph that shows for the current row the browse, edit or insert 
state  
RowNumber: column shows the row number 
Scroll: column shows text in a scrollbox. This is suitable for memo fields. 
Password : columns‟s text is shown with password characters 
Popup: column shows text in cell with button showing text in popup when clicked 
PopupImage: the image is displayed in full size (full size is set with PopupWidth and PopupHeight 
properties) when mouse is over the image, otherwise the image height is limited to the row height. 
Progress: the value of the column (between 0 and 100) is displayed as a progress bar 
LinkField: column shows text with hyperlink. Clicking the hyperlink moves the current row to the 
row clicked 
LinkRowNumber: column shows the row number as a hyperlink. Clicking the hyperlink moves the 
current row to the row clicked 
DataCheckbox: checkbox state reflects the cell value. Checkbox is checked when cell value is equal 
to the CheckTrue value or unchecked when equal to CheckFalse 
SelectCheckBox : columns shows a checkbox that can be used to select the row (like in Hotmail) 
Image: column shows an image  
ImageCheckbox: column shows checkboxes with custom glyphs set with the properties ImgCheckBox 
and ImgCheckBoxChecked. 
URL: columns shows text as hyperlink. If text has not yet a http:// prefix, it is automatically 
inserted 
Email: column shows text as email hyperlink. The mailto: prefix is automatically added 
DataButton: column shows Edit, Post, Cancel buttons in current row depending on dataset state. 
Can be set to show Bitmaps or Hyperlinks instead of buttons with the DataButtonType property 
RadioButton: columns shows a radio button. Only one radiobutton can be selected per column, 
allowing row selection through a radiobutton 
DynEdit: column shows edit control in all cells. Type of the edit control is set by the property 
DynEditor 
DynText: column shows dynamic text in all cells. Value of the dynamic text is calculated by the 
Formula property.  
DynCheckbox: column shows checkbox in all cells. A checkbox change causes a dynamic value 
update. The checkbox state can be used in formulas. The value is 1 for a checked checkbox and 0 
for unchecked. 
DynCombo: column shows combobox in all cells. Combobox items are set with the ComboItems 
property. A combobox selection change causes a dynamic value update. 
DynDatePicker : column shows a datepicker in all cells of the column.   
DynDateEdit : columns shows a date-edit entry field in all cells of the column 
DynTimeEdit : columns shows a time-edit entry field in all cells of the column 
DynLookupEdit : columns shows a editor with lookup. Values used for the lookup are set through 
the Columns ComboItems collection 
DynMemo : columns shows a memo editor in all cells of the column 
Node: the column shows a node that is used to hide or unhide a detail row. The settings for the 
nodes are grouped under the grids Nodes property. 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

10 

Inplace editors: 
 
The inplace editors are displayed for the current row in the dataset (or ActiveRow for a non data-
bound grid). Currently, following inplace editor types are defined: 
 
None: no editor is used in this column, ie. the column is read-only 
Edit: inplace editor for column allows any text to be entered 
Password: inplace editor is a password style edit 
Combo: inplace editor is a combobox. The values for the combobox are set through the stringlist 
property ComboItems 
ColorComboBox : inplace editor is a combobox showing colors  
Memo: inplace editor is a textarea 
Checkbox: inplace editor is a checkbox 
EditNumeric: inplace editor is an edit control that only accepts characters 0..9 and sign.  
EditNumericUnsigned: inplace editor is an edit control that only accepts characters 0..9 
EditFloat: inplace editor is an edit control that only accepts characters 0..9, a decimal separator 
and sign. 
EditFloatUnsigned: inplace editor is an edit control that only accepts characters 0..9, and a 
decimal separator. The decimal separator is set with the DecimalSeparator property 
EditLower: inplace editor is an edit control automatically converting entered characters to 
lowercase 
EditUpper: inplace editor is an edit control automatically converting entered characters to 
uppercase 
EditHex: inplace editor is an edit control that accepts characters 0..9 and A..F 
DatePicker: inplace editor is a datepicker. The format of the datepicker is set with the properties 
DateFormat and DateSeparator. 
DateEdit : inplace editor is a masked date entry editor with three areas for day / month / year 
TimeEdit : inplace editor is a masked time entry editor with three areas for hour / min / sec 
SpinEdit: inplace editor is a spin edit control 
PopupEdit: editing is done through a popup memo editor 
LookupEdit : inplace editor performs lookup based on values in the ComboItems collection 
 
 
Changing inplace editors dynamically: 
 
Normally, cell editor types are set once through the Columns property for each column in the grid. 
In some cases, it can be convenient to dynamically modify the editor type depending on some cell 
or row conditions. This can be done with the GetCellEditor delegate.  The CellEditorEventArgs 
object returns the row and column for which the GetCellEditor delegate was triggered and allows to 
set a new type with the ColumnEditor property.  
 
Example: 
 
This code snippet dynamically sets a column editor to a combobox: 
 
private void AdvWebGrid2_GetCellEditor(object sender,      

TMSWebControls.CellEditorEventArgs e) 

{ 

  e.ColumnEditor = TMSWebControls.Column.ColumnEditor.Combo; 

} 

 
In addition, it is also possible to change the contents of combobox editors dynamically. This is done 
through the GetComboItems delegate. The CellComboItemsEventArgs object returns row and column 
for which the GetComboItems delegate was triggered and allows to change the items of the 
combobox through ComboItems collection property of this object.  
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

11 

 
 
 
 
 
 
 
 
Dynamic edits and text: 
 

 
Sample grid control with dynamic edit and text columns 

 
Dynamic edit columns and dynamic text columns allow configuring both the data-bound and not 
data-bound cells to perform calculations on the client side. In the example above, the Quantity 
column contains dynamic edit controls, the column Tax and Total contain dynamic text. The values 
in the dynamic text columns are dependent on the values in the ListPrice column and the Quantity 
column.  
 
 
The formula for calculating the tax is:  
 
Tax = 0.16 * Quantity * ListPrice 
 
The formula for calculating the total is: 
 
Total = 1.16 * Quantity * ListPrice 
 
 
Configuring this in AdvWebGrid is as simple as setting the Quantity column type with ColumnType to 
DynEdit and setting the Tax and Total columns ColumnType to DynText.  Next, the formula needs to 
be set that calculates the dynamic text columns. This is done with the Formula property for each 
column. A formula expression can be written using the variables C1, C2, ..., Cn, where Cx is the 
variable holding the value of the cell in column x. 
 
 
In this example for tax and total calculation, the formulas for column Tax and Total are : 
 
Tax column: 
 
Formula = C3*C2/100*16 
 
Total column: 
 
Formula = C2*C3*1.16 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

12 

 
Two more properties are used to control dynamic editing and dynamic text. First property is the 
DynEditor property. This property can be set to: 
 
Text: allow any text input in a dynamic 
Unsigned: allow unsigned numeric input 
Signed: allow signed numeric input 
FloatUnsigned: allow unsigned floating point input 
FloatSigned: allow signed floating point input 
 
Finally, the DynPrecision property controls the number of decimals to display in the calculated 
result of a dynamic text. 
 
Retrieving or presetting the values of dynamic edit controls is simple. It can be accessed with the 
grid[AColumn,ARow] property. Thus, presetting a dynamic edit for column 3, row 7 can be done by: 
 
Grid[2,6] = “1234”;  (note that column and row indexes are always zero based) 
 
After a submit, the server side can retrieve the edited value with the same Grid[2,6] property. 
 
Note that presetting or retrieving values of dynamic text is not available. As dynamic text is always 
calculated with a known formula, the server side can at any time, based on database field values 
and dynamic edit values know the value of dynamic text. 
 
 
 
 
It is possible to programmatically change or generate column data on the fly. This is done through 
the event GetCellData. This event is defined as: 
 
private void AdvWebGrid1_GetCellData(object sender, 

TMSWebControls.GetCellDataEventArgs e) 

 

With the following attributes: 
 
Int e.Row 

Int e.Column 

String e.Value 
 
 
The event is triggered for each cell rendered for the browser. It allows changing the data 
dynamically on the server before being sent to the browser. Shown here is a sample that simulates 
Windows style ellipsis drawing for large text for column 4: 
 
 

private void AdvWebGrid1_OnGetCellData(object sender, 

TMSWebControls.GetCellDataEventArgs e) 

{ 

if (e.Column = 4) 

 { 

  if (Length(e.Value) > 15)  

   e.Value = e.Value.SubString(1,15) + "…"; 

 } 

} 
 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

13 

Column widths: 
 
Although different width specifications for columns are possible : none, percent, absolute, the 
absolute width specification is recommended as it allows exactly positioning the grid control with 
other controls on the form. When setting the column‟s width type to Absolute, the width is set as 
pixel width with the Width property.  
 
 
Programmatically changing column settings: 
 
All column information is stored in an array AdvWebGrid.Columns. Accessing an element of this 
array is done with AdvWebGrid.Columns[index]. In order to access the properties, cast this to a 
TMSWebControls.Column object. 
 
To change the width, the code that can be used is: 
 
((TMSWebControls.Column)AdvWebGrid.Columns[ColumnIndex]).Width = 40; 
 
 
 
Footer 
 
The grid‟s footer is much like the grid‟s header. It is displayed when the property ShowFooter is 
true. The properties that determine the appearance of the footer are set per column in the Columns 
property: 
 
FooterColor: sets the background color for the column header. Also specifies the start color of a 
gradient color in the columnheader. When Color Empty is set, no gradient is used. Note that 
gradients are only supported in IE6. 
FooterColorTo: specifies the end color of a gradient color in the columnheader. 
FooterFont: sets the font for the column header 
FooterGradientOrientation: sets the direction for the gradient to either vertical or horizontal 
FooterVAlignment: sets the vertical alignment for the title 
FooterAlignment: sets the alignment for the footer text 
FooterFormat: is a format specifier for calculated footer values 
FooterText: holds the fixed text for a footer 
FooterType: the footer for each column can have following types : 
 
Text: footer contains simple static text 
PageSum: footer contains server calculated sum of column cell values of page 
PageMin: footer contains server calculated minimum of column cell values 
PageMax: footer contains server calculated maximum of column cell values 
PageAvg: footer contains server calculated average of column cell values 
None: footer is empty 
DynSum: footer contains client side calculated sum of column cell values 
DynMin: footer contains client side calculated minimum of column cell values 
DynMax: footer contains client side calculated maximum of column cell values 
DynAvg: footer contains client side calculated average of column cell values 
 
Note that dynamically generated values only make sense for columns that have the DynText or 
DynEdit style. For other column types, the column cell values are not dynamically updated in the 
browser, thus recalculating columns should never be done in the browser. 
 
Note also that the format of the output for server side calculated footers can be set trough the 
FooterFormat property.  



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

14 

 
Example:  
 
FooterFormat = “Average : 0.00”; 
 
This shows the average of values displayed with PageAvg type with 2 decimals.  
 
For dynamically calculated footers, the DynPrecision property determines the number of decimals 
that will be displayed. 
 
 
 
RowHeader 
 
When the RowHeader is enabled, a new column is added before the first column which displays the 
rownumber. This is a fixed column so the rownumbers remain visible when using vertical scrolling. 
The RowHeader‟s appearance can be controlled with the RowHeader subproperties: 
 
BackColor: sets the background color for the row header. Also specifies the start color of a gradient 
color in the rowheader. When Color Empty is set, no gradient is used. Note that gradients are only 
supported in IE6. 
BackColorTo: specifies the end color of a gradient color in the columnheader. 
Font: sets the font for the column header 
GradientOrientation: sets the direction for the gradient to either vertical or horizontal 
Visible: specifies if a rowheader is displayed or not 
Width: sets the width of the rowheader 
 
 
 
 
 
Borders 
 
Full Border configuration is available for all the AdvWebGrid components. Configuring borders is 
similar to setting borders for a Table in HTML. The properties are separate so they also have to be 
set seperately for the ColumnHeader, the Footer, the Controller, the Grid Cells and the RowHeader. 
 
Collapse: 
Color: set the color of the borders 
ColorDark: set the color of the borders 
ColorLight: set the color of the borders 
Inner: specify which inner borders should be displayed (all, rows, columns, none) 
Outer: specify which outer borders should be displayed 
void: none 
border: up-down-left-right 
below: down 
hsides: up-down 
lhs: left 
rhs: right 
vsides: left-right 
box: up-down-left-right 
Padding: specify the width between the cell border and the cell content 
Spacing: specify the width between two cells 
Width: sets the width of the borders 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

15 

Cell and row selection 
 
Checkbox disjunct multi-row selection: 
 
The most intuitive and familiar interface for selecting rows in a grid is perhaps the interface we 
have all learned from Hotmail, the checkbox based selection. This is enabled in AdvWebGrid by 
adding a column with the CheckBox style (optionally with ColumnHeaderCheckbox true, a checkbox 
in the column header will select / unselect all checkboxes) If a checkbox is checked, the row is 
selected and displayed in the SelectColor / SelectFontColor. The selection is fully handled on the 
client side. Only upon a server connection, the server application can get the state of the selected 
rows with the property bool Selected[int RowIndex].  
 
 
Following code shows how selected rows in a single displayed page can be deleted: 
 
AdvWebGrid1.RemoveSelectedRows(); 
 
Optionally, an event is triggered OnCheckClick. Note that when the OnCheckClick event is assigned, 
a connection to the server will be made for each checkbox click. 
 
 
Selections by mouseclick on cells: 
 
It is not required to use checkboxes for selecting rows. Using the property MouseSelect, following 
selection methods can be used: 
 
Row : single click selects row, another single click unselects current row and selects new row. 
SingleCell: single click selects single cell and unselects previously selected cell. Optionally, an event 
is triggered OnCellClick. Note that if this event handler is assigned, for each cell click a server 
connection will be made. 
RowCheck: single click selects row as if click on a checkbox. With SelectPersistent, the selected row 
state is remembered across pages and can be retrieved or set with Bool grid.Select[int RowIndex]; 
Move: single click moves the database cursor to the clicked row 
Client: generates a client side event only. The event can be handled with code in the 
ClientEvents.CellClick property 
None: no events are triggered for clicks on normal grid cells 
 
Finally, if the property AutoEdit is set true, the grid will automatically switch to editing mode, 
when a mouse click happens on a selected row. 
 
 
 
Row coloring 
 
By default, cell colors are set through the Color property for each Column. In addition, the 
GetCellProp event allows dynamic and/or content based cell and/or row color changing.Often it is 
much more convenient, to quickly apply a few often used coloring schemes. In AdvWebGrid, these 
are color banding, selection colors, edit color and hovering: 
 
Color banding: 
This is the often used alternating color per row scheme. It is simply enabled by setting the property 
grid.Bands.Active to true and defining colors for odd and even rows through grid.Bands.PrimaryColor 
and grid.Bands.SecondaryColor. 
 
Selection colors: 
The color of selected rows is set by SelectColor and SelectFontColor properties. 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

16 

 
Active row color: 
The color of the active row (current DB record for the DB-aware version or ActiveRow for non DB-
aware version) can be set with ActiveRowColor and ActiveRowFontColor properties. 
When the grid is in editing state, the row that is being editing can be conveniently displayed in its 
own color set by ActiveRowColor. 
 
Hovering: 
Hovering is the effect that a row changes color when the mouse is over it. It is enabled in 
AdvWebGrid setting the properties HoverColor and HoverFontColor. 
 
 
General note: 
 
When setting these color properties to Color Empty, the selected row coloring schemes are not 
used. 
 
 
 
Sort control 
 
A data-bound AdvWebGrid can use the built-in sorting or rely on the DB capabilities to sort the 
dataset shown in the grid. A non data-bound AdvWebGrid has built-in sorting which is enabled by 
global setting grid.SortSettings.Column to the column that should be sorted and further enabled for 
only those columns that must be allowed to be sorted by setting ColumnHeaderClick to true. For 
AdvWebGrid, the normal procedure to handle sorting is writing an event for the ColumnHeaderClick, 
change the query statement in this event handler to sort for the clicked column or when the clicked 
column was previously sorted, toggle the sort direction. The grid will then visually indicate the sort 
direction of the sorted column by a small up or down arrow in the column header. The same applies 
for AdvWebGrid. The difference here is that AdvWebGrid performs sorting internally and takes care 
of the SortSettings property by updating sorted column and sort direction for each click on a column 
header. As the AdvWebGrid performs its own sorting, the type of data displayed in each column 
must be set to allow the internal sort to work with the correct compare routines. This is set with 
the property SortFormat available in AdvWebGrid only and can be: 
 
Alphabetic : alphabetic sorting 
Numeric : integer or floating point based sorting 
Date : date based sorting 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

17 

Built-in scroll support 
 
AdvWebGrid has built-in scroll support. This means that you can add scrolling capabilities to the grid 
by just setting one property : grid.Scroll.Enable = true 
 

 
 
The scrolling is enabled for the data rows of the grid. An additional property is available: 
grid.Scroll.Persistent. When this is true, the vertical scroll position is persistent between 
consecutive rendered pages, ie. the grid remembers and restores the last scroll position for each 
new renderering after a server connection. 
 
It is also possible to control programmatically the scroll position of the grid. This can be convenient 
to force the grid to scroll to a given position to bring into view active rows or rows that have been 
changed. This can be done using the property grid.Scroll.Position. This property is a value between 
0% and 100%. When scroll persistence is disabled and scrolling is enabled, setting grid.Scroll.Position 
to 50 will show the grid half-way scrolled.  
 
Additionally, under grid.Scroll various scroll bar color settings are available.  
 
 
Using detailrows  
 
Detailrows offer the capability to show additional record information only when the user selects to 
open this. 
  
Detailrows have common properties that are: 
 
DetailRowHeight: sets the height of the detailrow. If this is 0, the height automatically adapts to 
the information in the detail row. 
 
DetailRowShow: selects the method to display the detail row. This can be: 
 
Normal: client side opening of a detail row with a node without affecting other detail rows 
OneOpen: client side opening of a detail row with a node with automatic closing of other detail 
rows to make sure only one detail row is open at a time 
AllOpen: grid is rendered with all detail rows immediately open 
ServerOpen: detail row is opened after a server connection. During the server connection, the 
DetailRowOpen, DetailRowClose events are generated when a new detail row has been opened. 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

18 

ServerOneOpen: detail row is opened after a server connection. During the server connection, the 
DetailRowOpen, DetailRowClose events are generated when a new detail row has been opened. 
Previously opened detail rows are automatically closed upon opening a new detail row.  
 
 
Other settings for detailrows are in the Columns property: 
 
DetailColor: sets the background color of the detail row in this Column 
 
DetailForeColor: sets the text color of the detail row in this Column 
 
DetailField : sets optionally the DB field that should be shown in the detail row 
 
DetailFont : sets the font to be used in the detail row in this Column 
 
DetailSpan: sets the number of columns the detail row spans from this column 
 
Additionally, for each row the event GetDetail is also triggered to set the detail row information 
dynamically. 
 
Detail rows are opened or closed with nodes. It is therefore required that at least one column in the 
grid contains nodes. A column can be set to contain nodes when its columntype is Node.  The 
settings for the node appearance are available in the Images property with: 
 
NodeCloseHint: set the hint to display when the mouse is over a closed node 
NodeOpenHint: sets the hint to display when the mouse is over an opened node 
NodeClose: sets the glyph to display for a closed node 
NodeOpen: sets the glyph to display for an open node 
 
The detailrows feature persistence, preset and checking state. Persistence means that a client side 
open or close of a detail row is persistent across consecutive rendered pages after a server 
connection. The state of a detail row can be set and checked with the public property: 
 
grid.DetailStates[Int Row] = true; 
grid.DetailStates[Int Row] = false; 
 
 
 
 
 
 
Example: 
 
This code sets up an AdvWebGrid with a detailrow that spans a full row and that presets the first 
five rows to have the detailrow open: 
 
for (int i=0;i<5;i++) 

AdvWebGrid1.DetailStates[i] = true; 
 

 

Using the server side opened and closed detailrows can be used to optimize bandwidth. By using this 
DetailRow mode, only the data for opened detailrows will be sent to the browser and thus avoiding 
the sending of a lot of potentially never seen data to the browser.   
 
 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

19 

Using internal cell methods in AdvWebGrid 
 
The data in AdvWebGrid is set through the this[col,row] property. Various methods exist to handle 
the cells: 
 
property string this[ACol,ARow: Integer]; 
Basic interface through which cell data can be set. 
 
procedure ClearCells; 
Clears contents of all cells 
 
procedure DeleteRows(RowIndex,RowCount: Integer); 
Deletes RowCount rows starting from RowIndex 
 
procedure InsertRows(RowIndex,RowCount: Integer); 
Inserts RowCount rows at position RowIndex 
 
procedure InsertColumns(ColIndex, ColCount: Integer); 
Inserts ColCount columns at position ColIndex 
 
procedure DeleteColumns(ColIndex, ColCount: Integer); 
Deletes ColCount columns starting from column ColIndex 
 
procedure ClearRows(RowIndex,RowCount: Integer); 
Clears contents of RowCount rows starting at row RowIndex 
 
procedure ClearColumns(ColIndex,ColCount: Integer); 
Clears contents of ColCount columns starting at row ColIndex 
 
 
 
 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

20 

 

Advanced AdvWebGrid topics 

Using the clientevents 

It is possible to write JavaScript code that is handled in the browser for following events: 

Button click : ButtonClick 
Cell Click  : CellClick 
Combobox Change : ComboChange 
Dynamic checkbox click : DynCheckClick 
Dynamic combobox change : DynComboChange 
Dynamic edit change : DynEditChange 
Dynamic end of edit : DynEditDone 
End of edit : EditDone 
Image click : ImageClick 
Node click : NodeClick 
  
The JavaScript code is added as a StringList in the ClientEvents property. This code is inserted 
inside the event handlers as JavaScript and will be executed in the browser. Note that any error in 
the JavaScript code can potentially cause that the grid is no longer working correct and that 
JavaScript errors are displayed in the browser.  

In JavaScript, a number of functions are available that can be used. To call these methods, it is 
important to prefix ALL the functions with “GridName”Obj where GridName is the grid‟s name. 
 
Available methods: 

GridNameObj.GetEditRow(): returns the row index of the currently edited row mode. 

GridNameObj.IsEditing(); returns true if the grid is in editing mode 
 
GridNameObj.GetCellValue(c,r); returns the value of cell c,r. This is only applicable for cells that 
have text and not with cells that have controls or images. 

GridNameObj.SetCellValue(c,r,value); sets the value of cell c,r. 

GridNameObj.GetEditValue(c,r); returns the value of the edit control in cell c,r 

GridNameObj.SetEditValue(c,r,value); set the value of the edit control in cell c,r 

When the clientside events are called, the variables c & r indicate the cell for which the event was 
triggered. Depending on the event, additional parameters are available.  

 

 

 

 

 



 

TMS SOFTWARE  
AdvWebGrid  

DEVELOPERS GUIDE 

 

   

 

21 

Example: presetting values for grid in edit mode 

The code below is added to the event for a button click. It first checks if the grid is in editing mode. 
If so, it sets the values of the inplace editors to preset values: 

if (!AdvWebGrid1Obj.IsEditing()) 

{ 

alert("Cannot preset values : not in editing mode"); 

return; 

} 

i = AdvWebGrid1Obj.GetEditRow(); 

AdvWebGrid1Obj.SetEditValue(3,i,"Danny");   

AdvWebGrid1Obj.SetEditValue(4,i,"Thorpe"); 

AdvWebGrid1Obj.SetEditValue(5,i,"Borland"); 

 

Note the calls to AdvWebGrid1Obj.IsEditing(), where AdvWebGrid1Obj is the reference to the grid in 
the browser) 

 

 

 


